
Math 110 HW 1 solutions

April 18, 2013

1. Find the greatest common divisor of 1112 and 1544.

1544 −1× 1112 = 432
1112 −2× 432 = 248
432 −1× 248 = 184
248 −1× 184 = 64
184 −2× 64 = 56
64 −1× 56 = 8
56 −7× 8 = 0

so having run the Euclidean algorithm we find gcd(1112, 1544) = 8.

2. For the value d of the greatest common divisor found in the

first question, find all integer solutions (x, y) to the equation 1112x +
1544y = d.

We reuse the quotients in the first part of the algorithm, to get one solu-
tion:

8 = 64− 56
8 = 64− (184− 2 ∗ 64) = 3 ∗ 64− 184
8 = 3(248− 184)− 184 = 3 ∗ 248− 4 ∗ 184
8 = 3 ∗ 248− 4 ∗ (432− 248) = 7 ∗ 248− 4 ∗ 432
8 = 7 ∗ (1112− 2 ∗ 432)− 4 ∗ 432 = 7 ∗ 1112− 18 ∗ 432
8 = 7 ∗ 1112− 18 ∗ (1544− 1112) = 25 ∗ 1112− 18 ∗ 1544.

Algebraic method to find more solutions: Then we note that 1544/8 = 193
and 1112/8 = 139, so in particular 139× 1544− 193× 1112 = 0 which is
the smallest pair of positive integers giving that solution, because it is the
least common multiple minus itself.

Given two solutions, 1112x + 1544y = 8 and 1112w + 1544z = 8, we can
subtract them to find 1112(x− w) + 1544(y − z) = 0, which is an integer
solution to the equation above. Therefore x− w = 139n for some integer
n, and y − z = 193n.
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Thus, the set of all possible solutions is 8 = (25 + 193n) × 1112 − (18 +
193n)× 1544, for all integers n.

Geometric method to find more solutions:

The set of points (x, y) where 1112x + 1544y = 8 is a line, and we want
to find points on that line whose coordinates are integers. We have one,
the point (25,−18). Now, the slope is −1112/1544 = −139/193. So if
we change x by an integer amount m, y will be changed by −139m/193,
which is an integer only if 193 divides m. Write m = 193n for an integer
n, and we see that again the set of all possible solutions is 8 = (25 +
193n)× 1112− (18 + 193n)× 1544.

3. Find all solutions of the congruences 12x ≡ 28 mod 236 and 12y ≡ 30
mod 236.

First note that 236 factors as 59 ∗ 4. So we wish to find x that solves
12x ≡ 0 mod 4, and 12x ≡ 28 mod 59. The first equation is true for
every x.

For the second, let us take a few multiples of 12, mod 59: 12, 24, 36, 48, 1–
and stop because knowing that 12∗5 = 1 allows us to solve everything else.
Now 12 ∗ (5 ∗ 28) ≡ 28 mod 59, and so a solution is x = 5 ∗ 28 = 140 ≡ 22
mod 59.

If we try this x as a solution we have 12 ∗ 22 = 264 ≡ 28 mod 236 as
desired.

Now we wish to find y that solves 12y ≡ 2 mod 4 and 12y ≡ 30 mod 59.
Since the equation 12y ≡ 2 mod 4 is equivalent to 0y ≡ 2 mod 4 and has
no solutions, we conclude that there are no solutions in this case.

4. Find a multiplicative inverse of 7 mod 30.

There are several ways to do this, straightforward ones being multiples of
7 and powers of 7. I’ll go with powers of 7.

72 = 49 ≡ 19 mod 30

73 ≡ 19× 7 ≡ 133 ≡ 13 mod 30

74 ≡ 13× 7 ≡ 91 ≡ 1 mod 30.

So we find that 13 is a multiplicative inverse of 7, modulo 30.

5. Let p be a prime number and n a positive integer. Show that the largest
power of p which divides n! is given by

∞∑
i=1

⌊ n
pi

⌋
.

Since n! is the product of the integers from 1 to n, let’s first count how
many of those integers are divisible by p. That is the multiples of p; there
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are n/p of them rounded down to the nearest integer, which is to say,
k1 = bnp c.

Next, let’s count how many of those integers are divisible by p2. Again
that is the multiples of p2, and there are k2 = b n

p2 c.

Similarly counting the number of integers that are divisible by p3 and
calling that number k3, and so on, eventually ki = 0 for all i after some
number. So we have a sequence k1, k2, . . . of which all but finitely many
terms are 0. Let K be the sum

∑∞
i=1 ki, which is the sum in the problem

statement, and which is a finite number.

Therefore, considering all the powers of p contributed to n! by multiples
of p, they sum up to K, which means the number pK divides n!. The
question is, is K the largest possible exponent here?

At this point it becomes important that p is prime: for any two numbers
b, c, if p|bc then p|b or p|c. From that statement one may deduce that if
pm|bc, then pi|b and pj |c for nonnegative integers i, j such that i + j ≥
m. Also, both statements apply not only to two integers b, c but to any
product of finitely many integers.

Thus if pK+1 divides n!, then among the integers from 1 to n there are
exponents of p which sum up to at least K+1. Since this is false, we know
pK+1 does not divide n!, so K is the largest exponent for which pK |n!,
q.e.d.

6. Prove that the binomial coefficient
( 2n
n=

(2n)!
n!n!

)
divides the product∏

p

pblogp(2n)c

where the product is taken over all primes p.

First, note that blogp(2n)c is the exponent of the largest possible power

of p that is ≤ 2n. So the expression in the product, pblogp(2n)c, is just the
largest possible power of p that is ≤ 2n.

For a given p, suppose pk ≤ 2n and pk+1 > 2n. Then let us see how many
powers of p divide n! ∗ n!, which would be given by

S1 = 2

∞∑
i=1

⌊ n
pi

⌋
.

The number of powers of p that divide (2n)! is

S2 =

∞∑
i=1

⌊2n

pi

⌋
.

and the problem statement is equivalent to proving that S2 ≤ S1 + k.
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The last nonzero number in the second sum is a = b 2n
pk c and in the first

sum we have the corresponding term 2b n
pk c = 2ba2 c. We can see that

a − 2ba2 is equal to 0 or 1 depending on whether a is even or odd. But
this argument holds true also for the comparison of b 2npi c and 2b npi c for
i = 1, . . . k − 1.

Each of these comparisons differs by 0 or 1, thus we have S2 ≤ S1 + k.
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