Homework 5

Due: Thursday May 23, 2012

1. Let E be the elliptic curve over the field \mathbb{F}_{5} defined by the equation $y^{2}=x^{3}+2 x+1$. On E, compute $2 P$ where P is the point $(1,2)$. How many points are in E ?
2. Let p be an odd prime number. Suppose that $a \not \equiv 0(\bmod p)$. Give a criterion for whether a is or is not a square modulo p according to the largest power of 2 which divides $\operatorname{ord}_{p}(a)$.
3. Working over the integers modulo p, consider the nodal curve C defined by $y^{2}=x^{3}$. Prove that any point on this curve is of the form $\left(t^{3}, t^{2}\right)$ for some $t \in \mathbb{F}_{p}$.
4. For nonzero distinct s, t, u, prove that three points $\left(s^{3}, s^{2}\right),\left(t^{3}, t^{2}\right)$ and $\left(u^{3}, u^{2}\right)$ are collinear if and only if $1 / s+1 / t+1 / u=0$. (This shows that one does not get a new group from the curve C)
5. Factor 35 using the elliptic curve method with the elliptic curve $y^{2}=x^{3}+5 x+8$ and the point $(1,28)$.
