Answer all questions. All questions have equal value.

- 1. Let F be a field.
 - (a) Which field axiom tells us that 0 + 0 = 0?
 - (b) Prove that F contains a unique zero element.
- 2. Find the infimum and the supremum of the following sets

$$S = \left\{ \frac{2}{n} \mid n \in \{1, 2, 3, 4, \ldots\} \right\}.$$

(b)

(a)

$$T = \bigcup_{n=1}^{\infty} [2n, 2n+1].$$

- 3. Show that $|x y| < \epsilon$ if and only if $x \epsilon < y < x + \epsilon$.
- 4. Prove that if $x \in \mathbb{R}$, then there exists $n \in \mathbb{Z}$ satisfying $x \leq n < x + 1$.

[For this question you may NOT use the floor or ceiling functions $(\lfloor x \rfloor \text{ and } \lceil x \rceil)$ since the purpose of this question is to prove that the ceiling function exists from first principles.]

- 5. (a) Let a be a positive real number with $a^2 < 2$. Let $b = \frac{2(a+1)}{a+2}$. Show that a < b and $b^2 < 2$.
 - (b) Let $A = \sup\{r \in \mathbb{R} \mid r > 0, r^2 < 2\}$. Apply the previous result with a = A to show that $A^2 \ge 2$ [Hint: proof by contradiction].