Math 110 HW 2 solutions

1. Two possible definitions of ISBN numbers are:

$$
\begin{aligned}
& a_{1} a_{2} \ldots a_{1} 0 \text { such that } a_{1}+2 a_{2}+\ldots+10 a_{10} \equiv 0 \quad \bmod 11 . \\
& a_{1} a_{2} \ldots a_{1} 0 \text { such that } 10 a_{1}+9 a_{2}+\ldots+a_{10} \equiv 0 \quad \bmod 11 .
\end{aligned}
$$

Prove that these definitions are equivalent. (i.e., a string is an ISBN number under the first definition if and only if it is an ISBN number under the second definition.)

Solution:

$$
\begin{aligned}
& \text { If } a_{1}+2 a_{2}+\ldots+10 a_{10} \equiv b \bmod 11 \\
& \text { and } 10 a_{1}+9 a_{2}+\ldots+a_{10} \equiv c \bmod 11
\end{aligned}
$$

then, adding the two equations, we obtain

$$
11 a_{1}+11 a_{2}+\ldots+11 a_{10} \equiv b+c \quad \bmod 11
$$

Since $11 \equiv 0 \bmod 11$, we get $b+c \equiv 0 \bmod 11$. Therefore $b \equiv 0 \bmod 11$ if and only if $c \equiv 0$ $\bmod 11$, so the two equations given in the problem each imply the other, as was to be shown.
Another way of writing the same proof is to note that $10 \equiv-1 \bmod 11,9 \equiv-2 \bmod 11$ and so on, so that the two equations are negatives of each other $\bmod 11$, and therefore $b \equiv-c$.
2. Show that $0-13-116093-8$ is not a valid ISBN number, and find two different valid ISBN numbers that each differ from 0-13-116093-8 in exactly one digit. (This shows that although the ISBN scheme can detect a single error, it cannot correct a single error.)

Let's use the second equation given in the previous problem, so the larger digits are multiplied by bigger numbers. Also let's list the numbers as $0,1,3,1,1,-5,0,-2,3,-3 \bmod 11$. Then we obtain $10 * 0+9 * 1+8 * 3+7 * 1+6 * 1-5 * 5+4 * 0-3 * 2+2 * 3-1 * 3$, or

$$
0+9+24+7+6-25+0-6+6-3=18 \equiv 7 \bmod 11,
$$

which is not 0 so this is not a valid ISBN number.
So, if we change the fourth digit from 1 to 0 , we will have the equation $0+9+24+0+6-$ $25+0-6+6-3=11 \equiv 0 \bmod 11$. Thus $0-13-016093-8$ is a valid ISBN number.

But we can also change the seventh digit from 0 to 1 , and then we will get $0+9+24+7+$ $6-25+4-6+6-3=22 \equiv 0 \bmod 11$. Thus $0-13-116193-8$ is a valid ISBN number.
3. The ciphertext 75 was obtained using the RSA algorithm with $n=437$ and $e=3$. You know that the plaintext is a positive integer less than 10 . Determine which integer this is without factoring n .

If the plaintext is a positive integer less than 10 , we just need to know which of those has a cube that is $75 \bmod 437$. Since 75 is not a cube in the integers (specifically $4^{3}=64<75$ and $5^{3}=125>75$), the number must have a cube greater than 437 . As $7^{3}=343<437$ but $8^{3}=512>437$, the candidates are 8 and 9 . As a matter of fact $512 \equiv 75 \bmod 437$ so we hypothesize that the plaintext is 8 . Just to check, however, note that $9^{3}=729$ and $437 * 2=874$ so $9^{3} \equiv 55 \bmod 437$. Thus the plaintext must be 8 .
4. Three RSA users have public keys with modulus N_{1}, N_{2}, N_{3} (you may assume if you want that these moduli are pairwise coprime) and each use the encryption exponent $e=3$. Suppose that the same message $m\left(0 \leq m \leq N_{i}\right)$ is sent to each RSA user, and you intercept the three ciphertexts $c_{i} \equiv m^{3}\left(\bmod N_{i}\right)$ for $i=1,2,3$.

Show that $0 \leq m^{3} \leq N_{1} N_{2} N_{3}$, and hence that using the Chinese remainder theorem, you can not only calculate the value of $m^{3}\left(\bmod N_{1} N_{2} N_{3}\right)$, but that you actually obtain the exact value of m^{3} and hence can read the message m.

We are given that $0 \leq m \leq N_{i}$ for each i. Without loss of generality, suppose that $N_{1} \leq N_{2} \leq$ N_{3}. Therefore, $m^{3} \leq N_{1}^{3} \leq N_{1} N_{2} N_{3}$. Since $m \geq 0$, we also have $0 \leq m^{3}$ as requested. If we assume that N_{1}, N_{2} and N_{3} are pairwise coprime, then by the Chinese Remainder Theorem, there is a unique solution to $m^{3} \equiv c_{1}\left(\bmod N_{1}\right), m^{3} \equiv c_{2}\left(\bmod N_{2}\right)$.
5. Find the remainder when 5^{1056} is divided by 7 .

Since 7 is prime we know $5^{6} \equiv 1 \bmod 7$. Also, 1056 is divisible by 2 and by 3 , so it's a multiple of 6 ; therefore $5^{1056} \equiv 1 \bmod 7$. Thus, the remainder when 5^{1056} is divided by 7 is 1.
6. Find all four solutions to $x^{2} \equiv 1 \bmod 187$.

Two solutions we know already are $\pm 1 \bmod 187$, or 1 and 186 . Also, $187=11 \times 17$, the factors are two distinct primes, so they are coprime. Furthermore, $x^{2} \equiv 1 \bmod 11$ has only the solutions ± 1, and $x^{2} \equiv 1 \bmod 17$ has only the solutions ± 1. (To check this for 11 we can use the book section 3.9 , to check it for 17 we do it explicitly since $17 \equiv 1 \bmod 4$.)
So a number that is $1 \bmod 17$ and $-1 \bmod 11$ is needed, as well as a number that is 1 $\bmod 11$ and $-1 \bmod 17.67$ is a number that is $1 \bmod 11$ and $-1 \bmod 17$, so $67^{2}=4489=1$ $\bmod 187$. Then -67 is the other equivalence class $\bmod 187$ desired, which is to say 120 $\bmod 187$.

So the four solutions are $\pm 1, \pm 67 \bmod 187$, or $1,67,120,186 \bmod 187$.
7. Let p and q be distinct primes. Prove that $\phi(p q)=(p-1)(q-1)$.

Let us find all the numbers $a: 1 \leq a \leq p q$ such that $\operatorname{gcd}(a, p q) \neq 1$. The gcd must be either p, q, or $p q$ itself. So first let's count multiples of p. There are q multiples of p from 1 to $p q$, and among them, only $p q$ is divisible by q; so there are $q-1$ values of a such that $g c d(p q, a)=p$. Similarly there are $p-1$ values of a such that $\operatorname{gcd}(p q, a)=q$. And then there is one number $a=p q$ such that $\operatorname{gcd}(p q, a)=p q$.
So $\phi(p q)$, the number of integers from 1 to $p q$ that are coprime to $p q$, is $p q-(q-1)-(p-1)-1$, or $p q-p-q+1$. That factors into $(p-1)(q-1)$ as was to be shown.
8. Using the inequality from the previous problem set

$$
\prod_{p} p^{\left\lfloor\log _{p}(2 n)\right\rfloor} \geq\binom{ 2 n}{n}
$$

prove that there are innitely many primes. For this you will need a handle on how large the right hand side is. There is an estimate $\binom{2 n}{n} \geq 4^{n} /(2 n+1)$ which is obtained as follows:

Expand $4^{n}=(1+1)^{2 n}$ using the binomial expansion. There are a total of $2 \mathrm{n}+1$ terms and the largest is $\binom{2 n}{n}$.

Solution:

Suppose there are only finitely many primes. Let q be the largest prime, and from now on let us consider only values of n such that $2 n \geq q$. Then for any prime $p, \log _{p}(2 n) \leq \log _{2}(2 n)$. Also, $p \leq q$. So if there are k distinct primes, then we have

$$
\prod_{p} p^{\left\lfloor\log _{p}(2 n)\right\rfloor} \leq q^{k \log _{2}(2 n)}
$$

Now $\log _{2}(2 n)=\log _{q}(2 n) / \log _{q}(2)$, so the right hand side may be written $(2 n)^{k / \log _{q}(2)}$. Let K be the constant $k / \log _{q}(2)$. Then $(2 n)^{K} \geq\binom{ 2 n}{n} \geq 4^{n} / 2 n+1$ for all $n \geq q / 2$. But in that case, $(2 N)^{K}(2 n+1) \geq 4^{n}$, which is not true for sufficiently large n. This contradicts the assumption that there are finitely many primes. Therefore there are infinitely many primes.

