Math 110 HW 5 solutions

June 9, 2013

1. Let E be the elliptic curve over the field \mathbb{F}_{5} defined by the equation $y^{2}=x^{3}+2 x+1$. On E, compute $2 P$ where P is the point $(1,2)$. How many points are in E ?
Recall \mathbb{F}_{5} is just the integers mod 5 .
To find the points, if $x=0$ then $y^{2} \equiv 1$ so $y \equiv \pm 1 \equiv 1,4(\bmod 5)$. If $x=1$ then $y^{2}=4$ so $y \equiv \pm 2 \equiv 2,3(\bmod 5)$. If $x=2$ then $y^{2} \equiv 3$ which has no solutions, if $x=3$ then $y^{2} \equiv 4$ as before, and if $x=4$ then $y^{2} \equiv 3$ which has no solutions.

So the points of the curve are $(0,1),(0,4),(1,2),(1,3),(3,2),(3,3)$ which is six points, and the point at infinity makes it 7 .

Now at the point $(1,2)$ we need the slope of the tangent line using implicit differentiation as in the book. We get $2 y d y=3 x^{2} d x+2 d x$, so $d y / d x=\frac{3 x^{2}+2}{2 y}$. Substituting in $(1,2)$ for (x, y) we have the numerator 0 , denominator 2 , so we get slope 0 . Thus we are looking for another point with the same y-coordinate, that's the point $(3,2)$. Reflecting across the y-axis we get $(3,-2)$ which on the list is $(3,3)$.
2. Let p be an odd prime number. Suppose that $a \not \equiv 0(\bmod p)$. Give a criterion for whether a is or is not a square modulo p according to the largest power of 2 which divides $\operatorname{ord}_{p}(a)$.
Let $p-1=2^{k} d$ where d is odd, so that 2^{k} is the largest power of 2 that divides $p-1$. Then if a is a square, there is an element whose order is twice that of a. In that case the order of a must be at most $2^{k-1} d$, and must divide that, so the largest power of 2 that divides the order of a is $k-1$.

To show that this is a sufficient condition, suppose b is a primitive root $\bmod p$; that is, b has order $p-1$. Then there is some i such that $b^{i} \equiv a(\bmod p)$. If i is even, then $b^{i / 2}$ gives a square root of a. Suppose i is odd, and let $r=\operatorname{ord}_{p}(a)$. Then $p-1$ divides $i r$ because $b^{i r} \equiv a^{r} \equiv 1(\bmod p)$. Thus 2^{k} divides r.

So if 2^{k} does not divide r, then i is even, thus a has a square root. Another way of saying this is that a has a square root $\bmod p$ if and only if the largest power of 2 dividing $\operatorname{ord}_{p}(a)$ is 2^{k-1} 。
3. Working over the integers mod p, consider the nodal curve C defined by $y^{2}=x^{3}$. Prove that any point on this curve is of the form $\left(t^{2}, t^{3}\right)$ for some $t \in \mathbb{F}_{p}$.
If $x=0$ then $y=0$ also and then $(x, y)=\left(t^{2}, t^{3}\right)$ with $t=0$. So now we may assume that $x \neq 0$. Let $t=y / x$. Then $x=x^{3} / x^{2}=y^{2} / x^{2}=t^{2}$ and $y=t x=t \cdot t^{2}=t^{3}$.
4. For nonzero distinct s, t, u, prove that three points $\left(s^{2}, s^{3}\right),\left(t^{2}, t^{3}\right)$, and $\left(u^{2}, u^{3}\right)$ are collinear if and only if $1 / s+1 / t+1 / u=0$. (This shows that one does not get a new group from the curve C in the previous problem.)

If the three points are collinear, since s, t, u are distinct, the x coordinates of each point are distinct as are the y coordinates. So the points all lie on a line $y=a x+b$ of nonzero, finite slope. Thus we have the equations

$$
\begin{aligned}
s^{3} & =a s^{2}+b \\
t^{3} & =a t^{2}+b \\
u^{3} & =a u^{2}+b
\end{aligned}
$$

So the points are the three distinct roots of a cubic $x^{3}-a x^{2}+b=0$. Thus that cubic has the form $(x-s)(x-t)(x-u)$, which multiplying out gives us $x^{3}-(s+t+u) x^{2}+(s t+t u+u s) x+s t u$. That tells us $a=s+t+u$ and $b=s t u$, but the most relevant information is that $s t+t u+u s=0$. Since stu is nonzero we can divide by it to obtain $1 / s+1 / t+1 / u=0$.

Going the other way, if $1 / s+1 / t+1 / u=0$ then we set $a=s+t+u$ and $b=s t u$ and thus obtain the line $y=a x+b$ which contains all three points.
5. Factor 35 using the elliptic curve method with the elliptic curve $y^{2}=x^{3}+5 x+8$ and the point $(1,28)$.

First to check that the point is on the curve: $28^{2}=784 \equiv 14(\bmod 35)$, and $1+5+8=14$.
The tangent line to $(1,28)$ is found again using implicit differentiation: $2 y d y=3 x^{2} d x+5 d x$, so $\frac{d y}{d x}=\frac{3 x^{2}+5}{2 y}$. Substitute in $(1,28)$ and we have $8 / 56$. Unfortunately we cannot invert $56 \bmod 35$, and to see why we calculate with the Euclidean algorithm that $\operatorname{gcd}(56,35)=$ $\operatorname{gcd}(35,21)=\operatorname{gcd}(21,14)=\operatorname{gcd}(14,7)=7$. Therefore 7 is a factor of 35 , and dividing we get 5 . We then verify that 5 and 7 are prime, so we have successfully factored 35 .

