
Math 110 HW 2 solutions

1. Two possible definitions of ISBN numbers are:

a1a2 . . . a10 such that a1 + 2a2 + . . . + 10a10 ≡ 0 mod 11.

a1a2 . . . a10 such that 10a1 + 9a2 + . . . + a10 ≡ 0 mod 11.

Prove that these definitions are equivalent. (i.e., a string is an ISBN number under the first
definition if and only if it is an ISBN number under the second definition.)

Solution:

If a1 + 2a2 + . . . + 10a10 ≡ b mod 11
and 10a1 + 9a2 + . . . + a10 ≡ c mod 11

then, adding the two equations, we obtain

11a1 + 11a2 + . . . + 11a10 ≡ b + c mod 11

Since 11 ≡ 0 mod 11, we get b+ c ≡ 0 mod 11. Therefore b ≡ 0 mod 11 if and only if c ≡ 0
mod 11, so the two equations given in the problem each imply the other, as was to be shown.

Another way of writing the same proof is to note that 10 ≡ −1 mod 11, 9 ≡ −2 mod 11 and
so on, so that the two equations are negatives of each other mod 11, and therefore b ≡ −c.

2. Show that 0-13-116093-8 is not a valid ISBN number, and find two different valid ISBN
numbers that each differ from 0-13-116093-8 in exactly one digit. (This shows that although
the ISBN scheme can detect a single error, it cannot correct a single error.)

Let’s use the second equation given in the previous problem, so the larger digits are multiplied
by bigger numbers. Also let’s list the numbers as 0, 1, 3, 1, 1,−5, 0,−2, 3,−3 mod 11. Then
we obtain 10 ∗ 0 + 9 ∗ 1 + 8 ∗ 3 + 7 ∗ 1 + 6 ∗ 1− 5 ∗ 5 + 4 ∗ 0− 3 ∗ 2 + 2 ∗ 3− 1 ∗ 3, or

0 + 9 + 24 + 7 + 6− 25 + 0− 6 + 6− 3 = 18 ≡ 7 mod 11,

which is not 0 so this is not a valid ISBN number.

So, if we change the fourth digit from 1 to 0, we will have the equation 0 + 9 + 24 + 0 + 6−
25 + 0− 6 + 6− 3 = 11 ≡ 0 mod 11. Thus 0-13-016093-8 is a valid ISBN number.

But we can also change the seventh digit from 0 to 1, and then we will get 0 + 9 + 24 + 7 +
6− 25 + 4− 6 + 6− 3 = 22 ≡ 0 mod 11. Thus 0-13-116193-8 is a valid ISBN number.

3. The ciphertext 75 was obtained using the RSA algorithm with n = 437 and e = 3. You know
that the plaintext is a positive integer less than 10. Determine which integer this is without
factoring n.

If the plaintext is a positive integer less than 10, we just need to know which of those has a
cube that is 75 mod 437. Since 75 is not a cube in the integers (specifically 43 = 64 < 75
and 53 = 125 > 75), the number must have a cube greater than 437. As 73 = 343 < 437
but 83 = 512 > 437, the candidates are 8 and 9. As a matter of fact 512 ≡ 75 mod 437
so we hypothesize that the plaintext is 8. Just to check, however, note that 93 = 729 and
437 ∗ 2 = 874 so 93 ≡ 55 mod 437. Thus the plaintext must be 8.
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4. Three RSA users have public keys with modulus N1, N2, N3 (you may assume if you want that
these moduli are pairwise coprime) and each use the encryption exponent e = 3. Suppose
that the same message m(0 ≤ m ≤ Ni) is sent to each RSA user, and you intercept the three
ciphertexts ci ≡ m3 (mod Ni) for i = 1, 2, 3.

Show that 0 ≤ m3 ≤ N1N2N3, and hence that using the Chinese remainder theorem, you can
not only calculate the value of m3 (mod N1N2N3), but that you actually obtain the exact
value of m3 and hence can read the message m.

We are given that 0 ≤ m ≤ Ni for each i. Without loss of generality, suppose that N1 ≤ N2 ≤
N3. Therefore, m3 ≤ N3

1 ≤ N1N2N3. Since m ≥ 0, we also have 0 ≤ m3 as requested. If we
assume that N1, N2 and N3 are pairwise coprime, then by the Chinese Remainder Theorem,
there is a unique solution to m3 ≡ c1 (mod N1),m3 ≡ c2 (mod N2).

5. Find the remainder when 51056 is divided by 7.

Since 7 is prime we know 56 ≡ 1 mod 7. Also, 1056 is divisible by 2 and by 3, so it’s a
multiple of 6; therefore 51056 ≡ 1 mod 7. Thus, the remainder when 51056 is divided by 7 is
1.

6. Find all four solutions to x2 ≡ 1 mod 187.

Two solutions we know already are ±1 mod 187, or 1 and 186. Also, 187 = 11 × 17, the
factors are two distinct primes, so they are coprime. Furthermore, x2 ≡ 1 mod 11 has only
the solutions ±1, and x2 ≡ 1 mod 17 has only the solutions ±1. (To check this for 11 we can
use the book section 3.9, to check it for 17 we do it explicitly since 17 ≡ 1 mod 4.)

So a number that is 1 mod 17 and −1 mod 11 is needed, as well as a number that is 1
mod 11 and−1 mod 17. 67 is a number that is 1 mod 11 and−1 mod 17, so 672 = 4489 = 1
mod 187. Then −67 is the other equivalence class mod 187 desired, which is to say 120
mod 187.

So the four solutions are ±1,±67 mod 187, or 1, 67, 120, 186 mod 187.

7. Let p and q be distinct primes. Prove that φ(pq) = (p− 1)(q − 1).

Let us find all the numbers a : 1 ≤ a ≤ pq such that gcd(a, pq) 6= 1. The gcd must be either
p, q, or pq itself. So first let’s count multiples of p. There are q multiples of p from 1 to pq, and
among them, only pq is divisible by q; so there are q − 1 values of a such that gcd(pq, a) = p.
Similarly there are p− 1 values of a such that gcd(pq, a) = q. And then there is one number
a = pq such that gcd(pq, a) = pq.

So φ(pq), the number of integers from 1 to pq that are coprime to pq, is pq−(q−1)−(p−1)−1,
or pq − p− q + 1. That factors into (p− 1)(q − 1) as was to be shown.

8. Using the inequality from the previous problem set∏
p

pblogp(2n)c ≥
(

2n

n

)
,

prove that there are innitely many primes. For this you will need a handle on how large the
right hand side is. There is an estimate

(
2n
n

)
≥ 4n/(2n + 1) which is obtained as follows:
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Expand 4n = (1 + 1)2n using the binomial expansion. There are a total of 2n + 1 terms and
the largest is

(
2n
n

)
.

Solution:

Suppose there are only finitely many primes. Let q be the largest prime, and from now on
let us consider only values of n such that 2n ≥ q. Then for any prime p, logp(2n) ≤ log2(2n).
Also, p ≤ q. So if there are k distinct primes, then we have∏

p

pblogp(2n)c ≤ qk log2(2n).

Now log2(2n) = logq(2n)/ logq(2), so the right hand side may be written (2n)k/ logq(2). Let
K be the constant k/ logq(2). Then (2n)K ≥

(
2n
n

)
≥ 4n/2n + 1 for all n ≥ q/2. But in that

case, (2N)K(2n + 1) ≥ 4n, which is not true for sufficiently large n. This contradicts the
assumption that there are finitely many primes. Therefore there are infinitely many primes.
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