MATH 120 Final. Fri Jun 8 2012.

1.

- 2. (a) (2 points) Let R be a ring. Give a definition of an ideal of R.
 - (b) (6 points) Let I be an ideal of R. Show that

$$\sqrt{I} = \{r \in R | r^n \in I \text{ for some integer } n \ge 1\}$$

is an ideal of R.

(c) (4 points) Give an example of a ring R and an ideal I where $\sqrt{I} \neq I$.

Solution:

- (a) We say that $I \subseteq R$ is an ideal of R if it is both closed under addition and under scaling by an element of R. That is for all $a, b \in I$ and $r \in R$ we must have $a + b \in I$ and $ra \in I$.
- (b) Let $a, b \in \sqrt{I}$ and $r \in R$. First we prove $a + b \in \sqrt{I}$. By definition of \sqrt{I} there exist integers n and m such that a^n and b^m are elements of I. Then we consider the binomial expansion of $(a + b)^{n+m}$

$$(a+b)^{n+m} = \sum_{i=0}^{n+m} a^{n+m-i}b^i$$

Since either $i \ge m$ or $n + m - i \ge n$ each term of the summation is an element of I and therefore $(a + b)^{n+m} \in I$ which implies $a + b \in \sqrt{I}$.

Next we show $ra \in \sqrt{I}$. Let us consider $(ra)^n = r^n a^n$, since $a^n \in I$ we have $r^n a^n \in I$ and therefore $(ra)^n \in I$ which implies $ra \in I$.

- (c) Let us consider $R = \mathbb{Z}$ and $I = 4\mathbb{Z}$ the ideal of all multiples of 4. We have that $2 \in \sqrt{I}$ since $2^2 = 4$, but $2 \notin I$.
- 3. Let $\omega = e^{\frac{2\pi i}{3}} \in \mathbb{C}$. Define $\mathbb{Z}[\omega] = \{a + b\omega | a, b \in \mathbb{Z}\}.$
 - (a) (3 points) Prove that $\mathbb{Z}[\omega]$ is a subring of \mathbb{C}
 - (b) (9 points) Prove that $\mathbb{Z}[\omega]$ is an Euclidean domain with respect to the norm function $N(z) = z\bar{z}$.

Solution:

(a) We will show $\mathbb{Z}[\omega]$ is a subgroup and it is closed under multiplication. First we notice $0 = 0 + 0\omega$ and $1 = 1 + 0\omega$ are elements of $\mathbb{Z}[\omega]$. Next we show that $\mathbb{Z}[\omega]$ is closed under addition and additive inverse. For this we note that if $a_1 + a_2\omega$ and $b_1 + b_2\omega$ are two elements of $\mathbb{Z}[\omega]$ where $a_i, b_i \in \mathbb{Z}$ for i = 1, 2. Then we have $(a_1 + a_2\omega) + (b_1 + b_2\omega) = (a_1 + b_1) + (a_2 + b_2)\omega$ and since $a_i + b_i \in \mathbb{Z}$ for

i = 1, 2 we have that the sum is an element of $\mathbb{Z}[\omega]$. Similarly we notice that $-(a_1 + a_2\omega) = (-a_1) + (-a_2)\omega$ which is also an element of $\mathbb{Z}[\omega]$.

Next we prove that $\mathbb{Z}[\omega]$ is closed under multiplication. For this we first notice that ω satisfies $\omega^3 = 1$ and thus it satisfies $\omega^3 - 1 = (\omega - 1)(\omega^2 + \omega + 1) = 0$. Since $\omega \neq 1$ we must have $\omega^2 + \omega + 1 = 0$ and therefore $\omega^2 = -1 - \omega$. Now given $a_1 + a_2\omega$ and $b_1 + b_2\omega$ as above we have

$$(a_1 + a_2\omega)(b_1 + b_2\omega) = a_1b_1 + (a_1b_2 + a_2b_1)\omega + (a_2b_2)\omega^2$$

= $a_1b_1 + (a_1b_2 + a_2b_1)\omega + (a_2b_2)(-1 - \omega)$
= $a_1b_1 - a_2b_2 + (a_1b_2 + a_2b_1 - a_2b_2)\omega$

thus $\mathbb{Z}[\omega]$ is also closed under multiplication and therefore a subring of \mathbb{C} .

(b) Let us consider $\mathbf{a} = a_1 + a_2 \omega$ and $\mathbf{b} = b_1 + b_2 \omega$. We want to find \mathbf{q} in $\mathbb{Z}[\omega]$ such that we can write

$$\mathbf{a} = \mathbf{b}\mathbf{q} + \mathbf{r}$$

with $N(\mathbf{r}) < N(\mathbf{b})$. We will consider \mathbf{a} , \mathbf{b} in \mathbb{C} and then the division equation as above is equivalent to have

$$\mathbf{r} = \mathbf{b}(\frac{\mathbf{a}}{\mathbf{b}} - \mathbf{q})$$

We can extend N to a norm in \mathbb{C} and thus if we can find \mathbf{q} such that $N(\frac{\mathbf{a}}{\mathbf{b}}-\mathbf{q}) < 1$ then this will imply $N(\mathbf{r}) < N(\mathbf{b})$ and we would be done. First we notice that we can write $\frac{\mathbf{a}}{\mathbf{b}}$ as $c_1 + c_2\omega$ where c_1 and c_2 are rational numbers. Indeed we have

$$\frac{1}{\mathbf{b}} = \frac{b_1 + b_2 \bar{\omega}}{(b_1 + b_2 \omega)(b_1 + b_2 \bar{\omega})}$$
$$= \frac{b_1 + b_2 \bar{\omega}}{b_1^2 - b_1 b_2 + b_2^2}$$
$$= \frac{1}{b_1^2 - b_1 b_2 + b_2^2} (b_1 + b_2(-1 - \omega))$$
$$= \frac{1}{b_1^2 - b_1 b_2 + b_2^2} (b_1 - b_2 - b_2 \omega))$$

And thus when multiplying by **a** we will get an element of $\mathbb{Z}[\omega]$ divided by $b_1^2 - b_1 b_2 + b_2^2$. Next we choose integer numbers q_1 and q_2 such that $|c_i - q_i| \leq \frac{1}{2}$. Then the complex number $\frac{\mathbf{a}}{\mathbf{b}} - \mathbf{q} = (c_1 - q_1) + (c_2 - q_2)\omega$ has norm $(c_1 - q_1)^2 - (c_1 - q_1)(c_2 - q_2) + (c_2 - q_2)^2$ which is strictly less than 1 since $|c_i - q_i| \leq \frac{1}{2}$.

4. Let T be a subgroup of a group G. Recall the normalizer subgroup defined to be

$$N_G(T) = \{g \in G | gtg^{-1} \in T \ \forall t \in T\}$$

You may assume without a proof that this is a group.

(a) (6 points) Prove that T is a normal subgroup of $N_G(T)$.

(b) (6 points) Let k be a field with more than 2 elements. In the case where $G = GL_2(k)$ and T is the subgroup of diagonal matrices

$$\begin{bmatrix} t_1 & 0 \\ 0 & t_2 \end{bmatrix}$$

with $t_1, t_2 \neq 0$, identify the quotient group $N_G(T)/T$.

Solution:

- (a) First we notice that T is a subgroup of $N_G(T)$. This is because for any two elements t_1 and t_2 of T we have $t_1t_2t_1^{-1} \in T$ and thus $t_1 \in N_G(T)$ and we have $T \subseteq N_G(T)$. Next we prove that T is normal in $N_G(T)$. Consider $n \in N_G(T)$ and $t \in T$. By definition of $N_G(T)$ we have $ntn^{-1} \in T$, thus $nTn^{-1} \subseteq T$ and this implies that T is normal in $N_G(T)$.
- (b) First we identify $N_G(T)$. Let

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

be a matrix in $N_G(T)$. Then for all t_1 and t_2 we must have

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} t_1 & 0 \\ 0 & t_2 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} \in T$$

Mutiplying this matrices we obtain

$$\frac{1}{ad-bc} \begin{bmatrix} t_1ad-t_2bc & (t_2-t_1)ab\\ (t_1-t_2)cd & -t_1bc+t_2ad \end{bmatrix} \in T$$

since this must hold for all t_1 and t_2 we must conclude that ab = 0 and cd = 0. Since A must be in $GL_2(k)$ either we have a = d = 0 and $b, c \neq 0$ or b = c = 0and $a, d \neq 0$. Now we look for the cosets of T in $N_G(T)$. We note that

$$\begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} \in T$$

and thus corresponds to the identity cos T. Next, the matrices

$$\begin{bmatrix} 0 & b \\ c & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} c & 0 \\ 0 & b \end{bmatrix}$$

and this implies that the only coset besides the identity is the coset corresponding to the matrix

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Since we only have two elements in $N_G(T)/T$ the group should be isomorphic to $\mathbb{Z}/2\mathbb{Z}$.