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Introduction

0.1 About this book
This book is a one semester course in basic analysis. It started its life as my lecture notes for
teaching Math 444 at the University of Illinois at Urbana-Champaign (UIUC) in Fall semester 2009.
Later I added the metric space chapter to teach Math 521 at University of Wisconsin–Madison
(UW). A prerequisite for this course is a basic proof course, using for example [H], [F], or [DW].

It should be possible to use the book for both a basic course for students who do not necessarily
wish to go to graduate school (such as UIUC 444), but also as a more advanced one-semester course
that also covers topics such as metric spaces (such as UW 521). Here are my suggestions for what
to cover in a semester course. For a slower course such as UIUC 444:

§0.3, §1.1–§1.4, §2.1–§2.5, §3.1–§3.4, §4.1–§4.2, §5.1–§5.3, §6.1–§6.3

For a more rigorous course covering metric spaces that runs quite a bit faster (such as UW 521):

§0.3, §1.1–§1.4, §2.1–§2.5, §3.1–§3.4, §4.1–§4.2, §5.1–§5.3, §6.1–§6.2, §7.1–§7.6

It should also be possible to run a faster course without metric spaces covering all sections of
chapters 0 through 6. The approximate number of lectures given in the section notes through chapter
6 are a very rough estimate and were designed for the slower course. The first few chapters of the
book can be used in an introductory proofs course as is for example done at Iowa State University
Math 201, where this book is used in conjunction with Hammack’s Book of Proof [H].

The book normally used for the class at UIUC is Bartle and Sherbert, Introduction to Real
Analysis third edition [BS]. The structure of the beginning of the book somewhat follows the
standard syllabus of UIUC Math 444 and therefore has some similarities with [BS]. A major
difference is that we define the Riemann integral using Darboux sums and not tagged partitions.
The Darboux approach is far more appropriate for a course of this level.

Our approach allows us to fit a course such as UIUC 444 within a semester and still spend
some extra time on the interchange of limits and end with Picard’s theorem on the existence and
uniqueness of solutions of ordinary differential equations. This theorem is a wonderful example
that uses many results proved in the book. For more advanced students, material may be covered
faster so that we arrive at metric spaces and prove Picard’s theorem using the fixed point theorem as
is usual.
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6 INTRODUCTION

Other excellent books exist. My favorite is Rudin’s excellent Principles of Mathematical
Analysis [R2] or as it is commonly and lovingly called baby Rudin (to distinguish it from his
other great analysis textbook). I took a lot of inspiration and ideas from Rudin. However, Rudin
is a bit more advanced and ambitious than this present course. For those that wish to continue
mathematics, Rudin is a fine investment. An inexpensive and somewhat simpler alternative to Rudin
is Rosenlicht’s Introduction to Analysis [R1]. There is also the freely downloadable Introduction to
Real Analysis by William Trench [T].

A note about the style of some of the proofs: Many proofs traditionally done by contradiction,
I prefer to do by a direct proof or by contrapositive. While the book does include proofs by
contradiction, I only do so when the contrapositive statement seemed too awkward, or when
contradiction follows rather quickly. In my opinion, contradiction is more likely to get beginning
students into trouble, as we are talking about objects that do not exist.

I try to avoid unnecessary formalism where it is unhelpful. Furthermore, the proofs and the
language get slightly less formal as we progress through the book, as more and more details are left
out to avoid clutter.

As a general rule, I use := instead of = to define an object rather than to simply show equality.
I use this symbol rather more liberally than is usual for emphasis. I use it even when the context is
“local,” that is, I may simply define a function f (x) := x2 for a single exercise or example.

Finally, I would like to acknowledge Jana Maříková, Glen Pugh, Paul Vojta, Frank Beatrous,
Sönmez Şahutoğlu, Jim Brandt, Kenji Kozai, and Arthur Busch, for teaching with the book and
giving me lots of useful feedback. Frank Beatrous wrote the University of Pittsburgh version
extensions, which served as inspiration for many of the recent additions. I would also like to
thank Dan Stoneham, Jeremy Sutter, Eliya Gwetta, Daniel Pimentel-Alarcón, Steve Hoerning, Yi
Zhang, Nicole Caviris, Kristopher Lee, Baoyue Bi, Hannah Lund, Trevor Mannella, Mitchel Meyer,
Gregory Beauregard, Chase Meadors, Andreas Giannopoulos, an anonymous reader, and in general
all the students in my classes for suggestions and finding errors and typos.
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0.2 About analysis
Analysis is the branch of mathematics that deals with inequalities and limits. The present course
deals with the most basic concepts in analysis. The goal of the course is to acquaint the reader with
rigorous proofs in analysis and also to set a firm foundation for calculus of one variable.

Calculus has prepared you, the student, for using mathematics without telling you why what
you learned is true. To use, or teach, mathematics effectively, you cannot simply know what is true,
you must know why it is true. This course shows you why calculus is true. It is here to give you a
good understanding of the concept of a limit, the derivative, and the integral.

Let us use an analogy. An auto mechanic that has learned to change the oil, fix broken
headlights, and charge the battery, will only be able to do those simple tasks. He will be unable to
work independently to diagnose and fix problems. A high school teacher that does not understand
the definition of the Riemann integral or the derivative may not be able to properly answer all the
students’ questions. To this day I remember several nonsensical statements I heard from my calculus
teacher in high school, who simply did not understand the concept of the limit, though he could “do”
all problems in calculus.

We start with a discussion of the real number system, most importantly its completeness property,
which is the basis for all that comes after. We then discuss the simplest form of a limit, the limit of
a sequence. Afterwards, we study functions of one variable, continuity, and the derivative. Next, we
define the Riemann integral and prove the fundamental theorem of calculus. We discuss sequences
of functions and the interchange of limits. Finally, we give an introduction to metric spaces.

Let us give the most important difference between analysis and algebra. In algebra, we prove
equalities directly; we prove that an object, a number perhaps, is equal to another object. In analysis,
we usually prove inequalities. To illustrate the point, consider the following statement.

Let x be a real number. If 0≤ x < ε is true for all real numbers ε > 0, then x = 0.

This statement is the general idea of what we do in analysis. If we wish to show that x = 0, we
show that 0≤ x < ε for all positive ε .

The term real analysis is a little bit of a misnomer. I prefer to use simply analysis. The other
type of analysis, complex analysis, really builds up on the present material, rather than being distinct.
Furthermore, a more advanced course on real analysis would talk about complex numbers often. I
suspect the nomenclature is historical baggage.

Let us get on with the show. . .
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0.3 Basic set theory
Note: 1–3 lectures (some material can be skipped or covered lightly)

Before we start talking about analysis we need to fix some language. Modern∗ analysis uses the
language of sets, and therefore that is where we start. We talk about sets in a rather informal way,
using the so-called “naïve set theory.” Do not worry, that is what majority of mathematicians use,
and it is hard to get into trouble.

We assume the reader has seen basic set theory and has had a course in basic proof writing. This
section should be thought of as a refresher.

0.3.1 Sets
Definition 0.3.1. A set is a collection of objects called elements or members. A set with no objects
is called the empty set and is denoted by /0 (or sometimes by {}).

Think of a set as a club with a certain membership. For example, the students who play chess
are members of the chess club. However, do not take the analogy too far. A set is only defined by
the members that form the set; two sets that have the same members are the same set.

Most of the time we will consider sets of numbers. For example, the set

S := {0,1,2}

is the set containing the three elements 0, 1, and 2. We write

1 ∈ S

to denote that the number 1 belongs to the set S. That is, 1 is a member of S. Similarly we write

7 /∈ S

to denote that the number 7 is not in S. That is, 7 is not a member of S. The elements of all sets
under consideration come from some set we call the universe. For simplicity, we often consider the
universe to be the set that contains only the elements we are interested in. The universe is generally
understood from context and is not explicitly mentioned. In this course, our universe will most
often be the set of real numbers.

While the elements of a set are often numbers, other objects, such as other sets, can be elements
of a set. A set may also contain some of the same elements as another set. For example,

T := {0,2}

contains the numbers 0 and 2. In this case all elements of T also belong to S. We write T ⊂ S. More
formally we make the following definition.

∗The term “modern” refers to late 19th century up to the present.
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Definition 0.3.2.
(i) A set A is a subset of a set B if x ∈ A implies x ∈ B, and we write A⊂ B. That is, all members

of A are also members of B.

(ii) Two sets A and B are equal if A⊂ B and B⊂ A. We write A = B. That is, A and B contain
exactly the same elements. If it is not true that A and B are equal, then we write A 6= B.

(iii) A set A is a proper subset of B if A⊂ B and A 6= B. We write A ( B.

For example, for S and T defined above T ⊂ S, but T 6= S. So T is a proper subset of S. If A = B,
then A and B are simply two names for the same exact set. Let us mention the set building notation,

{x ∈ A : P(x)}.

This notation refers to a subset of the set A containing all elements of A that satisfy the property
P(x). The notation is sometimes abbreviated, A is not mentioned when understood from context.
Furthermore, x ∈ A is sometimes replaced with a formula to make the notation easier to read.

Example 0.3.3: The following are sets including the standard notations.

(i) The set of natural numbers, N := {1,2,3, . . .}.
(ii) The set of integers, Z := {0,−1,1,−2,2, . . .}.

(iii) The set of rational numbers, Q := {m
n : m,n ∈ Z and n 6= 0}.

(iv) The set of even natural numbers, {2m : m ∈ N}.
(v) The set of real numbers, R.

Note that N⊂ Z⊂Q⊂ R.

There are many operations we want to do with sets.

Definition 0.3.4.
(i) A union of two sets A and B is defined as

A∪B := {x : x ∈ A or x ∈ B}.

(ii) An intersection of two sets A and B is defined as

A∩B := {x : x ∈ A and x ∈ B}.

(iii) A complement of B relative to A (or set-theoretic difference of A and B) is defined as

A\B := {x : x ∈ A and x /∈ B}.

(iv) We say complement of B and write Bc instead of A\B if the set A is either the entire universe
or is the obvious set containing B, and is understood from context.
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(v) We say sets A and B are disjoint if A∩B = /0.

The notation Bc may be a little vague at this point. If the set B is a subset of the real numbers R,
then Bc means R\B. If B is naturally a subset of the natural numbers, then Bc is N\B. If ambiguity
would ever arise, we will use the set difference notation A\B.

A∪B

A\B Bc

A∩B

B

A B BA

BA

Figure 1: Venn diagrams of set operations.

We illustrate the operations on the Venn diagrams in Figure 1. Let us now establish one of most
basic theorems about sets and logic.

Theorem 0.3.5 (DeMorgan). Let A,B,C be sets. Then

(B∪C)c = Bc∩Cc,

(B∩C)c = Bc∪Cc,

or, more generally,

A\ (B∪C) = (A\B)∩ (A\C),

A\ (B∩C) = (A\B)∪ (A\C).

Proof. The first statement is proved by the second statement if we assume the set A is our “universe.”
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Let us prove A\ (B∪C) = (A\B)∩ (A\C). Remember the definition of equality of sets. First,
we must show that if x ∈ A\ (B∪C), then x ∈ (A\B)∩ (A\C). Second, we must also show that if
x ∈ (A\B)∩ (A\C), then x ∈ A\ (B∪C).

So let us assume x ∈ A\ (B∪C). Then x is in A, but not in B nor C. Hence x is in A and not in
B, that is, x ∈ A\B. Similarly x ∈ A\C. Thus x ∈ (A\B)∩ (A\C).

On the other hand suppose x ∈ (A\B)∩ (A\C). In particular x ∈ (A\B), so x ∈ A and x /∈ B.
Also as x ∈ (A\C), then x /∈C. Hence x ∈ A\ (B∪C).

The proof of the other equality is left as an exercise.

We will also need to intersect or union several sets at once. If there are only finitely many, then
we simply apply the union or intersection operation several times. However, suppose we have an
infinite collection of sets (a set of sets) {A1,A2,A3, . . .}. We define

∞⋃
n=1

An := {x : x ∈ An for some n ∈ N},

∞⋂
n=1

An := {x : x ∈ An for all n ∈ N}.

We can also have sets indexed by two integers. For example, we can have the set of sets
{A1,1,A1,2,A2,1,A1,3,A2,2,A3,1, . . .}. Then we write

∞⋃
n=1

∞⋃
m=1

An,m =
∞⋃

n=1

(
∞⋃

m=1

An,m

)
.

And similarly with intersections.
It is not hard to see that we can take the unions in any order. However, switching the order of

unions and intersections is not generally permitted without proof. For example:

∞⋃
n=1

∞⋂
m=1

{k ∈ N : mk < n}=
∞⋃

n=1

/0 = /0.

However,
∞⋂

m=1

∞⋃
n=1

{k ∈ N : mk < n}=
∞⋂

m=1

N= N.

Sometimes, the index set is not the natural numbers. In this case we need a more general
notation. Suppose I is some set and for each ι ∈ I, we have a set Aι . Then we define⋃

ι∈I

Aι := {x : x ∈ Aι for some ι ∈ I}
⋂
ι∈I

Aι := {x : x ∈ Aι for all ι ∈ I}.
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0.3.2 Induction
When a statement includes an arbitrary natural number, a common method of proof is the principle
of induction. We start with the set of natural numbers N = {1,2,3, . . .}, and we give them their
natural ordering, that is, 1 < 2 < 3 < 4 < · · · . By S⊂ N having a least element, we mean that there
exists an x ∈ S, such that for every y ∈ S, we have x≤ y.

The natural numbers N ordered in the natural way possess the so-called well ordering property.
We take this property as an axiom; we simply assume it is true.

Well ordering property of N. Every nonempty subset of N has a least (smallest) element.

The principle of induction is the following theorem, which is equivalent to the well ordering
property of the natural numbers.

Theorem 0.3.6 (Principle of induction). Let P(n) be a statement depending on a natural number n.
Suppose that

(i) (basis statement) P(1) is true,

(ii) (induction step) if P(n) is true, then P(n+1) is true.

Then P(n) is true for all n ∈ N.

Proof. Suppose S is the set of natural numbers m for which P(m) is not true. Suppose S is nonempty.
Then S has a least element by the well ordering property. Let us call m the least element of S.
We know 1 /∈ S by assumption. Therefore m > 1 and m−1 is a natural number as well. Since m
was the least element of S, we know that P(m−1) is true. But by the induction step we see that
P(m−1+1) = P(m) is true, contradicting the statement that m ∈ S. Therefore S is empty and P(n)
is true for all n ∈ N.

Sometimes it is convenient to start at a different number than 1, but all that changes is the
labeling. The assumption that P(n) is true in “if P(n) is true, then P(n+1) is true” is usually called
the induction hypothesis.

Example 0.3.7: Let us prove that for all n ∈ N,

2n−1 ≤ n!.

We let P(n) be the statement that 2n−1 ≤ n! is true. By plugging in n = 1, we see that P(1) is true.
Suppose P(n) is true. That is, suppose 2n−1 ≤ n! holds. Multiply both sides by 2 to obtain

2n ≤ 2(n!).

As 2≤ (n+1) when n ∈ N, we have 2(n!)≤ (n+1)(n!) = (n+1)!. That is,

2n ≤ 2(n!)≤ (n+1)!,

and hence P(n+ 1) is true. By the principle of induction, we see that P(n) is true for all n, and
hence 2n−1 ≤ n! is true for all n ∈ N.
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Example 0.3.8: We claim that for all c 6= 1,

1+ c+ c2 + · · ·+ cn =
1− cn+1

1− c
.

Proof: It is easy to check that the equation holds with n = 1. Suppose it is true for n. Then

1+ c+ c2 + · · ·+ cn + cn+1 = (1+ c+ c2 + · · ·+ cn)+ cn+1

=
1− cn+1

1− c
+ cn+1

=
1− cn+1 +(1− c)cn+1

1− c

=
1− cn+2

1− c
.

There is an equivalent principle called strong induction. The proof that strong induction is
equivalent to induction is left as an exercise.

Theorem 0.3.9 (Principle of strong induction). Let P(n) be a statement depending on a natural
number n. Suppose that

(i) (basis statement) P(1) is true,

(ii) (induction step) if P(k) is true for all k = 1,2, . . . ,n, then P(n+1) is true.

Then P(n) is true for all n ∈ N.

0.3.3 Functions
Informally, a set-theoretic function f taking a set A to a set B is a mapping that to each x ∈ A
assigns a unique y ∈ B. We write f : A→ B. For example, we define a function f : S→ T taking
S = {0,1,2} to T = {0,2} by assigning f (0) := 2, f (1) := 2, and f (2) := 0. That is, a function
f : A→ B is a black box, into which we stick an element of A and the function spits out an element
of B. Sometimes f is called a mapping and we say f maps A to B.

Often, functions are defined by some sort of formula, however, you should really think of a
function as just a very big table of values. The subtle issue here is that a single function can have
several different formulas, all giving the same function. Also, for many functions, there is no
formula that expresses its values.

To define a function rigorously first let us define the Cartesian product.

Definition 0.3.10. Let A and B be sets. The Cartesian product is the set of tuples defined as

A×B := {(x,y) : x ∈ A,y ∈ B}.
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For example, the set [0,1]× [0,1] is a set in the plane bounded by a square with vertices (0,0),
(0,1), (1,0), and (1,1). When A and B are the same set we sometimes use a superscript 2 to denote
such a product. For example [0,1]2 = [0,1]× [0,1], or R2 = R×R (the Cartesian plane).

Definition 0.3.11. A function f : A→ B is a subset f of A×B such that for each x ∈ A, there is a
unique (x,y) ∈ f . We then write f (x) = y. Sometimes the set f is called the graph of the function
rather than the function itself.

The set A is called the domain of f (and sometimes confusingly denoted D( f )). The set

R( f ) := {y ∈ B : there exists an x such that f (x) = y }

is called the range of f .

Note that R( f ) can possibly be a proper subset of B, while the domain of f is always equal to A.
We usually assume that the domain of f is nonempty.

Example 0.3.12: From calculus, you are most familiar with functions taking real numbers to real
numbers. However, you saw some other types of functions as well. For example, the derivative is a
function mapping the set of differentiable functions to the set of all functions. Another example is
the Laplace transform, which also takes functions to functions. Yet another example is the function
that takes a continuous function g defined on the interval [0,1] and returns the number

∫ 1
0 g(x)dx.

Definition 0.3.13. Let f : A→ B be a function, and C ⊂ A. Define the image (or direct image) of C
as

f (C) := { f (x) ∈ B : x ∈C}.
Let D⊂ B. Define the inverse image as

f−1(D) := {x ∈ A : f (x) ∈ D}.

Example 0.3.14: Define the function f : R→ R by f (x) := sin(πx). Then f ([0,1/2]) = [0,1],
f−1({0}) = Z, etc. . . .

Proposition 0.3.15. Let f : A→ B. Let C,D be subsets of B. Then

f−1(C∪D) = f−1(C)∪ f−1(D),

f−1(C∩D) = f−1(C)∩ f−1(D),

f−1(Cc) =
(

f−1(C)
)c
.

Read the last line as f−1(B\C) = A\ f−1(C).

Proof. Let us start with the union. Suppose x ∈ f−1(C∪D). That means x maps to C or D. Thus
f−1(C∪D) ⊂ f−1(C)∪ f−1(D). Conversely if x ∈ f−1(C), then x ∈ f−1(C∪D). Similarly for
x ∈ f−1(D). Hence f−1(C∪D)⊃ f−1(C)∪ f−1(D), and we have equality.

The rest of the proof is left as an exercise.
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The proposition does not hold for direct images. We do have the following weaker result.

Proposition 0.3.16. Let f : A→ B. Let C,D be subsets of A. Then

f (C∪D) = f (C)∪ f (D),

f (C∩D)⊂ f (C)∩ f (D).

The proof is left as an exercise.

Definition 0.3.17. Let f : A→ B be a function. The function f is said to be injective or one-to-one
if f (x1) = f (x2) implies x1 = x2. In other words, for all y ∈ B the set f−1({y}) is empty or consists
of a single element. We call such an f an injection.

The function f is said to be surjective or onto if f (A) = B. We call such an f a surjection.
A function f that is both an injection and a surjection is said to be bijective, and we say f is a

bijection.

When f : A→ B is a bijection, then f−1({y}) is always a unique element of A, and we can
consider f−1 as a function f−1 : B→ A. In this case, we call f−1 the inverse function of f . For
example, for the bijection f : R→ R defined by f (x) := x3 we have f−1(x) = 3

√
x.

A final piece of notation for functions that we need is the composition of functions.

Definition 0.3.18. Let f : A→ B, g : B→C. The function g◦ f : A→C is defined as

(g◦ f )(x) := g
(

f (x)
)
.

0.3.4 Cardinality
A subtle issue in set theory and one generating a considerable amount of confusion among students is
that of cardinality, or “size” of sets. The concept of cardinality is important in modern mathematics
in general and in analysis in particular. In this section, we will see the first really unexpected
theorem.

Definition 0.3.19. Let A and B be sets. We say A and B have the same cardinality when there exists
a bijection f : A→ B. We denote by |A| the equivalence class of all sets with the same cardinality
as A and we simply call |A| the cardinality of A.

Note that A has the same cardinality as the empty set if and only if A itself is the empty set. We
then write |A| := 0.

Definition 0.3.20. Suppose A has the same cardinality as {1,2,3, . . . ,n} for some n ∈ N. We then
write |A| := n, and we say A is finite. When A is the empty set, we also call A finite.

We say A is infinite or “of infinite cardinality” if A is not finite.
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That the notation |A|= n is justified we leave as an exercise. That is, for each nonempty finite set
A, there exists a unique natural number n such that there exists a bijection from A to {1,2,3, . . . ,n}.

We can order sets by size.

Definition 0.3.21. We write
|A| ≤ |B|

if there exists an injection from A to B. We write |A|= |B| if A and B have the same cardinality. We
write |A|< |B| if |A| ≤ |B|, but A and B do not have the same cardinality.

We state without proof that |A| = |B| have the same cardinality if and only if |A| ≤ |B| and
|B| ≤ |A|. This is the so-called Cantor-Bernstein-Schroeder theorem. Furthermore, if A and B are
any two sets, we can always write |A| ≤ |B| or |B| ≤ |A|. The issues surrounding this last statement
are very subtle. As we do not require either of these two statements, we omit proofs.

The truly interesting cases of cardinality are infinite sets. We start with the following definition.

Definition 0.3.22. If |A| = |N|, then A is said to be countably infinite. If A is finite or countably
infinite, then we say A is countable. If A is not countable, then A is said to be uncountable.

The cardinality of N is usually denoted as ℵ0 (read as aleph-naught)∗.

Example 0.3.23: The set of even natural numbers has the same cardinality as N. Proof: Given an
even natural number, write it as 2n for some n ∈ N. Then create a bijection taking 2n to n.

In fact, let us mention without proof the following characterization of infinite sets: A set is
infinite if and only if it is in one-to-one correspondence with a proper subset of itself.

Example 0.3.24: N×N is a countably infinite set. Proof: Arrange the elements of N×N as follows
(1,1), (1,2), (2,1), (1,3), (2,2), (3,1), . . . . That is, always write down first all the elements whose
two entries sum to k, then write down all the elements whose entries sum to k+1 and so on. Then
define a bijection with N by letting 1 go to (1,1), 2 go to (1,2) and so on.

Example 0.3.25: The set of rational numbers is countable. Proof: (informal) Follow the same
procedure as in the previous example, writing 1/1, 1/2, 2/1, etc. . . . However, leave out any fraction
(such as 2/2) that has already appeared.

For completeness we mention the following statement. If A⊂ B and B is countable, then A is
countable. Similarly if A is uncountable, then B is uncountable. As we will not need this statement
in the sequel, and as the proof requires the Cantor-Bernstein-Schroeder theorem mentioned above,
we will not give it here.

We give the first truly striking result. First, we need a notation for the set of all subsets of a set.

Definition 0.3.26. If A is a set, we define the power set of A, denoted by P(A), to be the set of all
subsets of A.

∗For the fans of the TV show Futurama, there is a movie theater in one episode called an ℵ0-plex.
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For example, if A := {1,2}, then P(A) = { /0,{1},{2},{1,2}}. For a finite set A of cardinality
n, the cardinality of P(A) is 2n. This fact is left as an exercise. Hence, for finite sets the cardinality
of P(A) is strictly larger than the cardinality of A. What is an unexpected and striking fact is that
this statement is still true for infinite sets.

Theorem 0.3.27 (Cantor∗). |A| < |P(A)|. In particular, there exists no surjection from A onto
P(A).

Proof. There exists an injection f : A→P(A). For any x ∈ A, define f (x) := {x}. Therefore
|A| ≤ |P(A)|.

To finish the proof, we must show that no function f : A→P(A) is a surjection. Suppose
f : A→P(A) is a function. So for x ∈ A, f (x) is a subset of A. Define the set

B := {x ∈ A : x /∈ f (x)}.

We claim that B is not in the range of f and hence f is not a surjection. Suppose there exists
an x0 such that f (x0) = B. Either x0 ∈ B or x0 /∈ B. If x0 ∈ B, then x0 /∈ f (x0) = B, which is a
contradiction. If x0 /∈ B, then x0 ∈ f (x0) = B, which is again a contradiction. Thus such an x0 does
not exist. Therefore, B is not in the range of f , and f is not a surjection. As f was an arbitrary
function, no surjection exists.

One particular consequence of this theorem is that there do exist uncountable sets, as P(N) must
be uncountable. A related fact is that the set of real numbers (which we study in the next chapter)
is uncountable. The existence of uncountable sets may seem unintuitive, and the theorem caused
quite a controversy at the time it was announced. The theorem not only says that uncountable sets
exist, but that there in fact exist progressively larger and larger infinite sets N, P(N), P(P(N)),
P(P(P(N))), etc. . . .

0.3.5 Exercises
Exercise 0.3.1: Show A\ (B∩C) = (A\B)∪ (A\C).

Exercise 0.3.2: Prove that the principle of strong induction is equivalent to the standard induction.

Exercise 0.3.3: Finish the proof of Proposition 0.3.15.

Exercise 0.3.4: a) Prove Proposition 0.3.16.

b) Find an example for which equality of sets in f (C∩D)⊂ f (C)∩ f (D) fails. That is, find an f , A, B, C,
and D such that f (C∩D) is a proper subset of f (C)∩ f (D).

Exercise 0.3.5 (Tricky): Prove that if A is finite, then there exists a unique number n such that there exists a
bijection between A and {1,2,3, . . . ,n}. In other words, the notation |A| := n is justified. Hint: Show that if
n > m, then there is no injection from {1,2,3, . . . ,n} to {1,2,3, . . . ,m}.

∗Named after the German mathematician Georg Ferdinand Ludwig Philipp Cantor (1845 – 1918).

http://en.wikipedia.org/wiki/Georg_Cantor
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Exercise 0.3.6: Prove

a) A∩ (B∪C) = (A∩B)∪ (A∩C)

b) A∪ (B∩C) = (A∪B)∩ (A∪C)

Exercise 0.3.7: Let A∆B denote the symmetric difference, that is, the set of all elements that belong to either
A or B, but not to both A and B.

a) Draw a Venn diagram for A∆B.

b) Show A∆B = (A\B)∪ (B\A).

c) Show A∆B = (A∪B)\ (A∩B).

Exercise 0.3.8: For each n ∈ N, let An := {(n+1)k : k ∈ N}.
a) Find A1∩A2.

b) Find
⋃

∞
n=1 An.

c) Find
⋂

∞
n=1 An.

Exercise 0.3.9: Determine P(S) (the power set) for each of the following:

a) S = /0,

b) S = {1},
c) S = {1,2},
d) S = {1,2,3,4}.

Exercise 0.3.10: Let f : A→ B and g : B→C be functions.

a) Prove that if g◦ f is injective, then f is injective.

b) Prove that if g◦ f is surjective, then g is surjective.

c) Find an explicit example where g◦ f is bijective, but neither f nor g are bijective.

Exercise 0.3.11: Prove that n < 2n by induction.

Exercise 0.3.12: Show that for a finite set A of cardinality n, the cardinality of P(A) is 2n.

Exercise 0.3.13: Prove 1
1·2 +

1
2·3 + · · ·+

1
n(n+1) =

n
n+1 for all n ∈ N.

Exercise 0.3.14: Prove 13 +23 + · · ·+n3 =
(

n(n+1)
2

)2
for all n ∈ N.

Exercise 0.3.15: Prove that n3 +5n is divisible by 6 for all n ∈ N.

Exercise 0.3.16: Find the smallest n ∈ N such that 2(n+5)2 < n3 and call it n0. Show that 2(n+5)2 < n3

for all n≥ n0.

Exercise 0.3.17: Find all n ∈ N such that n2 < 2n.
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Exercise 0.3.18: Finish the proof that the principle of induction is equivalent to the well ordering property
of N. That is, prove the well ordering property for N using the principle of induction.

Exercise 0.3.19: Give an example of a countable collection of finite sets A1,A2, . . ., whose union is not a
finite set.

Exercise 0.3.20: Give an example of a countable collection of infinite sets A1,A2, . . ., with A j ∩Ak being
infinite for all j and k, such that

⋂
∞
j=1 A j is nonempty and finite.
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Chapter 1

Real Numbers

1.1 Basic properties
Note: 1.5 lectures

The main object we work with in analysis is the set of real numbers. As this set is so fundamental,
often much time is spent on formally constructing the set of real numbers. However, we take an
easier approach here and just assume that a set with the correct properties exists. We need to start
with the definitions of those properties.

Definition 1.1.1. An ordered set is a set S, together with a relation < such that

(i) For any x,y ∈ S, exactly one of x < y, x = y, or y < x holds.

(ii) If x < y and y < z, then x < z.

We write x≤ y if x < y or x = y. We define > and ≥ in the obvious way.

For example, the set of rational numbers Q is an ordered set by letting x < y if and only if y− x
is a positive rational number, that is if y− x = p/q where p,q ∈ N. Similarly, N and Z are also
ordered sets.

There are other ordered sets than sets of numbers. For example, the set of countries can be
ordered by landmass, so for example India > Lichtenstein. Any time you sort a set in some way,
you are making an ordered set. A typical ordered set that you have used since primary school is the
dictionary. It is the ordered set of words where the order is the so-called lexicographic ordering.
Such ordered sets appear often for example in computer science. In this class we will mostly be
interested in ordered set of numbers however.

Definition 1.1.2. Let E ⊂ S, where S is an ordered set.

(i) If there exists a b ∈ S such that x≤ b for all x ∈ E, then we say E is bounded above and b is
an upper bound of E.

21
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(ii) If there exists a b ∈ S such that x≥ b for all x ∈ E, then we say E is bounded below and b is a
lower bound of E.

(iii) If there exists an upper bound b0 of E such that whenever b is any upper bound for E we have
b0 ≤ b, then b0 is called the least upper bound or the supremum of E. We write

sup E := b0.

(iv) Similarly, if there exists a lower bound b0 of E such that whenever b is any lower bound for
E we have b0 ≥ b, then b0 is called the greatest lower bound or the infimum of E. We write

inf E := b0.

When a set E is both bounded above and bounded below, we say simply that E is bounded.
A supremum or infimum for E (even if they exist) need not be in E. For example, the set

E := {x ∈Q : x < 1} has a least upper bound of 1, but 1 is not in the set E itself. On the other hand,
if we take G := {x ∈Q : x≤ 1}, then the least upper bound of G is clearly also 1, and in this case
1 ∈ G. On the other hand, the set P := {x ∈Q : x≥ 0} has no upper bound (why?) and therefore it
can have no least upper bound. On the other hand 0 is the greatest lower bound of P.

Definition 1.1.3. An ordered set S has the least-upper-bound property if every nonempty subset
E ⊂ S that is bounded above has a least upper bound, that is sup E exists in S.

The least-upper-bound property is sometimes called the completeness property or the Dedekind
completeness property.

Example 1.1.4: The set Q of rational numbers does not have the least-upper-bound property. The
subset {x ∈Q : x2 < 2} does not have a supremum in Q. The obvious supremum

√
2 is not rational.

Suppose x ∈Q such that x2 = 2. Write x = m/n in lowest terms. So (m/n)2 = 2 or m2 = 2n2. Hence
m2 is divisible by 2 and so m is divisible by 2. Write m = 2k and so (2k)2 = 2n2. Divide by 2 and
note that 2k2 = n2, and hence n is divisible by 2. But that is a contradiction as m/n was in lowest
terms.

That Q does not have the least-upper-bound property is one of the most important reasons
why we work with R in analysis. The set Q is just fine for algebraists. But analysts require the
least-upper-bound property to do any work. We also require our real numbers to have many algebraic
properties. In particular, we require that they are a field.

Definition 1.1.5. A set F is called a field if it has two operations defined on it, addition x+ y and
multiplication xy, and if it satisfies the following axioms.

(A1) If x ∈ F and y ∈ F , then x+ y ∈ F .

(A2) (commutativity of addition) x+ y = y+ x for all x,y ∈ F .

(A3) (associativity of addition) (x+ y)+ z = x+(y+ z) for all x,y,z ∈ F .
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(A4) There exists an element 0 ∈ F such that 0+ x = x for all x ∈ F .

(A5) For every element x ∈ F there exists an element −x ∈ F such that x+(−x) = 0.

(M1) If x ∈ F and y ∈ F , then xy ∈ F .

(M2) (commutativity of multiplication) xy = yx for all x,y ∈ F .

(M3) (associativity of multiplication) (xy)z = x(yz) for all x,y,z ∈ F .

(M4) There exists an element 1 ∈ F (and 1 6= 0) such that 1x = x for all x ∈ F .

(M5) For every x ∈ F such that x 6= 0 there exists an element 1/x ∈ F such that x(1/x) = 1.

(D) (distributive law) x(y+ z) = xy+ xz for all x,y,z ∈ F .

Example 1.1.6: The set Q of rational numbers is a field. On the other hand Z is not a field, as it
does not contain multiplicative inverses. For example, there is no x ∈ Z such that 2x = 1, so (M5) is
not satisfied. You can check that (M5) is the only property that fails∗.

We will assume the basic facts about fields that are easily proved from the axioms. For example,
0x = 0 is easily proved by noting that xx = (0+ x)x = 0x+ xx, using (A4), (D), and (M2). Then
using (A5) on xx, along with (A2), (A3), and (A4), we obtain 0 = 0x.

Definition 1.1.7. A field F is said to be an ordered field if F is also an ordered set such that:

(i) For x,y,z ∈ F , x < y implies x+ z < y+ z.

(ii) For x,y ∈ F , x > 0 and y > 0 implies xy > 0.

If x > 0, we say x is positive. If x < 0, we say x is negative. We also say x is nonnegative if x≥ 0,
and x is nonpositive if x≤ 0.

For example, it can be checked that the rational numbers Q with the standard ordering is an
ordered field.

Proposition 1.1.8. Let F be an ordered field and x,y,z ∈ F. Then:

(i) If x > 0, then −x < 0 (and vice-versa).

(ii) If x > 0 and y < z, then xy < xz.

(iii) If x < 0 and y < z, then xy > xz.

(iv) If x 6= 0, then x2 > 0.

(v) If 0 < x < y, then 0 < 1/y < 1/x.

Note that (iv) implies in particular that 1 > 0.

∗An algebraist would say that Z is an ordered ring, or perhaps more precisely a commutative ordered ring.
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Proof. Let us prove (i). The inequality x > 0 implies by item (i) of definition of ordered field
that x+(−x) > 0+(−x). Now apply the algebraic properties of fields to obtain 0 > −x. The
“vice-versa” follows by similar calculation.

For (ii), first notice that y < z implies 0 < z− y by applying item (i) of the definition of ordered
fields. Now apply item (ii) of the definition of ordered fields to obtain 0 < x(z− y). By algebraic
properties we get 0 < xz− xy, and again applying item (i) of the definition we obtain xy < xz.

Part (iii) is left as an exercise.
To prove part (iv) first suppose x > 0. Then by item (ii) of the definition of ordered fields we

obtain that x2 > 0 (use y = x). If x < 0, we use part (iii) of this proposition. Plug in y = x and z = 0.
Finally to prove part (v), notice that 1/x cannot be equal to zero (why?). Suppose 1/x < 0, then

−1/x > 0 by (i). Then apply part (ii) (as x > 0) to obtain x(−1/x)> 0x or −1 > 0, which contradicts
1 > 0 by using part (i) again. Hence 1/x > 0. Similarly 1/y > 0. Thus (1/x)(1/y)> 0 by definition of
ordered field and by part (ii)

(1/x)(1/y)x < (1/x)(1/y)y.

By algebraic properties we get 1/y < 1/x.

Product of two positive numbers (elements of an ordered field) is positive. However, it is not
true that if the product is positive, then each of the two factors must be positive.

Proposition 1.1.9. Let x,y ∈ F where F is an ordered field. Suppose xy > 0. Then either both x
and y are positive, or both are negative.

Proof. Clearly both of the conclusions can happen. If either x and y are zero, then xy is zero and
hence not positive. Hence we assume that x and y are nonzero, and we simply need to show that if
they have opposite signs, then xy < 0. Without loss of generality suppose x > 0 and y < 0. Multiply
y < 0 by x to get xy < 0x = 0. The result follows by contrapositive.

Example 1.1.10: The reader may also know about the complex numbers, usually denoted by C.
That is, C is the set of numbers of the form x+ iy, where x and y are real numbers, and i is the
imaginary number, a number such that i2 =−1. The reader may remember from algebra that C is
also a field, however, it is not an ordered field. While one can make C into an ordered set in some
way, it can be proved that it is not possible to put an order on C that will make it an ordered field.

1.1.1 Exercises
Exercise 1.1.1: Prove part (iii) of Proposition 1.1.8.

Exercise 1.1.2: Let S be an ordered set. Let A ⊂ S be a nonempty finite subset. Then A is bounded.
Furthermore, inf A exists and is in A and sup A exists and is in A. Hint: Use induction.

Exercise 1.1.3: Let x,y ∈ F, where F is an ordered field. Suppose 0 < x < y. Show that x2 < y2.
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Exercise 1.1.4: Let S be an ordered set. Let B⊂ S be bounded (above and below). Let A⊂ B be a nonempty
subset. Suppose all the inf’s and sup’s exist. Show that

inf B≤ inf A≤ sup A≤ sup B.

Exercise 1.1.5: Let S be an ordered set. Let A⊂ S and suppose b is an upper bound for A. Suppose b ∈ A.
Show that b = sup A.

Exercise 1.1.6: Let S be an ordered set. Let A⊂ S be a nonempty subset that is bounded above. Suppose
sup A exists and sup A /∈ A. Show that A contains a countably infinite subset. In particular, A is infinite.

Exercise 1.1.7: Find a (nonstandard) ordering of the set of natural numbers N such that there exists a
nonempty proper subset A (N and such that sup A exists in N, but sup A /∈ A.

Exercise 1.1.8: Let F = {0,1,2}. a) Prove that there is exactly one way to define addition and multiplication
so that F is a field if 0 and 1 have their usual meaning of (A4) and (M4). b) Show that F cannot be an ordered
field.

Exercise 1.1.9: Let S be an ordered set and A is a nonempty subset such that sup A exists. Suppose there is a
B⊂ A such that whenever x ∈ A there is a y ∈ B such that x≤ y. Show that sup B exists and sup B = sup A.

Exercise 1.1.10: Let D be the ordered set of all possible words (not just English words, all strings of letters
of arbitrary length) using the Latin alphabet using only lower case letters. The order is the lexicographic
order as in a dictionary (e.g. aaa < dog < door). Let A be the subset of D containing the words whose first
letter is ‘a’ (e.g. a ∈ A, abcd ∈ A). Show that A has a supremum and find what it is.
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1.2 The set of real numbers
Note: 2 lectures, the extended real numbers are optional

1.2.1 The set of real numbers
We finally get to the real number system. To simplify matters, instead of constructing the real
number set from the rational numbers, we simply state their existence as a theorem without proof.
Notice that Q is an ordered field.

Theorem 1.2.1. There exists a unique∗ ordered field R with the least-upper-bound property such
that Q⊂ R.

Note that also N⊂Q. We saw that 1 > 0. By induction (exercise) we can prove that n > 0 for
all n ∈ N. Similarly we can easily verify all the statements we know about rational numbers and
their natural ordering.

Let us prove one of the most basic but useful results about the real numbers. The following
proposition is essentially how an analyst proves that a number is zero.

Proposition 1.2.2. If x ∈ R is such that x≥ 0 and x≤ ε for all ε ∈ R where ε > 0, then x = 0.

Proof. If x > 0, then 0 < x/2 < x (why?). Taking ε = x/2 obtains a contradiction. Thus x = 0.

A related simple fact is that any time we have two real numbers a < b, then there is another real
number c such that a < c < b. Just take for example c = a+b

2 (why?). In fact, there are infinitely
many real numbers between a and b.

The most useful property of R for analysts is not just that it is an ordered field, but that it has the
least-upper-bound property. Essentially we want Q, but we also want to take suprema (and infima)
willy-nilly. So what we do is to throw in enough numbers to obtain R.

We mentioned already that R must contain elements that are not in Q because of the least-upper-
bound property. We saw there is no rational square root of two. The set {x ∈Q : x2 < 2} implies
the existence of the real number

√
2, although this fact requires a bit of work.

Example 1.2.3: Claim: There exists a unique positive real number r such that r2 = 2. We denote r
by
√

2.

Proof. Take the set A := {x ∈ R : x2 < 2}. First if x2 < 2, then x < 2. To see this fact, note that
x≥ 2 implies x2 ≥ 4 (use Proposition 1.1.8, we will not explicitly mention its use from now on),
hence any number x such that x≥ 2 is not in A. Thus A is bounded above. On the other hand, 1 ∈ A,
so A is nonempty.

∗Uniqueness is up to isomorphism, but we wish to avoid excessive use of algebra. For us, it is simply enough to
assume that a set of real numbers exists. See Rudin [R2] for the construction and more details.
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Let us define r := sup A. We will show that r2 = 2 by showing that r2 ≥ 2 and r2 ≤ 2. This is
the way analysts show equality, by showing two inequalities. We already know that r ≥ 1 > 0.

In the following, it may seem we are pulling certain expressions out of a hat. When writing a
proof such as this we would, of course, come up with the expressions only after playing around
with what we wish to prove. The order in which we write the proof is not necessarily the order in
which we come up with the proof.

Let us first show that r2 ≥ 2. Take a positive number s such that s2 < 2. We wish to find an
h > 0 such that (s+h)2 < 2. As 2− s2 > 0, we have 2−s2

2s+1 > 0. We choose an h ∈ R such that

0 < h < 2−s2

2s+1 . Furthermore, we assume h < 1.

(s+h)2− s2 = h(2s+h)

< h(2s+1)
(
since h < 1

)
< 2− s2

(
since h <

2− s2

2s+1

)
.

Therefore, (s+h)2 < 2. Hence s+h ∈ A, but as h > 0 we have s+h > s. So s < r = sup A. As s
was an arbitrary positive number such that s2 < 2, it follows that r2 ≥ 2.

Now take a positive number s such that s2 > 2. We wish to find an h > 0 such that (s−h)2 > 2.
As s2−2 > 0 we have s2−2

2s > 0. We choose an h ∈ R such that 0 < h < s2−2
2s and h < s.

s2− (s−h)2 = 2sh−h2

< 2sh

< s2−2
(

since h <
s2−2

2s

)
.

By subtracting s2 from both sides and multiplying by −1, we find (s−h)2 > 2. Therefore s−h /∈ A.
Furthermore, if x ≥ s−h, then x2 ≥ (s−h)2 > 2 (as x > 0 and s−h > 0) and so x /∈ A. Thus

s−h is an upper bound for A. However, s−h < s, or in other words s > r = sup A. Thus r2 ≤ 2.

Together, r2 ≥ 2 and r2 ≤ 2 imply r2 = 2. The existence part is finished. We still need to handle
uniqueness. Suppose s ∈ R such that s2 = 2 and s > 0. Thus s2 = r2. However, if 0 < s < r, then
s2 < r2. Similarly 0 < r < s implies r2 < s2. Hence s = r.

The number
√

2 /∈Q. The set R\Q is called the set of irrational numbers. We just saw that
R\Q is nonempty. Not only is it nonempty, we will see later that is it very large indeed.

Using the same technique as above, we can show that a positive real number x1/n exists for all
n ∈ N and all x > 0. That is, for each x > 0, there exists a unique positive real number r such that
rn = x. The proof is left as an exercise.
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1.2.2 Archimedean property
As we have seen, there are plenty of real numbers in any interval. But there are also infinitely
many rational numbers in any interval. The following is one of the fundamental facts about the real
numbers. The two parts of the next theorem are actually equivalent, even though it may not seem
like that at first sight.

Theorem 1.2.4.
(i) (Archimedean property) If x,y ∈ R and x > 0, then there exists an n ∈ N such that

nx > y.

(ii) (Q is dense in R) If x,y ∈ R and x < y, then there exists an r ∈Q such that x < r < y.

Proof. Let us prove (i). We divide through by x and then (i) says that for any real number t := y/x,
we can find natural number n such that n > t. In other words, (i) says that N⊂ R is not bounded
above. Suppose for contradiction that N is bounded above. Let b := supN. The number b− 1
cannot possibly be an upper bound for N as it is strictly less than b (the supremum). Thus there
exists an m ∈ N such that m > b−1. We add one to obtain m+1 > b, which contradicts b being an
upper bound.

Let us tackle (ii). First assume x≥ 0. Note that y− x > 0. By (i), there exists an n ∈ N such that

n(y− x)> 1.

Also by (i) the set A := {k ∈ N : k > nx} is nonempty. By the well ordering property of N, A has a
least element m. As m ∈ A, then m > nx. We divide through by n to get x < m/n. As m is the least
element of A, m−1 /∈ A. If m > 1, then m−1 ∈N, but m−1 /∈ A and so m−1≤ nx. If m = 1, then
m−1 = 0, and m−1≤ nx still holds as x≥ 0. In other words,

m−1≤ nx or m≤ nx+1.

On the other hand from n(y− x)> 1 we obtain ny > 1+nx. Hence ny > 1+nx≥ m, and therefore
y > m/n. Putting everything together we obtain x < m/n < y. So let r = m/n.

Now assume x < 0. If y > 0, then we just take r = 0. If y≤ 0, then 0≤−y <−x, and we find a
rational q such that −y < q <−x. Then take r =−q.

Let us state and prove a simple but useful corollary of the Archimedean property.

Corollary 1.2.5. inf{1/n : n ∈ N}= 0.

Proof. Let A := {1/n : n ∈ N}. Obviously A is not empty. Furthermore, 1/n > 0 and so 0 is a lower
bound, and b := inf A exists. As 0 is a lower bound, then b≥ 0. Now take an arbitrary a > 0. By the
Archimedean property there exists an n such that na > 1, or in other words a > 1/n ∈ A. Therefore a
cannot be a lower bound for A. Hence b = 0.
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1.2.3 Using supremum and infimum

We want to make sure that suprema and infima are compatible with algebraic operations. For a set
A⊂ R and a number x ∈ R define

x+A := {x+ y ∈ R : y ∈ A},
xA := {xy ∈ R : y ∈ A}.

Proposition 1.2.6. Let A⊂ R be nonempty.

(i) If x ∈ R and A is bounded above, then sup(x+A) = x+ sup A.

(ii) If x ∈ R and A is bounded below, then inf(x+A) = x+ inf A.

(iii) If x > 0 and A is bounded above, then sup(xA) = x(sup A).

(iv) If x > 0 and A is bounded below, then inf(xA) = x(inf A).

(v) If x < 0 and A is bounded below, then sup(xA) = x(inf A).

(vi) If x < 0 and A is bounded above, then inf(xA) = x(sup A).

Do note that multiplying a set by a negative number switches supremum for an infimum and
vice-versa. Also, as the proposition implies that supremum (resp. infimum) of x+A or xA exists, it
also implies that x+A or xA is nonempty and bounded from above (resp. from below).

Proof. Let us only prove the first statement. The rest are left as exercises.
Suppose b is an upper bound for A. That is, y≤ b for all y ∈ A. Then x+ y≤ x+b for all y ∈ A,

and so x+b is an upper bound for x+A. In particular, if b = sup A, then

sup(x+A)≤ x+b = x+ sup A.

The other direction is similar. If b is an upper bound for x+A, then x+ y≤ b for all y ∈ A and
so y≤ b− x for all y ∈ A. So b− x is an upper bound for A. If b = sup(x+A), then

sup A≤ b− x = sup(x+A)− x.

And the result follows.

Sometimes we need to apply supremum or infimum twice. Here is an example.

Proposition 1.2.7. Let A,B⊂ R be nonempty sets such that x≤ y whenever x ∈ A and y ∈ B. Then
A is bounded above, B is bounded below, and sup A≤ inf B.

Proof. Any x ∈ A is a lower bound for B. Therefore x ≤ inf B for all x ∈ A, so inf B is an upper
bound for A. Hence, sup A≤ inf B.
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We must be careful about strict inequalities and taking suprema and infima. Note that x < y
whenever x ∈ A and y ∈ B still only implies sup A ≤ inf B, and not a strict inequality. This is an
important subtle point that comes up often. For example, take A := {0} and take B := {1/n : n ∈ N}.
Then 0 < 1/n for all n ∈ N. However, sup A = 0 and inf B = 0.

The proof of the following often used elementary fact is left to the reader. A similar statement
holds for infima.

Proposition 1.2.8. If S ⊂ R is a nonempty set, bounded from above, then for every ε > 0 there
exists x ∈ S such that (sup S)− ε < x≤ sup S.

To make using suprema and infima even easier, we may want to write sup A and inf A without
worrying about A being bounded and nonempty. We make the following natural definitions.

Definition 1.2.9. Let A⊂ R be a set.

(i) If A is empty, then sup A :=−∞.

(ii) If A is not bounded above, then sup A := ∞.

(iii) If A is empty, then inf A := ∞.

(iv) If A is not bounded below, then inf A :=−∞.

For convenience, ∞ and −∞ are sometimes treated as if they were numbers, except we do not
allow arbitrary arithmetic with them. We make R∗ := R∪{−∞,∞} into an ordered set by letting

−∞ < ∞ and −∞ < x and x < ∞ for all x ∈ R.

The set R∗ is called the set of extended real numbers. It is possible to define some arithmetic on
R∗. Most operations are extended in an obvious way, but we must leave ∞−∞, 0 · (±∞), and ±∞

±∞

undefined. We refrain from using this arithmetic, it leads to easy mistakes as R∗ is not a field. Now
we can take suprema and infima without fear of emptiness or unboundedness. In this book we
mostly avoid using R∗ outside of exercises, and leave such generalizations to the interested reader.

1.2.4 Maxima and minima
By Exercise 1.1.2 we know a finite set of numbers always has a supremum or an infimum that is
contained in the set itself. In this case we usually do not use the words supremum or infimum.

When a set A of real numbers is bounded above, such that sup A ∈ A, then we can use the word
maximum and the notation maxA to denote the supremum. Similarly for infimum; when a set A
is bounded below and inf A ∈ A, then we can use the word minimum and the notation min A. For
example,

max{1,2.4,π,100}= 100,
min{1,2.4,π,100}= 1.

While writing sup and inf may be technically correct in this situation, max and min are generally
used to emphasize that the supremum or infimum is in the set itself.
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1.2.5 Exercises

Exercise 1.2.1: Prove that if t > 0 (t ∈ R), then there exists an n ∈ N such that
1
n2 < t.

Exercise 1.2.2: Prove that if t ≥ 0 (t ∈ R), then there exists an n ∈ N such that n−1≤ t < n.

Exercise 1.2.3: Finish the proof of Proposition 1.2.6.

Exercise 1.2.4: Let x,y ∈ R. Suppose x2 + y2 = 0. Prove that x = 0 and y = 0.

Exercise 1.2.5: Show that
√

3 is irrational.

Exercise 1.2.6: Let n ∈ N. Show that either
√

n is either an integer or it is irrational.

Exercise 1.2.7: Prove the arithmetic-geometric mean inequality. That is, for two positive real numbers x,y
we have

√
xy≤ x+ y

2
.

Furthermore, equality occurs if and only if x = y.

Exercise 1.2.8: Show that for any two real numbers x and y such that x < y, there exists an irrational number
s such that x < s < y. Hint: Apply the density of Q to

x√
2

and
y√
2

.

Exercise 1.2.9: Let A and B be two nonempty bounded sets of real numbers. Let C := {a+b : a ∈ A,b ∈ B}.
Show that C is a bounded set and that

sup C = sup A+ sup B and inf C = inf A+ inf B.

Exercise 1.2.10: Let A and B be two nonempty bounded sets of nonnegative real numbers. Define the set
C := {ab : a ∈ A,b ∈ B}. Show that C is a bounded set and that

sup C = (sup A)(sup B) and inf C = (inf A)(inf B).

Exercise 1.2.11 (Hard): Given x > 0 and n ∈ N, show that there exists a unique positive real number r such
that x = rn. Usually r is denoted by x1/n.

Exercise 1.2.12 (Easy): Prove Proposition 1.2.8.

Exercise 1.2.13: Prove the so-called Bernoulli’s inequality∗: If 1+ x > 0 then for all n ∈ N we have
(1+ x)n ≥ 1+nx.

∗Named after the Swiss mathematician Jacob Bernoulli (1655 – 1705).

http://en.wikipedia.org/wiki/Jacob_Bernoulli
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1.3 Absolute value
Note: 0.5–1 lecture

A concept we will encounter over and over is the concept of absolute value. You want to think
of the absolute value as the “size” of a real number. Let us give a formal definition.

|x| :=

{
x if x≥ 0,
−x if x < 0.

Let us give the main features of the absolute value as a proposition.

Proposition 1.3.1.

(i) |x| ≥ 0, and |x|= 0 if and only if x = 0.

(ii) |−x|= |x| for all x ∈ R.

(iii) |xy|= |x| |y| for all x,y ∈ R.

(iv) |x|2 = x2 for all x ∈ R.

(v) |x| ≤ y if and only if −y≤ x≤ y.

(vi) −|x| ≤ x≤ |x| for all x ∈ R.

Proof. (i): This statement is not difficult to see from the definition.

(ii): Suppose x > 0, then |−x|=−(−x) = x = |x|. Similarly when x < 0, or x = 0.

(iii): If x or y is zero, then the result is obvious. When x and y are both positive, then |x| |y|= xy.
xy is also positive and hence xy = |xy|. If x and y are both negative then xy is still positive and
xy = |xy|, and |x| |y|= (−x)(−y) = xy. Next assume x > 0 and y < 0. Then |x| |y|= x(−y) =−(xy).
Now xy is negative and hence |xy|=−(xy). Similarly if x < 0 and y > 0.

(iv): Obvious if x≥ 0. If x < 0, then |x|2 = (−x)2 = x2.

(v): Suppose |x| ≤ y. If x≥ 0, then x≤ y. Obviously y≥ 0 and hence−y≤ 0≤ x so−y≤ x≤ y
holds. If x < 0, then |x| ≤ y means −x≤ y. Negating both sides we get x≥−y. Again y≥ 0 and so
y≥ 0 > x. Hence, −y≤ x≤ y.

On the other hand, suppose −y≤ x≤ y is true. If x≥ 0, then x≤ y is equivalent to |x| ≤ y. If
x < 0, then −y≤ x implies (−x)≤ y, which is equivalent to |x| ≤ y.

(vi): Apply (v) with y = |x|.

A property used frequently enough to give it a name is the so-called triangle inequality.

Proposition 1.3.2 (Triangle Inequality). |x+ y| ≤ |x|+ |y| for all x,y ∈ R.
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Proof. From Proposition 1.3.1 we have −|x| ≤ x ≤ |x| and −|y| ≤ y ≤ |y|. We add these two
inequalities to obtain

−(|x|+ |y|)≤ x+ y≤ |x|+ |y| .
Again by Proposition 1.3.1 we have |x+ y| ≤ |x|+ |y|.

There are other often applied versions of the triangle inequality.

Corollary 1.3.3. Let x,y ∈ R
(i) (reverse triangle inequality)

∣∣(|x|− |y|)∣∣≤ |x− y|.
(ii) |x− y| ≤ |x|+ |y|.

Proof. Let us plug in x = a−b and y = b into the standard triangle inequality to obtain

|a|= |a−b+b| ≤ |a−b|+ |b| ,

or |a|− |b| ≤ |a−b|. Switching the roles of a and b we obtain or |b|− |a| ≤ |b−a|= |a−b|. Now
applying Proposition 1.3.1 again we obtain the reverse triangle inequality.

The second version of the triangle inequality is obtained from the standard one by just replacing
y with −y and noting again that |−y|= |y|.

Corollary 1.3.4. Let x1,x2, . . . ,xn ∈ R. Then

|x1 + x2 + · · ·+ xn| ≤ |x1|+ |x2|+ · · ·+ |xn| .

Proof. We proceed by induction. The conclusion holds trivially for n = 1, and for n = 2 it is the
standard triangle inequality. Suppose the corollary holds for n. Take n+1 numbers x1,x2, . . . ,xn+1
and first use the standard triangle inequality, then the induction hypothesis

|x1 + x2 + · · ·+ xn + xn+1| ≤ |x1 + x2 + · · ·+ xn|+ |xn+1|
≤ |x1|+ |x2|+ · · ·+ |xn|+ |xn+1|.

Let us see an example of the use of the triangle inequality.

Example 1.3.5: Find a number M such that |x2−9x+1| ≤M for all −1≤ x≤ 5.
Using the triangle inequality, write

|x2−9x+1| ≤ |x2|+ |9x|+ |1|= |x|2 +9|x|+1.

It is obvious that |x|2 +9|x|+1 is largest when |x| is largest. In the interval provided, |x| is largest
when x = 5 and so |x|= 5. One possibility for M is

M = 52 +9(5)+1 = 71.

There are, of course, other M that work. The bound of 71 is much higher than it need be, but we
didn’t ask for the best possible M, just one that works.
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The last example leads us to the concept of bounded functions.

Definition 1.3.6. Suppose f : D→ R is a function. We say f is bounded if there exists a number
M such that | f (x)| ≤M for all x ∈ D.

In the example we proved x2−9x+1 is bounded when considered as a function on D = {x :
−1≤ x≤ 5}. On the other hand, if we consider the same polynomial as a function on the whole
real line R, then it is not bounded.

For a function f : D→ R we write

sup
x∈D

f (x) := sup f (D),

inf
x∈D

f (x) := inf f (D).

We also sometimes replace the “x ∈ D” with an expression. For example if, as before, f (x) =
x2−9x+1, for −1≤ x≤ 5, a little bit of calculus shows

sup
x∈D

f (x) = sup
−1≤x≤5

(x2−9x+1) = 11, inf
x∈D

f (x) = inf
−1≤x≤5

(x2−9x+1) = −77/4.

Proposition 1.3.7. If f : D→ R and g : D→ R (D nonempty) are bounded∗ functions and

f (x)≤ g(x) for all x ∈ D,

then
sup
x∈D

f (x)≤ sup
x∈D

g(x) and inf
x∈D

f (x)≤ inf
x∈D

g(x). (1.1)

You should be careful with the variables. The x on the left side of the inequality in (1.1) is
different from the x on the right. You should really think of the first inequality as

sup
x∈D

f (x)≤ sup
y∈D

g(y).

Let us prove this inequality. If b is an upper bound for g(D), then f (x) ≤ g(x) ≤ b for all x ∈ D,
and hence b is an upper bound for f (D). Taking the least upper bound we get that for all x ∈ D

f (x)≤ sup
y∈D

g(y).

Therefore supy∈D g(y) is an upper bound for f (D) and thus greater than or equal to the least upper
bound of f (D).

sup
x∈D

f (x)≤ sup
y∈D

g(y).

∗The boundedness hypothesis is for simplicity, it can be dropped if we allow for the extended real numbers.
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The second inequality (the statement about the inf) is left as an exercise.

A common mistake is to conclude

sup
x∈D

f (x)≤ inf
y∈D

g(y). (1.2)

The inequality (1.2) is not true given the hypothesis of the claim above. For this stronger inequality
we need the stronger hypothesis

f (x)≤ g(y) for all x ∈ D and y ∈ D.

The proof as well as a counterexample is left as an exercise.

1.3.1 Exercises
Exercise 1.3.1: Show that |x− y|< ε if and only if x− ε < y < x+ ε .

Exercise 1.3.2: Show that

a) max{x,y}= x+y+|x−y|
2

b) min{x,y}= x+y−|x−y|
2

Exercise 1.3.3: Find a number M such that |x3− x2 +8x| ≤M for all −2≤ x≤ 10.

Exercise 1.3.4: Finish the proof of Proposition 1.3.7. That is, prove that given any set D, and two bounded
functions f : D→ R and g : D→ R such that f (x)≤ g(x) for all x ∈ D, then

inf
x∈D

f (x)≤ inf
x∈D

g(x).

Exercise 1.3.5: Let f : D→ R and g : D→ R be functions (D nonempty).

a) Suppose f (x)≤ g(y) for all x ∈ D and y ∈ D. Show that

sup
x∈D

f (x)≤ inf
x∈D

g(x).

b) Find a specific D, f , and g, such that f (x)≤ g(x) for all x ∈ D, but

sup
x∈D

f (x)> inf
x∈D

g(x).

Exercise 1.3.6: Prove Proposition 1.3.7 without the assumption that the functions are bounded. Hint: You
need to use the extended real numbers.

Exercise 1.3.7: Let D be a nonempty set. Suppose f : D→R and g : D→R are bounded functions. a) Show

sup
x∈D

(
f (x)+g(x)

)
≤ sup

x∈D
f (x)+ sup

x∈D
g(x) and inf

x∈D

(
f (x)+g(x)

)
≥ inf

x∈D
f (x)+ inf

x∈D
g(x).

b) Find examples where we obtain strict inequalities.



36 CHAPTER 1. REAL NUMBERS

1.4 Intervals and the size of R
Note: 0.5–1 lecture (proof of uncountability of R can be optional)

You surely saw the notation for intervals before, but let us give a formal definition here. For
a,b ∈ R such that a < b we define

[a,b] := {x ∈ R : a≤ x≤ b},
(a,b) := {x ∈ R : a < x < b},
(a,b] := {x ∈ R : a < x≤ b},
[a,b) := {x ∈ R : a≤ x < b}.

The interval [a,b] is called a closed interval and (a,b) is called an open interval. The intervals of
the form (a,b] and [a,b) are called half-open intervals.

The above intervals were all bounded intervals, since both a and b were real numbers. We define
unbounded intervals,

[a,∞) := {x ∈ R : a≤ x},
(a,∞) := {x ∈ R : a < x},
(−∞,b] := {x ∈ R : x≤ b},
(−∞,b) := {x ∈ R : x < b}.

For completeness we define (−∞,∞) := R.
In short, an interval is a set I ⊂ R with at least 2 elements, such that if a < b < c and a,c ∈ I,

then b ∈ I. See Exercise 1.4.3.
We have already seen that any open interval (a,b) (where a < b of course) must be nonempty.

For example, it contains the number a+b
2 . An unexpected fact is that from a set-theoretic perspective,

all intervals have the same “size,” that is, they all have the same cardinality. For example the map
f (x) := 2x takes the interval [0,1] bijectively to the interval [0,2].

Maybe more interestingly, the function f (x) := tan(x) is a bijective map from (−π/2,π/2) to
R. Hence the bounded interval (−π/2,π/2) has the same cardinality as R. It is not completely
straightforward to construct a bijective map from [0,1] to say (0,1), but it is possible.

And do not worry, there does exist a way to measure the “size” of subsets of real numbers that
“sees” the difference between [0,1] and [0,2]. However, its proper definition requires much more
machinery than we have right now.

Let us say more about the cardinality of intervals and hence about the cardinality of R. We
have seen that there exist irrational numbers, that is R \Q is nonempty. The question is: How
many irrational numbers are there? It turns out there are a lot more irrational numbers than rational
numbers. We have seen that Q is countable, and we will show that R is uncountable. In fact, the
cardinality of R is the same as the cardinality of P(N), although we will not prove this claim here.

Theorem 1.4.1 (Cantor). R is uncountable.
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We give a modified version of Cantor’s original proof from 1874 as this proof requires the least
setup. Normally this proof is stated as a contradiction proof, but a proof by contrapositive is easier
to understand.

Proof. Let X ⊂ R be a countably infinite subset such that for any two real numbers a < b, there is
an x ∈ X such that a < x < b. Were R countable, then we could take X = R. If we show that X is
necessarily a proper subset, then X cannot equal R, and R must be uncountable.

As X is countably infinite, there is a bijection from N to X . Consequently, we write X as a
sequence of real numbers x1,x2,x3, . . ., such that each number in X is given by x j for some j ∈ N.

Let us inductively construct two sequences of real numbers a1,a2,a3, . . . and b1,b2,b3, . . .. Let
a1 := x1 and b1 := x1 +1. Note that a1 < b1 and x1 /∈ (a1,b1). For k > 1, suppose ak−1 and bk−1
has been defined. Let us also suppose (ak−1,bk−1) does not contain any x j for any j = 1, . . . ,k−1.

(i) Define ak := x j, where j is the smallest j ∈ N such that x j ∈ (ak−1,bk−1). Such an x j exists
by our assumption on X .

(ii) Next, define bk := x j where j is the smallest j ∈ N such that x j ∈ (ak,bk−1).

Notice that ak < bk and ak−1 < ak < bk < bk−1. Also notice that (ak,bk) does not contain xk and
hence does not contain any x j for j = 1, . . . ,k.

Claim: a j < bk for all j and k in N. Let us first assume j < k. Then a j < a j+1 < · · ·< ak−1 <
ak < bk. Similarly for j > k. The claim follows.

Let A = {a j : j ∈ N} and B = {b j : j ∈ N}. By Proposition 1.2.7 and the claim above we have

sup A≤ inf B.

Define y := sup A. The number y cannot be a member of A. If y = a j for some j, then y < a j+1,
which is impossible. Similarly y cannot be a member of B. Therefore, a j < y for all j ∈ N and
y < b j for all j ∈ N. In other words y ∈ (a j,b j) for all j ∈ N.

Finally we must show that y /∈ X . If we do so, then we will have constructed a real number not
in X showing that X must have been a proper subset. Take any xk ∈ X . By the above construction
xk /∈ (ak,bk), so xk 6= y as y ∈ (ak,bk).

Therefore, the sequence x1,x2, . . . cannot contain all elements of R and thus R is uncountable.

1.4.1 Exercises
Exercise 1.4.1: For a < b, construct an explicit bijection from (a,b] to (0,1].

Exercise 1.4.2: Suppose f : [0,1]→ (0,1) is a bijection. Using f , construct a bijection from [−1,1] to R.

Exercise 1.4.3: Suppose I ⊂ R is a subset with at least 2 elements such that if a < b < c and a,c ∈ I, then
it is one of the nine types of intervals explicitly given in this section. Furthermore, prove that the intervals
given in this section all satisfy this property.
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Exercise 1.4.4 (Hard): Construct an explicit bijection from (0,1] to (0,1). Hint: One approach is as follows:
First map (1/2,1] to (0, 1/2], then map (1/4, 1/2] to (1/2, 3/4], etc. . . . Write down the map explicitly, that is, write
down an algorithm that tells you exactly what number goes where. Then prove that the map is a bijection.

Exercise 1.4.5 (Hard): Construct an explicit bijection from [0,1] to (0,1).

Exercise 1.4.6: a) Show that every closed interval [a,b] is the intersection of countably many open intervals.
b) Show that every open interval (a,b) is a countable union of closed intervals. c) Show that an intersection
of a possibly infinite family of closed intervals is either empty, a single point, or a closed interval.

Exercise 1.4.7: Suppose S is a set of disjoint open intervals in R. That is, if (a,b) ∈ S and (c,d) ∈ S, then
either (a,b) = (c,d) or (a,b)∩ (c,d) = /0. Prove S is a countable set.

Exercise 1.4.8: Prove that the cardinality of [0,1] is the same as the cardinality of (0,1) by showing that
|[0,1]| ≤ |(0,1)| and |(0,1)| ≤ |[0,1]|. See Definition 0.3.21. Note that this requires the Cantor-Bernstein-
Schroeder theorem we stated without proof. Also note that this proof does not give you an explicit bijection.

Exercise 1.4.9 (Challenging): A number x is algebraic if x is a root of a polynomial with integer coefficients,
in other words, anxn +an−1xn−1 + . . .+a1x+a0 = 0 where all an ∈ Z. a) Show that there are only countably
many algebraic numbers. b) Show that there exist non-algebraic numbers (follow in the footsteps of Cantor,
use uncountability of R). Hint: Feel free to use the fact that a polynomial of degree n has at most n real roots.



1.5. DECIMAL REPRESENTATION OF THE REALS 39

1.5 Decimal representation of the reals
Note: 1 lecture (optional)

We often think of real numbers as their decimal representation. For a positive integer n, we find
the digits dK,dK−1, . . . ,d2,d1,d0 for some K, where each d j is an integer between 0 and 9, then

n = dK10K +dK−110K−1 + · · ·+d2102 +d110+d0.

We often assume dK 6= 0. To represent n we write the sequence of digits: n = dKdK−1 · · ·d2d1d0.
By a (decimal) digit, we mean an integer between 0 and 9.

Similarly we represent some rational numbers. That is, for certain numbers x, we can find
negative integer −M, a positive integer K, and digits dK,dK−1, . . . ,d1,d0,d−1, . . . ,d−M, such that

x = dK10K +dK−110K−1 + · · ·+d2102 +d110+d0 +d−110−1 +d−210−2 + · · ·+d−M10−M.

We write x = dKdK−1 · · ·d1d0 .d−1d−2 · · ·d−M.
Not every real number has such a representation, even the simple rational number 1/3 does not.

The irrational number
√

2 does not have such a representation either. To get a representation for all
real numbers we must allow infinitely many digits.

Let us from now on consider only real numbers in the interval (0,1]. If we find a representation
for these, we simply add integers to them to obtain a representation for all real numbers. Suppose
we take an infinite sequence of decimal digits:

0.d1d2d3 . . . .

That is, we have a digit d j for every j ∈ N. We have renumbered the digits to avoid the negative
signs. We say this sequence of digits represents a real number x if

x = sup
n∈N

(
d1

10
+

d2

102 +
d3

103 + · · ·+
dn

10n

)
.

We call
Dn :=

d1

10
+

d2

102 +
d3

103 + · · ·+
dn

10n

the truncation of x to n decimal digits.

Proposition 1.5.1.
(i) Every infinite sequence of digits 0.d1d2d3 . . . represents a unique real number x ∈ [0,1].

(ii) For every x ∈ (0,1] there exists an infinite sequence of digits 0.d1d2d3 . . . that represents x.
There exists a unique representation such that

Dn < x≤ Dn +
1

10n for all n ∈ N.
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Proof. Let us start with the first item. Suppose there is an infinite sequence of digits 0.d1d2d3 . . ..
We use the geometric sum formula to write

Dn =
d1

10
+

d2

102 +
d3

103 + · · ·+
dn

10n ≤
9

10
+

9
102 +

9
103 + · · ·+

9
10n

=
9

10
(
1+ 1/10+(1/10)2 + · · ·+(1/10)n−1)

=
9

10

(
1− (1/10)n

1− 1/10

)
= 1− (1/10)n < 1.

In particular, Dn < 1 for all n. As Dn ≥ 0 is obvious, we obtain

0≤ sup
n∈N

Dn ≤ 1,

and therefore 0.d1d2d3 . . . represents a unique number x ∈ [0,1].
We move on to the second item. Take x ∈ (0,1]. First let us tackle the existence. By convention

define D0 := 0, then automatically we obtain D0 < x≤ D0 +10−0. Suppose for induction that we
defined all the digits d1,d2, . . . ,dn, and that Dn < x≤ Dn +10−n. We need to define dn+1.

By the Archimedean property of the real numbers we find an integer j such that x−Dn ≤
j10−(n+1). We take the least such j and obtain

( j−1)10−(n+1) < x−Dn ≤ j10−(n+1). (1.3)

Let dn+1 := j− 1. As Dn < x, then dn+1 = j− 1 ≥ 0. On the other hand since x−Dn ≤ 10−n

we have that j is at most 10, and therefore dn+1 ≤ 9. So dn+1 is a decimal digit. Since Dn+1 =
Dn +dn+110−(n+1) we add Dn to the inequality (1.3) above:

Dn+1 = Dn +( j−1)10−(n+1) < x≤ Dn +( j−1)10−(n+1)+10−(n+1) = Dn+1 +10−(n+1).

And so Dn+1 < x ≤ Dn+1 + 10−(n+1) holds. We have inductively defined an infinite sequence
of digits 0.d1d2d3 . . .. As Dn < x for all n, then sup{Dn : n ∈ N} ≤ x. As x− 10−n ≤ Dn, then
x−10−n ≤ sup{Dm : m ∈ N} for all n. The two inequalities together imply sup{Dn : n ∈ N}= x.

What is left to show is the uniqueness. Suppose 0.e1e2e3 . . . is another representation of x. Let
En be the n-digit truncation of 0.e1e2e3 . . ., and suppose En < x≤ En +10−n for all n ∈ N. Suppose
for some K ∈ N, en = dn for all n < K, so DK−1 = EK−1. Then

EK = DK−1 + eK10−K < x≤ EK +10−K = DK−1 + eK10−K +10−K.

Subtracting DK−1 and multiplying by 10K we get

eK < (x−DK−1)10K ≤ eK +1.

Similarly we obtain
dK < (x−DK−1)10K ≤ dK +1.

Hence, both eK and dK are the largest integer j such that j < (x−DK−1)10K , and therefore eK = dK .
That is, the representation is unique.
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The representation is not unique if we do not require the extra condition in the proposition. For
example, for the number 1/2 the method in the proof obtains the representation

0.49999 . . . .

However, we also have the representation 0.5000 . . .. The key requirement that makes the represen-
tation unique is Dn < x for all n. The inequality x≤ Dn +10−n is true for every representation by
the computation in the beginning of the proof.

The only numbers that have nonunique representations are ones that end either in an infinite
sequence of 0s or 9s, because the only representation for which Dn = x is one where all digits past
nth one are zero. In this case there are exactly two representations of x (see the exercises).

Let us give another proof of the uncountability of the reals using decimal representations. This
is Cantor’s second proof, and is probably more well known. While this proof may seem shorter, it is
because we have already done the hard part above and we are left with a slick trick to prove that R
is uncountable. This trick is called Cantor diagonalization and finds use in other proofs as well.

Theorem 1.5.2 (Cantor). The set (0,1] is uncountable.

Proof. Let X := {x1,x2,x3, . . .} be any countable subset of real numbers in (0,1]. We will construct
a real number not in X . Let

xn = 0.dn
1dn

2dn
3 . . .

be the unique representation from the proposition, that is dn
j is the jth digit of the nth number. Let

en := 1 if dn
n 6= 1, and let en := 2 if dn

n = 1. Let En be the n-digit truncation of y = 0.e1e2e3 . . ..
Because all the digits are nonzero we get that En < En+1 ≤ y. Therefore

En < y≤ En +10−n

for all n, and the representation is the unique one for y from the proposition. But for every n, the nth
digit of y is different from the nth digit of xn, so y 6= xn. Therefore y /∈ X , and as X was an arbitrary
countable subset, (0,1] must be uncountable.

Using decimal digits we can also find lots of numbers that are not rational. The following
proposition is true for every rational number, but we give it only for x ∈ (0,1] for simplicity.

Proposition 1.5.3. If x ∈ (0,1] is a rational number and x = 0.d1d2d3 . . ., then the decimal digits
eventually start repeating. That is, there are positive integers N and P, such that for all n ≥ N,
dn = dn+P.

Proof. Let x = p/q for positive integers p and q. Let us suppose x is a number with a unique
representation, as otherwise we have seen above that both its representations are repeating.

To compute the first digit we take 10p and divide by q. The quotient is the first digit d1 and
the remainder r is some integer between 0 and q− 1. That is, d1 is the largest integer such that
d1q≤ 10p and then r = 10p−d1q.
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The next digit is computed by dividing 10r by q, and so on. We notice that at each step there are
at most q possible remainders and hence at some point the process must start repeating. In fact we
see that P is at most q.

The converse of the proposition is also true and is left as an exercise.

Example 1.5.4: The number

x = 0.101001000100001000001 . . . ,

is irrational. That is, the digits are n zeros, then a one, then n+1 zeros, then a one, and so on and so
forth. The fact that x is irrational follows from the proposition; the digits never start repeating. For
every P, if we go far enough, we find a 1 that is followed by at least P+1 zeros.

1.5.1 Exercises
Exercise 1.5.1 (Easy): What is the decimal representation of 1 guaranteed by Proposition 1.5.1? Make sure
to show that it does satisfy the condition.

Exercise 1.5.2: Prove the converse of Proposition 1.5.3, that is, if the digits in the decimal representation of
x are eventually repeating, then x must be rational.

Exercise 1.5.3: Show that real numbers x ∈ (0,1) with nonunique decimal representation are exactly the
rational numbers that can be written as m

10n for some integers m and n. In this case show that there exist
exactly two representations of x.

Exercise 1.5.4: Let b≥ 2 be an integer. Define a representation of a real number in [0,1] in terms of base b
rather than base 10 and prove Proposition 1.5.1 for base b.

Exercise 1.5.5: Using the previous exercise with b = 2 (binary), show that cardinality of R is the same as
the cardinality of P(N), obtaining yet another (though related) proof that R is uncountable. Hint: Construct
two injections, one from [0,1] to P(N) and one from P(N) to [0,1]. Hint 2: Given a set A⊂ N, let the nth
binary digit of x be 1 if n ∈ A.

Exercise 1.5.6: Construct a bijection between [0,1] and [0,1]× [0,1]. Hint: consider even and odd digits,
and be careful about the uniqueness of representation.



Chapter 2

Sequences and Series

2.1 Sequences and limits
Note: 2.5 lectures

Analysis is essentially about taking limits. The most basic type of a limit is a limit of a sequence
of real numbers. We have already seen sequences used informally. Let us give the formal definition.

Definition 2.1.1. A sequence (of real numbers) is a function x : N→ R. Instead of x(n) we usually
denote the nth element in the sequence by xn. We use the notation {xn}, or more precisely

{xn}∞
n=1,

to denote a sequence.
A sequence {xn} is bounded if there exists a B ∈ R such that

|xn| ≤ B for all n ∈ N.

In other words, the sequence {xn} is bounded whenever the set {xn : n ∈ N} is bounded.

When we need to give a concrete sequence we often give each term as a formula in terms of n.
For example, {1/n}∞

n=1, or simply {1/n}, stands for the sequence 1,1/2,1/3,1/4,1/5, . . .. The sequence
{1/n} is a bounded sequence (B = 1 will suffice). On the other hand the sequence {n} stands for
1,2,3,4, . . ., and this sequence is not bounded (why?).

While the notation for a sequence is similar∗ to that of a set, the notions are distinct. For
example, the sequence {(−1)n} is the sequence −1,1,−1,1,−1,1, . . ., whereas the set of values,
the range of the sequence, is just the set {−1,1}. We can write this set as {(−1)n : n ∈ N}. When
ambiguity can arise, we use the words sequence or set to distinguish the two concepts.

Another example of a sequence is the so-called constant sequence. That is a sequence {c}=
c,c,c,c, . . . consisting of a single constant c ∈ R repeating indefinitely.

∗[BS] use the notation (xn) to denote a sequence instead of {xn}, which is what [R2] uses. Both are common.

43
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We now get to the idea of a limit of a sequence. We will see in Proposition 2.1.6 that the notation
below is well defined. That is, if a limit exists, then it is unique. So it makes sense to talk about the
limit of a sequence.

Definition 2.1.2. A sequence {xn} is said to converge to a number x ∈ R, if for every ε > 0, there
exists an M ∈ N such that |xn− x|< ε for all n≥M. The number x is said to be the limit of {xn}.
We write

lim
n→∞

xn := x.

A sequence that converges is said to be convergent. Otherwise, the sequence is said to be
divergent.

It is good to know intuitively what a limit means. It means that eventually every number in the
sequence is close to the number x. More precisely, we can get arbitrarily close to the limit, provided
we go far enough in the sequence. It does not mean we ever reach the limit. It is possible, and quite
common, that there is no xn in the sequence that equals the limit x. We illustrate the concept in
Figure 2.1. In the figure we first think of the sequence as a graph, as it is a function of N. Secondly
we also plot it as a sequence of labeled points on the real line.

x

x+ ε

x− ε

1 2 3 4 5 6 7 8 9 10

· · ·

M

x x+ εx− ε

x1x2 x3x4x5
x6

x7x8
x9x10

Figure 2.1: Illustration of convergence. On top, the first ten points of the sequence as a graph with
M and the interval around the limit x marked. On bottom, the points of the same sequence marked
on the number line.

When we write lim xn = x for some real number x, we are saying two things. First, that {xn} is
convergent, and second that the limit is x.
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The above definition is one of the most important definitions in analysis, and it is necessary to
understand it perfectly. The key point in the definition is that given any ε > 0, we can find an M.
The M can depend on ε , so we only pick an M once we know ε . Let us illustrate this concept on a
few examples.

Example 2.1.3: The constant sequence 1,1,1,1, . . . is convergent and the limit is 1. For every
ε > 0, we pick M = 1.

Example 2.1.4: Claim: The sequence {1/n} is convergent and

lim
n→∞

1
n
= 0.

Proof: Given an ε > 0, we find an M ∈ N such that 0 < 1/M < ε (Archimedean property at work).
Then for all n≥M we have that

|xn−0|=
∣∣∣∣1n
∣∣∣∣= 1

n
≤ 1

M
< ε.

Example 2.1.5: The sequence {(−1)n} is divergent. Proof: If there were a limit x, then for ε = 1
2

we expect an M that satisfies the definition. Suppose such an M exists, then for an even n≥M we
compute

1/2 > |xn− x|= |1− x| and 1/2 > |xn+1− x|= |−1− x| .
But

2 = |1− x− (−1− x)| ≤ |1− x|+ |−1− x|< 1/2+ 1/2 = 1,

and that is a contradiction.

Proposition 2.1.6. A convergent sequence has a unique limit.

The proof of this proposition exhibits a useful technique in analysis. Many proofs follow the
same general scheme. We want to show a certain quantity is zero. We write the quantity using the
triangle inequality as two quantities, and we estimate each one by arbitrarily small numbers.

Proof. Suppose the sequence {xn} has the limit x and the limit y. Take an arbitrary ε > 0. From
the definition find an M1 such that for all n≥M1, |xn− x|< ε/2. Similarly find an M2 such that for
all n≥M2 we have |xn− y|< ε/2. Take M := max{M1,M2}. For n≥M (so that both n≥M1 and
n≥M2) we have

|y− x|= |xn− x− (xn− y)|
≤ |xn− x|+ |xn− y|

<
ε

2
+

ε

2
= ε.

As |y− x|< ε for all ε > 0, then |y− x|= 0 and y = x. Hence the limit (if it exists) is unique.
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Proposition 2.1.7. A convergent sequence {xn} is bounded.

Proof. Suppose {xn} converges to x. Thus there exists an M ∈ N such that for all n≥M we have
|xn− x|< 1. Let B1 := |x|+1 and note that for n≥M we have

|xn|= |xn− x+ x|
≤ |xn− x|+ |x|
< 1+ |x|= B1.

The set {|x1| , |x2| , . . . , |xM−1|} is a finite set and hence let

B2 := max{|x1| , |x2| , . . . , |xM−1|}.

Let B := max{B1,B2}. Then for all n ∈ N we have

|xn| ≤ B.

The sequence {(−1)n} shows that the converse does not hold. A bounded sequence is not
necessarily convergent.

Example 2.1.8: Let us show the sequence
{

n2+1
n2+n

}
converges and

lim
n→∞

n2 +1
n2 +n

= 1.

Given ε > 0, find M ∈ N such that 1
M+1 < ε . Then for any n≥M we have∣∣∣∣n2 +1

n2 +n
−1
∣∣∣∣= ∣∣∣∣n2 +1− (n2 +n)

n2 +n

∣∣∣∣= ∣∣∣∣ 1−n
n2 +n

∣∣∣∣
=

n−1
n2 +n

≤ n
n2 +n

=
1

n+1

≤ 1
M+1

< ε.

Therefore, lim n2+1
n2+n = 1.

2.1.1 Monotone sequences
The simplest type of a sequence is a monotone sequence. Checking that a monotone sequence
converges is as easy as checking that it is bounded. It is also easy to find the limit for a convergent
monotone sequence, provided we can find the supremum or infimum of a countable set of numbers.
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Definition 2.1.9. A sequence {xn} is monotone increasing if xn ≤ xn+1 for all n ∈ N. A sequence
{xn} is monotone decreasing if xn ≥ xn+1 for all n ∈ N. If a sequence is either monotone increasing
or monotone decreasing, we can simply say the sequence is monotone. Some authors also use the
word monotonic.

For example, {1/n} is monotone decreasing, the constant sequence {1} is both monotone
increasing and monotone decreasing, and {(−1)n} is not monotone. First few terms of a sample
monotone increasing sequence are shown in Figure 2.2.

1 2 3 4 5 6 7 8 9 10

Figure 2.2: First few terms of a monotone increasing sequence as a graph.

Theorem 2.1.10. A monotone sequence {xn} is bounded if and only if it is convergent.
Furthermore, if {xn} is monotone increasing and bounded, then

lim
n→∞

xn = sup{xn : n ∈ N}.

If {xn} is monotone decreasing and bounded, then

lim
n→∞

xn = inf{xn : n ∈ N}.

Proof. Let us suppose the sequence is monotone increasing. Suppose the sequence is bounded, so
there exists a B such that xn ≤ B for all n, that is the set {xn : n ∈ N} is bounded from above. Let

x := sup{xn : n ∈ N}.

Let ε > 0 be arbitrary. As x is the supremum, then there must be at least one M ∈ N such that
xM > x− ε (because x is the supremum). As {xn} is monotone increasing, then it is easy to see (by
induction) that xn ≥ xM for all n≥M. Hence

|xn− x|= x− xn ≤ x− xM < ε.
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Therefore the sequence converges to x. We already know that a convergent sequence is bounded,
which completes the other direction of the implication.

The proof for monotone decreasing sequences is left as an exercise.

Example 2.1.11: Take the sequence { 1√
n}.

First 1√
n > 0 for all n ∈ N, and hence the sequence is bounded from below. Let us show that it

is monotone decreasing. We start with
√

n+1≥
√

n (why is that true?). From this inequality we
obtain

1√
n+1

≤ 1√
n
.

So the sequence is monotone decreasing and bounded from below (hence bounded). We apply the
theorem to note that the sequence is convergent and in fact

lim
n→∞

1√
n
= inf

{
1√
n

: n ∈ N
}
.

We already know that the infimum is greater than or equal to 0, as 0 is a lower bound. Take a number
b≥ 0 such that b≤ 1√

n for all n. We square both sides to obtain

b2 ≤ 1
n

for all n ∈ N.

We have seen before that this implies that b2 ≤ 0 (a consequence of the Archimedean property).
As we also have b2 ≥ 0, then b2 = 0 and so b = 0. Hence b = 0 is the greatest lower bound, and
lim 1√

n = 0.

Example 2.1.12: A word of caution: We must show that a monotone sequence is bounded in order
to use Theorem 2.1.10. For example, the sequence {1+ 1/2+ · · ·+ 1/n} is a monotone increasing
sequence that grows very slowly. We will see, once we get to series, that this sequence has no upper
bound and so does not converge. It is not at all obvious that this sequence has no upper bound.

A common example of where monotone sequences arise is the following proposition. The proof
is left as an exercise.

Proposition 2.1.13. Let S⊂ R be a nonempty bounded set. Then there exist monotone sequences
{xn} and {yn} such that xn,yn ∈ S and

sup S = lim
n→∞

xn and inf S = lim
n→∞

yn.
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2.1.2 Tail of a sequence
Definition 2.1.14. For a sequence {xn}, the K-tail (where K ∈ N) or just the tail of the sequence is
the sequence starting at K +1, usually written as

{xn+K}∞
n=1 or {xn}∞

n=K+1.

The main result about the tail of a sequence is the following proposition.

Proposition 2.1.15. Let {xn}∞
n=1 be a sequence. Then the following statements are equivalent:

(i) The sequence {xn}∞
n=1 converges.

(ii) The K-tail {xn+K}∞
n=1 converges for all K ∈ N.

(iii) The K-tail {xn+K}∞
n=1 converges for some K ∈ N.

Furthermore, if any (and hence all) of the limits exist, then for any K ∈ N

lim
n→∞

xn = lim
n→∞

xn+K.

Proof. It is clear that (ii) implies (iii). We will therefore show first that (i) implies (ii), and then we
will show that (iii) implies (i). In the process we will also show that the limits are equal.

Let us start with (i) implies (ii). Suppose {xn} converges to some x ∈ R. Let K ∈ N be arbitrary.
Define yn := xn+K , we wish to show that {yn} converges to x. That is, given an ε > 0, there exists
an M ∈ N such that |x− xn|< ε for all n≥M. Note that n≥M implies n+K ≥M. Therefore, it is
true that for all n≥M we have that

|x− yn|= |x− xn+K|< ε.

Therefore {yn} converges to x.
Let us move to (iii) implies (i). Let K ∈ N be given, define yn := xn+K , and suppose that {yn}

converges x ∈R. That is, given an ε > 0, there exists an M′ ∈N such that |x− yn|< ε for all n≥M′.
Let M := M′+K. Then n≥M implies n−K ≥M′. Thus, whenever n≥M we have

|x− xn|= |x− yn−K|< ε.

Therefore {xn} converges to x.

Essentially, the limit does not care about how the sequence begins, it only cares about the tail of
the sequence. That is, the beginning of the sequence may be arbitrary.

For example, the sequence defined by xn := n
n2+16 is decreasing if we start at n = 4 (it is

increasing before). That is, {xn}= 1/17,1/10,3/25,1/8,5/41,3/26,7/65,1/10,9/97,5/58, . . ., and

1/17 < 1/10 < 3/25 < 1/8 > 5/41 > 3/26 > 7/65 > 1/10 > 9/97 > 5/58 > .. . .

That is if we throw away the first 3 terms and look at the 3 tail it is decreasing. The proof is left as
an exercise. Since the 3-tail is monotone and bounded below by zero, it is convergent, and therefore
the sequence is convergent.
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2.1.3 Subsequences
A very useful concept related to sequences is that of a subsequence. A subsequence of {xn} is a
sequence that contains only some of the numbers from {xn} in the same order.

Definition 2.1.16. Let {xn} be a sequence. Let {ni} be a strictly increasing sequence of natural
numbers (that is n1 < n2 < n3 < · · · ). The sequence

{xni}
∞
i=1

is called a subsequence of {xn}.

For example, take the sequence {1/n}. The sequence {1/3n} is a subsequence. To see how these
two sequences fit in the definition, take ni := 3i. The numbers in the subsequence must come from
the original sequence, so 1,0,1/3,0,1/5, . . . is not a subsequence of {1/n}. Similarly order must be
preserved, so the sequence 1,1/3,1/2,1/5, . . . is not a subsequence of {1/n}.

A tail of a sequence is one special type of a subsequence. For an arbitrary subsequence, we have
the following proposition about convergence.

Proposition 2.1.17. If {xn} is a convergent sequence, then any subsequence {xni} is also convergent
and

lim
n→∞

xn = lim
i→∞

xni.

Proof. Suppose limn→∞ xn = x. That means that for every ε > 0 we have an M ∈N such that for all
n≥M

|xn− x|< ε.

It is not hard to prove (do it!) by induction that ni ≥ i. Hence i≥M implies ni ≥M. Thus, for all
i≥M we have

|xni− x|< ε,

and we are done.

Example 2.1.18: Existence of a convergent subsequence does not imply convergence of the se-
quence itself. Take the sequence 0,1,0,1,0,1, . . .. That is, xn = 0 if n is odd, and xn = 1 if n is
even. The sequence {xn} is divergent, however, the subsequence {x2n} converges to 1 and the
subsequence {x2n+1} converges to 0. Compare Theorem 2.3.7.

2.1.4 Exercises
In the following exercises, feel free to use what you know from calculus to find the limit, if it exists. But you
must prove that you found the correct limit, or prove that the series is divergent.

Exercise 2.1.1: Is the sequence {3n} bounded? Prove or disprove.
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Exercise 2.1.2: Is the sequence {n} convergent? If so, what is the limit?

Exercise 2.1.3: Is the sequence
{
(−1)n

2n

}
convergent? If so, what is the limit?

Exercise 2.1.4: Is the sequence {2−n} convergent? If so, what is the limit?

Exercise 2.1.5: Is the sequence
{

n
n+1

}
convergent? If so, what is the limit?

Exercise 2.1.6: Is the sequence
{

n
n2 +1

}
convergent? If so, what is the limit?

Exercise 2.1.7: Let {xn} be a sequence.

a) Show that lim xn = 0 (that is, the limit exists and is zero) if and only if lim |xn|= 0.

b) Find an example such that {|xn|} converges and {xn} diverges.

Exercise 2.1.8: Is the sequence
{

2n

n!

}
convergent? If so, what is the limit?

Exercise 2.1.9: Show that the sequence
{

1
3
√

n

}
is monotone, bounded, and use Theorem 2.1.10 to find the

limit.

Exercise 2.1.10: Show that the sequence
{

n+1
n

}
is monotone, bounded, and use Theorem 2.1.10 to find

the limit.

Exercise 2.1.11: Finish the proof of Theorem 2.1.10 for monotone decreasing sequences.

Exercise 2.1.12: Prove Proposition 2.1.13.

Exercise 2.1.13: Let {xn} be a convergent monotone sequence. Suppose there exists a k ∈ N such that

lim
n→∞

xn = xk.

Show that xn = xk for all n≥ k.

Exercise 2.1.14: Find a convergent subsequence of the sequence {(−1)n}.

Exercise 2.1.15: Let {xn} be a sequence defined by

xn :=

{
n if n is odd,
1/n if n is even.

a) Is the sequence bounded? (prove or disprove)

b) Is there a convergent subsequence? If so, find it.
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Exercise 2.1.16: Let {xn} be a sequence. Suppose there are two convergent subsequences {xni} and {xmi}.
Suppose

lim
i→∞

xni = a and lim
i→∞

xmi = b,

where a 6= b. Prove that {xn} is not convergent, without using Proposition 2.1.17.

Exercise 2.1.17: Find a sequence {xn} such that for any y ∈ R, there exists a subsequence {xni} converging
to y.

Exercise 2.1.18 (Easy): Let {xn} be a sequence and x ∈ R. Suppose for any ε > 0, there is an M such that
for all n≥M, |xn− x| ≤ ε . Show that lim xn = x.

Exercise 2.1.19 (Easy): Let {xn} be a sequence and x ∈ R such that there exists a k ∈ N such that for all
n≥ k, xn = x. Prove that {xn} converges to x.

Exercise 2.1.20: Let {xn} be a sequence and define a sequence {yn} by y2k := xk2 and y2k−1 = xk for all
k ∈ N. Prove that {xn} converges if and only if {yn} converges. Furthermore, prove that if they converge,
then lim xn = lim yn.

Exercise 2.1.21: Show that the 3-tail of the sequence defined by xn := n
n2+16 is monotone decreasing. Hint:

Suppose n≥ m≥ 4 and consider the numerator of the expression xn− xm.

Exercise 2.1.22: Suppose that {xn} is a sequence such that the subsequences {x2n}, {x2n−1}, and {x3n} all
converge. Show that {xn} is convergent.
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2.2 Facts about limits of sequences
Note: 2–2.5 lectures, recursively defined sequences can safely be skipped

In this section we go over some basic results about the limits of sequences. We start by looking
at how sequences interact with inequalities.

2.2.1 Limits and inequalities
A basic lemma about limits and inequalities is the so-called squeeze lemma. It allows us to show
convergence of sequences in difficult cases if we find two other simpler convergent sequences that
“squeeze” the original sequence.

Lemma 2.2.1 (Squeeze lemma). Let {an}, {bn}, and {xn} be sequences such that

an ≤ xn ≤ bn for all n ∈ N.

Suppose {an} and {bn} converge and

lim
n→∞

an = lim
n→∞

bn.

Then {xn} converges and
lim
n→∞

xn = lim
n→∞

an = lim
n→∞

bn.

The intuitive idea of the proof is illustrated in Figure 2.3. If x is the limit of an and bn, then if
they are both within ε/3 of x, then the distance between an and bn is at most 2ε/3. As xn is between
an and bn it is at most 2ε/3 from an. Since an is at most ε/3 away from x, then xn must be at most ε

away from x. Let us follow through on this intuition rigorously.

an bnx xn

< 2ε/3

< ε/3 < ε/3

< 2ε/3+ ε/3 = ε

Figure 2.3: Squeeze lemma proof in picture.

Proof. Let x := lim an = lim bn. Let ε > 0 be given.
Find an M1 such that for all n ≥ M1 we have that |an− x| < ε/3, and an M2 such that for all

n≥M2 we have |bn− x|< ε/3. Set M := max{M1,M2}. Suppose n≥M. We compute

|xn−an|= xn−an ≤ bn−an

= |bn− x+ x−an|
≤ |bn− x|+ |x−an|

<
ε

3
+

ε

3
=

2ε

3
.
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Armed with this information we estimate

|xn− x|= |xn− x+an−an|
≤ |xn−an|+ |an− x|

<
2ε

3
+

ε

3
= ε.

And we are done.

Example 2.2.2: One application of the squeeze lemma is to compute limits of sequences using
limits that are already known. For example, suppose we have the sequence { 1

n
√

n}. Since
√

n≥ 1
for all n ∈ N, we have

0≤ 1
n
√

n
≤ 1

n

for all n ∈ N. We already know lim 1/n = 0. Hence, using the constant sequence {0} and the
sequence {1/n} in the squeeze lemma, we conclude

lim
n→∞

1
n
√

n
= 0.

Limits also preserve inequalities.

Lemma 2.2.3. Let {xn} and {yn} be convergent sequences and

xn ≤ yn,

for all n ∈ N. Then
lim
n→∞

xn ≤ lim
n→∞

yn.

Proof. Let x := lim xn and y := lim yn. Let ε > 0 be given. Find an M1 such that for all n≥M1 we
have |xn− x| < ε/2. Find an M2 such that for all n ≥M2 we have |yn− y| < ε/2. In particular, for
some n≥max{M1,M2} we have x− xn < ε/2 and yn− y < ε/2. We add these inequalities to obtain

yn− xn + x− y < ε, or yn− xn < y− x+ ε.

Since xn ≤ yn we have 0≤ yn− xn and hence 0 < y− x+ ε . In other words

x− y < ε.

Because ε > 0 was arbitrary we obtain x− y≤ 0, as we have seen that a nonnegative number less
than any positive ε is zero. Therefore x≤ y.

An easy corollary is proved using constant sequences in Lemma 2.2.3. The proof is left as an
exercise.
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Corollary 2.2.4.
(i) Let {xn} be a convergent sequence such that xn ≥ 0, then

lim
n→∞

xn ≥ 0.

(ii) Let a,b ∈ R and let {xn} be a convergent sequence such that

a≤ xn ≤ b,

for all n ∈ N. Then
a≤ lim

n→∞
xn ≤ b.

In Lemma 2.2.3 and Corollary 2.2.4 we cannot simply replace all the non-strict inequalities
with strict inequalities. For example, let xn := −1/n and yn := 1/n. Then xn < yn, xn < 0, and
yn > 0 for all n. However, these inequalities are not preserved by the limit operation as we have
lim xn = lim yn = 0. The moral of this example is that strict inequalities may become non-strict
inequalities when limits are applied; if we know xn < yn for all n, we may only conclude

lim
n→∞

xn ≤ lim
n→∞

yn.

This issue is a common source of errors.

2.2.2 Continuity of algebraic operations
Limits interact nicely with algebraic operations.

Proposition 2.2.5. Let {xn} and {yn} be convergent sequences.

(i) The sequence {zn}, where zn := xn + yn, converges and

lim
n→∞

(xn + yn) = lim
n→∞

zn = lim
n→∞

xn + lim
n→∞

yn.

(ii) The sequence {zn}, where zn := xn− yn, converges and

lim
n→∞

(xn− yn) = lim
n→∞

zn = lim
n→∞

xn− lim
n→∞

yn.

(iii) The sequence {zn}, where zn := xnyn, converges and

lim
n→∞

(xnyn) = lim
n→∞

zn =
(

lim
n→∞

xn

)(
lim
n→∞

yn

)
.

(iv) If lim yn 6= 0 and yn 6= 0 for all n ∈N, then the sequence {zn}, where zn :=
xn

yn
, converges and

lim
n→∞

xn

yn
= lim

n→∞
zn =

lim xn

lim yn
.
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Proof. Let us start with (i). Suppose {xn} and {yn} are convergent sequences and write zn := xn+yn.
Let x := lim xn, y := lim yn, and z := x+ y.

Let ε > 0 be given. Find an M1 such that for all n≥M1 we have |xn− x|< ε/2. Find an M2 such
that for all n≥M2 we have |yn− y|< ε/2. Take M := max{M1,M2}. For all n≥M we have

|zn− z|= |(xn + yn)− (x+ y)|= |xn− x+ yn− y|
≤ |xn− x|+ |yn− y|

<
ε

2
+

ε

2
= ε.

Therefore (i) is proved. Proof of (ii) is almost identical and is left as an exercise.
Let us tackle (iii). Suppose again that {xn} and {yn} are convergent sequences and write

zn := xnyn. Let x := lim xn, y := lim yn, and z := xy.
Let ε > 0 be given. As {xn} is convergent, it is bounded. Therefore, find a B > 0 such that

|xn| ≤ B for all n ∈ N. Find an M1 such that for all n≥M1 we have |xn− x|< ε

2(|y|+1) . Find an M2

such that for all n≥M2 we have |yn− y|< ε

2B . Take M := max{M1,M2}. For all n≥M we have

|zn− z|= |(xnyn)− (xy)|
= |xnyn− (x+ xn− xn)y|
= |xn(yn− y)+(xn− x)y|
≤ |xn(yn− y)|+ |(xn− x)y|
= |xn| |yn− y|+ |xn− x| |y|
≤ B |yn− y|+ |xn− x| |y|

< B
ε

2B
+

ε

2(|y|+1)
|y|

<
ε

2
+

ε

2
= ε.

Finally let us tackle (iv). Instead of proving (iv) directly, we prove the following simpler claim:
Claim: If {yn} is a convergent sequence such that lim yn 6= 0 and yn 6= 0 for all n ∈ N, then

lim
n→∞

1
yn

=
1

lim yn
.

Once the claim is proved, we take the sequence {1/yn}, multiply it by the sequence {xn} and
apply item (iii).

Proof of claim: Let ε > 0 be given. Let y := lim yn. Find an M such that for all n≥M we have

|yn− y|< min
{
|y|2 ε

2
,
|y|
2

}
.
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Notice that we can make this claim as the right hand side is positive because |y| 6= 0. Therefore for
all n≥M we have |y− yn|< |y|

2 , and so

|y|= |y− yn + yn| ≤ |y− yn|+ |yn|<
|y|
2
+ |yn| .

Subtracting |y|/2 from both sides we obtain |y|/2 < |yn|, or in other words,

1
|yn|

<
2
|y|

.

Now we finish the proof of the claim:∣∣∣∣ 1
yn
− 1

y

∣∣∣∣= ∣∣∣∣y− yn

yyn

∣∣∣∣
=
|y− yn|
|y| |yn|

<
|y− yn|
|y|

2
|y|

<
|y|2 ε

2
|y|

2
|y|

= ε.

And we are done.

By plugging in constant sequences, we get several easy corollaries. If c ∈ R and {xn} is a
convergent sequence, then for example

lim
n→∞

cxn = c
(

lim
n→∞

xn

)
and lim

n→∞
(c+ xn) = c+ lim

n→∞
xn.

Similarly with constant subtraction and division.
As we can take limits past multiplication we can show (exercise) that lim xk

n = (lim xn)
k for all

k ∈ N. That is, we can take limits past powers. Let us see if we can do the same with roots.

Proposition 2.2.6. Let {xn} be a convergent sequence such that xn ≥ 0. Then

lim
n→∞

√
xn =

√
lim
n→∞

xn.

Of course to even make this statement, we need to apply Corollary 2.2.4 to show that lim xn ≥ 0,
so that we can take the square root without worry.

Proof. Let {xn} be a convergent sequence and let x := lim xn.
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First suppose x = 0. Let ε > 0 be given. Then there is an M such that for all n≥M we have
xn = |xn|< ε2, or in other words

√
xn < ε . Hence∣∣√xn−

√
x
∣∣=√xn < ε.

Now suppose x > 0 (and hence
√

x > 0).∣∣√xn−
√

x
∣∣= ∣∣∣∣ xn− x
√

xn +
√

x

∣∣∣∣
=

1
√

xn +
√

x
|xn− x|

≤ 1√
x
|xn− x| .

We leave the rest of the proof to the reader.

A similar proof works for the kth root. That is, we also obtain lim x1/k
n = (lim xn)

1/k. We leave
this to the reader as a challenging exercise.

We may also want to take the limit past the absolute value sign. The converse of this proposition
is not true, see Exercise 2.1.7 part b).

Proposition 2.2.7. If {xn} is a convergent sequence, then {|xn|} is convergent and

lim
n→∞
|xn|=

∣∣∣ lim
n→∞

xn

∣∣∣ .
Proof. We simply note the reverse triangle inequality∣∣ |xn|− |x|

∣∣≤ |xn− x| .

Hence if |xn− x| can be made arbitrarily small, so can
∣∣ |xn|− |x|

∣∣. Details are left to the reader.

Let us see an example putting the above propositions together. Since we know that lim 1/n = 0,
then

lim
n→∞

∣∣∣√1+ 1/n− 100/n2
∣∣∣= ∣∣∣√1+(lim 1/n)−100(lim 1/n)(lim 1/n)

∣∣∣= 1.

That is, the limit on the left hand side exists because the right hand side exists. You really should
read the above equality from right to left.

2.2.3 Recursively defined sequences
Now that we know we can interchange limits and algebraic operations, we can compute the limits
of many sequences. One such class are recursively defined sequences, that is, sequences where the
next number in the sequence computed using a formula from a fixed number of preceding elements
in the sequence.
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Example 2.2.8: Let {xn} be defined by x1 := 2 and

xn+1 := xn−
x2

n−2
2xn

.

We must first find out if this sequence is well defined; we must show we never divide by zero. Then
we must find out if the sequence converges. Only then can we attempt to find the limit.

First let us prove xn exists and xn > 0 for all n (so the sequence is well defined and bounded
below). Let us show this by induction. We know that x1 = 2 > 0. For the induction step, suppose
xn > 0. Then

xn+1 = xn−
x2

n−2
2xn

=
2x2

n− x2
n +2

2xn
=

x2
n +2
2xn

.

If xn > 0, then x2
n +2 > 0 and hence xn+1 > 0.

Next let us show that the sequence is monotone decreasing. If we show that x2
n−2≥ 0 for all n,

then xn+1 ≤ xn for all n. Obviously x2
1−2 = 4−2 = 2 > 0. For an arbitrary n we have

x2
n+1−2 =

(
x2

n +2
2xn

)2

−2 =
x4

n +4x2
n +4−8x2

n
4x2

n
=

x4
n−4x2

n +4
4x2

n
=

(
x2

n−2
)2

4x2
n

.

Since any number squared is nonnegative, we have that x2
n+1−2≥ 0 for all n. Therefore, {xn} is

monotone decreasing and bounded (xn > 0 for all n), and the limit exists. It remains to find the limit.
Let us write

2xnxn+1 = x2
n +2.

Since {xn+1} is the 1-tail of {xn}, it converges to the same limit. Let us define x := lim xn. We take
the limit of both sides to obtain

2x2 = x2 +2,

or x2 = 2. As xn > 0 for all n we get x≥ 0, and therefore x =
√

2.

You may have seen the above sequence before. It is the Newton’s method∗ for finding the square
root of 2. This method comes up very often in practice and converges very rapidly. Notice that
we have used the fact that x2

1−2 > 0, although it was not strictly needed to show convergence by
considering a tail of the sequence. In fact the sequence converges as long as x1 6= 0, although with a
negative x1 we would arrive at x =−

√
2. By replacing the 2 in the numerator we obtain the square

root of any positive number. These statements are left as an exercise.
You should, however, be careful. Before taking any limits, you must make sure the sequence

converges. Let us see an example.

Example 2.2.9: Suppose x1 := 1 and xn+1 := x2
n + xn. If we blindly assumed that the limit exists

(call it x), then we would get the equation x = x2+x, from which we might conclude x = 0. However,
it is not hard to show that {xn} is unbounded and therefore does not converge.

∗Named after the English physicist and mathematician Isaac Newton (1642 – 1726/7).

http://en.wikipedia.org/wiki/Isaac_Newton
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The thing to notice in this example is that the method still works, but it depends on the initial
value x1. If we set x1 := 0, then the sequence converges and the limit really is 0. An entire branch
of mathematics, called dynamics, deals precisely with these issues.

2.2.4 Some convergence tests
It is not always necessary to go back to the definition of convergence to prove that a sequence is
convergent. We first give a simple convergence test. The main idea is that {xn} converges to x if
and only if {|xn− x|} converges to zero.

Proposition 2.2.10. Let {xn} be a sequence. Suppose there is an x ∈ R and a convergent sequence
{an} such that

lim
n→∞

an = 0

and
|xn− x| ≤ an

for all n. Then {xn} converges and lim xn = x.

Proof. Let ε > 0 be given. Note that an ≥ 0 for all n. Find an M ∈ N such that for all n≥M we
have an = |an−0|< ε . Then, for all n≥M we have

|xn− x| ≤ an < ε.

As the proposition shows, to study when a sequence has a limit is the same as studying when
another sequence goes to zero. In general it may be hard to decide if a sequence converges, but for
certain sequences there exist easy to apply tests that tell us if the sequence converges or not. Let us
see one such test. First let us compute the limit of a very specific sequence.

Proposition 2.2.11. Let c > 0.

(i) If c < 1, then
lim
n→∞

cn = 0.

(ii) If c > 1, then {cn} is unbounded.

Proof. First let us suppose c > 1. We write c = 1+ r for some r > 0. By induction (or using the
binomial theorem if you know it) we have Bernoulli’s inequality (see also Exercise 1.2.13):

cn = (1+ r)n ≥ 1+nr.

By the Archimedean property of the real numbers, the sequence {1+nr} is unbounded (for any
number B, we find an n ∈ N such that nr ≥ B−1). Therefore cn is unbounded.
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Now let c < 1. Write c = 1
1+r , where r > 0. Then

cn =
1

(1+ r)n ≤
1

1+nr
≤ 1

r
1
n
.

As {1
n} converges to zero, so does {1

r
1
n}. Hence, {cn} converges to zero.

If we look at the above proposition, we note that the ratio of the (n+1)th term and the nth term
is c. We generalize this simple result to a larger class of sequences. The following lemma will come
up again once we get to series.

Lemma 2.2.12 (Ratio test for sequences). Let {xn} be a sequence such that xn 6= 0 for all n and
such that the limit

L := lim
n→∞

|xn+1|
|xn|

exists.

(i) If L < 1, then {xn} converges and lim xn = 0.

(ii) If L > 1, then {xn} is unbounded (hence diverges).

If L exists, but L = 1, the lemma says nothing. We cannot make any conclusion based on that
information alone. For example, the sequence {1/n} converges to zero, but L = 1. The constant
sequence {1} converges to 1, not zero, and also L = 1. The sequence {(−1)n} does not converge at
all, and L = 1. Finally the sequence {lnn} is unbounded, yet again L = 1.

Proof. Suppose L < 1. As |xn+1|
|xn| ≥ 0, we have that L≥ 0. Pick r such that L < r < 1. We wish to

compare the sequence to the sequence rn. The idea is that while the sequence is not going to be less
than L eventually, it will eventually be less than r, which is still less than 1. The intuitive idea of the
proof is illustrated in Figure 2.4.

1L r

Figure 2.4: Proof of ratio test in picture. The short lines represent the ratios |xn+1|
|xn| approaching L.

As r−L > 0, there exists an M ∈ N such that for all n≥M we have∣∣∣∣ |xn+1|
|xn|

−L
∣∣∣∣< r−L.

Therefore,
|xn+1|
|xn|

< r.
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For n > M (that is for n≥M+1) we write

|xn|= |xM|
|xM+1|
|xM|

|xM+2|
|xM+1|

· · · |xn|
|xn−1|

< |xM|rr · · ·r = |xM|rn−M = (|xM|r−M)rn.

The sequence {rn} converges to zero and hence |xM|r−Mrn converges to zero. By Proposition 2.2.10,
the M-tail of {xn} converges to zero and therefore {xn} converges to zero.

Now suppose L > 1. Pick r such that 1 < r < L. As L− r > 0, there exists an M ∈ N such that
for all n≥M we have ∣∣∣∣ |xn+1|

|xn|
−L
∣∣∣∣< L− r.

Therefore,
|xn+1|
|xn|

> r.

Again for n > M we write

|xn|= |xM|
|xM+1|
|xM|

|xM+2|
|xM+1|

· · · |xn|
|xn−1|

> |xM|rr · · ·r = |xM|rn−M = (|xM|r−M)rn.

The sequence {rn} is unbounded (since r > 1), and therefore {xn} cannot be bounded (if |xn| ≤ B
for all n, then rn < B

|xM |r
M for all n, which is impossible). Consequently, {xn} cannot converge.

Example 2.2.13: A simple application of the above lemma is to prove that

lim
n→∞

2n

n!
= 0.

Proof: We find that
2n+1/(n+1)!

2n/n!
=

2n+1

2n
n!

(n+1)!
=

2
n+1

.

It is not hard to see that { 2
n+1} converges to zero. The conclusion follows by the lemma.

2.2.5 Exercises
Exercise 2.2.1: Prove Corollary 2.2.4. Hint: Use constant sequences and Lemma 2.2.3.

Exercise 2.2.2: Prove part (ii) of Proposition 2.2.5.

Exercise 2.2.3: Prove that if {xn} is a convergent sequence, k ∈ N, then

lim
n→∞

xk
n =

(
lim
n→∞

xn

)k
.

Hint: Use induction.
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Exercise 2.2.4: Suppose x1 := 1
2 and xn+1 := x2

n. Show that {xn} converges and find lim xn. Hint: You cannot
divide by zero!

Exercise 2.2.5: Let xn := n−cos(n)
n . Use the squeeze lemma to show that {xn} converges and find the limit.

Exercise 2.2.6: Let xn := 1
n2 and yn := 1

n . Define zn := xn
yn

and wn := yn
xn

. Do {zn} and {wn} converge? What
are the limits? Can you apply Proposition 2.2.5? Why or why not?

Exercise 2.2.7: True or false, prove or find a counterexample. If {xn} is a sequence such that {x2
n} converges,

then {xn} converges.

Exercise 2.2.8: Show that

lim
n→∞

n2

2n = 0.

Exercise 2.2.9: Suppose {xn} is a sequence and suppose for some x ∈ R, the limit

L := lim
n→∞

|xn+1− x|
|xn− x|

exists and L < 1. Show that {xn} converges to x.

Exercise 2.2.10 (Challenging): Let {xn} be a convergent sequence such that xn ≥ 0 and k ∈ N. Then

lim
n→∞

x1/k
n =

(
lim
n→∞

xn

)1/k
.

Hint: Find an expression q such that x1/k
n −x1/k

xn−x = 1
q .

Exercise 2.2.11: Let r > 0. Show that starting with any x1 6= 0, the sequence defined by

xn+1 := xn−
x2

n− r
2xn

converges to
√

r if x1 > 0 and −
√

r if x1 < 0.

Exercise 2.2.12: a) Suppose {an} is a bounded sequence and {bn} is a sequence converging to 0. Show that
{anbn} converges to 0.
b) Find an example where {an} is unbounded, {bn} converges to 0, and {anbn} is not convergent.
c) Find an example where {an} is bounded, {bn} converges to some x 6= 0, and {anbn} is not convergent.
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2.3 Limit superior, limit inferior, and Bolzano-Weierstrass
Note: 1–2 lectures, alternative proof of BW optional

In this section we study bounded sequences and their subsequences. In particular we define
the so-called limit superior and limit inferior of a bounded sequence and talk about limits of
subsequences. Furthermore, we prove the Bolzano-Weierstrass theorem∗, which is an indispensable
tool in analysis.

We have seen that every convergent sequence is bounded, although there exist many bounded
divergent sequences. For example, the sequence {(−1)n} is bounded, but it is divergent. All is not
lost however and we can still compute certain limits with a bounded divergent sequence.

2.3.1 Upper and lower limits
There are ways of creating monotone sequences out of any sequence, and in this fashion we get the
so-called limit superior and limit inferior. These limits always exist for bounded sequences.

If a sequence {xn} is bounded, then the set {xk : k ∈ N} is bounded. Then for every n the set
{xk : k ≥ n} is also bounded (as it is a subset).

Definition 2.3.1. Let {xn} be a bounded sequence. Let an := sup{xk : k≥ n} and bn := inf{xk : k≥
n}. Define

limsup
n→∞

xn := lim
n→∞

an,

liminf
n→∞

xn := lim
n→∞

bn.

For a bounded sequence, liminf and limsup always exist (see below). It is possible to define
liminf and limsup for unbounded sequences if we allow ∞ and −∞. It is not hard to generalize
the following results to include unbounded sequences, however, we first restrict our attention to
bounded ones.

Proposition 2.3.2. Let {xn} be a bounded sequence. Let an and bn be as in the definition above.

(i) The sequence {an} is bounded monotone decreasing and {bn} is bounded monotone increas-
ing. In particular, liminfxn and limsupxn exist.

(ii) limsup
n→∞

xn = inf{an : n ∈ N} and liminf
n→∞

xn = sup{bn : n ∈ N}.

(iii) liminf
n→∞

xn ≤ limsup
n→∞

xn.

Proof. Let us see why {an} is a decreasing sequence. As an is the least upper bound for {xk : k≥ n},
it is also an upper bound for the subset {xk : k≥ (n+1)}. Therefore an+1, the least upper bound for

∗Named after the Czech mathematician Bernhard Placidus Johann Nepomuk Bolzano (1781 – 1848), and the
German mathematician Karl Theodor Wilhelm Weierstrass (1815 – 1897).

http://en.wikipedia.org/wiki/Bernard_Bolzano
http://en.wikipedia.org/wiki/Karl_Weierstrass
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{xk : k ≥ (n+1)}, has to be less than or equal to an, that is, an ≥ an+1. Similarly (an exercise), bn
is an increasing sequence. It is left as an exercise to show that if xn is bounded, then an and bn must
be bounded.

The second item in the proposition follows as the sequences {an} and {bn} are monotone.
For the third item, we note that bn≤ an, as the inf of a set is less than or equal to its sup. We know

that {an} and {bn} converge to the limsup and the liminf (respectively). We apply Lemma 2.2.3 to
obtain

lim
n→∞

bn ≤ lim
n→∞

an.

Example 2.3.3: Let {xn} be defined by

xn :=

{
n+1

n if n is odd,
0 if n is even.

Let us compute the liminf and limsup of this sequence. First the limit inferior:

liminf
n→∞

xn = lim
n→∞

(inf{xk : k ≥ n}) = lim
n→∞

0 = 0.

For the limit superior we write

limsup
n→∞

xn = lim
n→∞

(sup{xk : k ≥ n}) .

It is not hard to see that

sup{xk : k ≥ n}=

{
n+1

n if n is odd,
n+2
n+1 if n is even.

We leave it to the reader to show that the limit is 1. That is,

limsup
n→∞

xn = 1.

Do note that the sequence {xn} is not a convergent sequence.

We associate with limsup and liminf certain subsequences.

Theorem 2.3.4. If {xn} is a bounded sequence, then there exists a subsequence {xnk} such that

lim
k→∞

xnk = limsup
n→∞

xn.

Similarly, there exists a (perhaps different) subsequence {xmk} such that

lim
k→∞

xmk = liminf
n→∞

xn.
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Proof. Define an := sup{xk : k ≥ n}. Write x := limsup xn = lim an. Define the subsequence as
follows. Pick n1 := 1 and work inductively. Suppose we have defined the subsequence until nk for
some k. Now pick some m > nk such that

a(nk+1)− xm <
1

k+1
.

We can do this as a(nk+1) is a supremum of the set {xn : n≥ nk +1} and hence there are elements
of the sequence arbitrarily close (or even possibly equal) to the supremum. Set nk+1 := m. The
subsequence {xnk} is defined. Next we need to prove that it converges and has the right limit.

Note that a(nk−1+1) ≥ ank (why?) and that ank ≥ xnk . Therefore, for every k > 1 we have

|ank− xnk |= ank− xnk

≤ a(nk−1+1)− xnk

<
1
k
.

Let us show that {xnk} converges to x. Note that the subsequence need not be monotone. Let
ε > 0 be given. As {an} converges to x, then the subsequence {ank} converges to x. Thus there
exists an M1 ∈ N such that for all k ≥M1 we have

|ank− x|< ε

2
.

Find an M2 ∈ N such that
1

M2
≤ ε

2
.

Take M := max{M1,M2} and compute. For all k ≥M we have

|x− xnk |= |ank− xnk + x−ank |
≤ |ank− xnk |+ |x−ank |

<
1
k
+

ε

2

≤ 1
M2

+
ε

2
≤ ε

2
+

ε

2
= ε.

We leave the statement for liminf as an exercise.

2.3.2 Using limit inferior and limit superior
The advantage of liminf and limsup is that we can always write them down for any (bounded)
sequence. If we could somehow compute them, we could also compute the limit of the sequence
if it exists, or show that the sequence diverges. Working with liminf and limsup is a little bit like
working with limits, although there are subtle differences.
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Theorem 2.3.5. Let {xn} be a bounded sequence. Then {xn} converges if and only if

liminf
n→∞

xn = limsup
n→∞

xn.

Furthermore, if {xn} converges, then

lim
n→∞

xn = liminf
n→∞

xn = limsup
n→∞

xn.

Proof. Define an and bn as in Definition 2.3.1. Note that

bn ≤ xn ≤ an.

If liminf xn = limsup xn, then we know that {an} and {bn} have limits and that these two limits are
the same. By the squeeze lemma (Lemma 2.2.1), {xn} converges and

lim
n→∞

bn = lim
n→∞

xn = lim
n→∞

an.

Now suppose {xn} converges to x. We know by Theorem 2.3.4 that there exists a subsequence
{xnk} that converges to limsup xn. As {xn} converges to x, every subsequence converges to x and
therefore limsup xn = lim xnk = x. Similarly liminf xn = x.

Limit superior and limit inferior behave nicely with subsequences.

Proposition 2.3.6. Suppose {xn} is a bounded sequence and {xnk} is a subsequence. Then

liminf
n→∞

xn ≤ liminf
k→∞

xnk ≤ limsup
k→∞

xnk ≤ limsup
n→∞

xn.

Proof. The middle inequality has been proved already. We will prove the third inequality, and leave
the first inequality as an exercise.

We want to prove that limsup xnk ≤ limsup xn. Define a j := sup{xk : k ≥ j} as usual. Also
define c j := sup{xnk : k ≥ j}. It is not true that c j is necessarily a subsequence of a j. However, as
nk ≥ k for all k, we have that {xnk : k ≥ j} ⊂ {xk : k ≥ j}. A supremum of a subset is less than or
equal to the supremum of the set and therefore

c j ≤ a j.

We apply Lemma 2.2.3 to conclude
lim
j→∞

c j ≤ lim
j→∞

a j,

which is the desired conclusion.
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Limit superior and limit inferior are the largest and smallest subsequential limits. If the
subsequence in the previous proposition is convergent, then we have that liminf xnk = lim xnk =
limsup xnk . Therefore,

liminf
n→∞

xn ≤ lim
k→∞

xnk ≤ limsup
n→∞

xn.

Similarly we get the following useful test for convergence of a bounded sequence. We leave the
proof as an exercise.

Theorem 2.3.7. A bounded sequence {xn} is convergent and converges to x if and only if every
convergent subsequence {xnk} converges to x.

2.3.3 Bolzano-Weierstrass theorem
While it is not true that a bounded sequence is convergent, the Bolzano-Weierstrass theorem tells us
that we can at least find a convergent subsequence. The version of Bolzano-Weierstrass that we
present in this section is the Bolzano-Weierstrass for sequences.

Theorem 2.3.8 (Bolzano-Weierstrass). Suppose a sequence {xn} of real numbers is bounded. Then
there exists a convergent subsequence {xni}.

Proof. We use Theorem 2.3.4. It says that there exists a subsequence whose limit is limsup xn.

The reader might complain right now that Theorem 2.3.4 is strictly stronger than the Bolzano-
Weierstrass theorem as presented above. That is true. However, Theorem 2.3.4 only applies to the
real line, but Bolzano-Weierstrass applies in more general contexts (that is, in Rn) with pretty much
the exact same statement.

As the theorem is so important to analysis, we present an explicit proof. The following proof
generalizes more easily to different contexts.

Alternate proof of Bolzano-Weierstrass. As the sequence is bounded, then there exist two numbers
a1 < b1 such that a1 ≤ xn ≤ b1 for all n ∈ N.

We will define a subsequence {xni} and two sequences {ai} and {bi}, such that {ai} is monotone
increasing, {bi} is monotone decreasing, ai ≤ xni ≤ bi and such that lim ai = lim bi. That xni

converges follows by the squeeze lemma.
We define the sequences inductively. We will always have that ai < bi, and that xn ∈ [ai,bi] for

infinitely many n ∈ N. We have already defined a1 and b1. We take n1 := 1, that is xn1 = x1.
Now suppose that up to some k ∈ N we have defined the subsequence xn1 ,xn2 , . . . ,xnk , and

the sequences a1,a2, . . . ,ak and b1,b2, . . . ,bk. Let y := ak+bk
2 . Clearly ak < y < bk. If there exist

infinitely many j ∈ N such that x j ∈ [ak,y], then set ak+1 := ak, bk+1 := y, and pick nk+1 > nk such
that xnk+1 ∈ [ak,y]. If there are not infinitely many j such that x j ∈ [ak,y], then it must be true that
there are infinitely many j ∈ N such that x j ∈ [y,bk]. In this case pick ak+1 := y, bk+1 := bk, and
pick nk+1 > nk such that xnk+1 ∈ [y,bk].
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Now we have the sequences defined. What is left to prove is that lim ai = lim bi. Obviously the
limits exist as the sequences are monotone. From the construction, it is obvious that bi−ai is cut in
half in each step. Therefore bi+1−ai+1 =

bi−ai
2 . By induction, we obtain that

bi−ai =
b1−a1

2i−1 .

Let x := lim ai. As {ai} is monotone we have that

x = sup{ai : i ∈ N}

Now let y := lim bi = inf{bi : i ∈ N}. Obviously y ≤ x as ai < bi for all i. As the sequences are
monotone, then for any i we have (why?)

y− x≤ bi−ai =
b1−a1

2i−1 .

As b1−a1
2i−1 is arbitrarily small and y− x ≥ 0, we have that y− x = 0. We finish by the squeeze

lemma.

Yet another proof of the Bolzano-Weierstrass theorem is to show the following claim, which is
left as a challenging exercise. Claim: Every sequence has a monotone subsequence.

2.3.4 Infinite limits
If we allow liminf and limsup to take on the values ∞ and −∞, we can apply liminf and limsup to
all sequences, not just bounded ones. For any sequence, we write

limsup xn := inf{an : n ∈ N}, and liminf xn := sup{bn : n ∈ N},

where an := sup{xk : k ≥ n} and bn := inf{xk : k ≥ n} as before.
We also often define infinite limits for certain divergent sequences.

Definition 2.3.9. We say {xn} diverges to infinity∗ if for every M ∈ R, there exists an N ∈ N such
that for all n≥ N we have xn > M. In this case we write lim xn := ∞. Similarly if for every M ∈ R
there exists an N ∈N such that for all n≥ N we have xn < M, we say {xn} diverges to minus infinity
and we write lim xn :=−∞.

This definition behaves as expected with limsup and liminf, see exercises 2.3.13 and 2.3.14.

Example 2.3.10: If xn := 0 for odd n and xn := n for even n then

lim
n→∞

n = ∞, lim
n→∞

xn does not exist, limsup
n→∞

xn = ∞.

∗Sometimes it is said that {xn} converges to infinity.



70 CHAPTER 2. SEQUENCES AND SERIES

2.3.5 Exercises
Exercise 2.3.1: Suppose {xn} is a bounded sequence. Define an and bn as in Definition 2.3.1. Show that
{an} and {bn} are bounded.

Exercise 2.3.2: Suppose {xn} is a bounded sequence. Define bn as in Definition 2.3.1. Show that {bn} is an
increasing sequence.

Exercise 2.3.3: Finish the proof of Proposition 2.3.6. That is, suppose {xn} is a bounded sequence and {xnk}
is a subsequence. Prove liminf

n→∞
xn ≤ liminf

k→∞

xnk .

Exercise 2.3.4: Prove Theorem 2.3.7.

Exercise 2.3.5: a) Let xn :=
(−1)n

n
, find limsup xn and liminf xn.

b) Let xn :=
(n−1)(−1)n

n
, find limsup xn and liminf xn.

Exercise 2.3.6: Let {xn} and {yn} be bounded sequences such that xn ≤ yn for all n. Then show that

limsup
n→∞

xn ≤ limsup
n→∞

yn

and
liminf

n→∞
xn ≤ liminf

n→∞
yn.

Exercise 2.3.7: Let {xn} and {yn} be bounded sequences.

a) Show that {xn + yn} is bounded.

b) Show that
(liminf

n→∞
xn)+(liminf

n→∞
yn)≤ liminf

n→∞
(xn + yn).

Hint: Find a subsequence {xni + yni} of {xn + yn} that converges. Then find a subsequence {xnmi
} of

{xni} that converges. Then apply what you know about limits.

c) Find an explicit {xn} and {yn} such that

(liminf
n→∞

xn)+(liminf
n→∞

yn)< liminf
n→∞

(xn + yn).

Hint: Look for examples that do not have a limit.

Exercise 2.3.8: Let {xn} and {yn} be bounded sequences (from the previous exercise we know that {xn +yn}
is bounded).

a) Show that
(limsup

n→∞

xn)+(limsup
n→∞

yn)≥ limsup
n→∞

(xn + yn).

Hint: See previous exercise.

b) Find an explicit {xn} and {yn} such that

(limsup
n→∞

xn)+(limsup
n→∞

yn)> limsup
n→∞

(xn + yn).

Hint: See previous exercise.
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Exercise 2.3.9: If S⊂R is a set, then x ∈R is a cluster point if for every ε > 0, the set (x−ε,x+ε)∩S\{x}
is not empty. That is, if there are points of S arbitrarily close to x. For example, S := {1/n : n ∈ N} has a
unique (only one) cluster point 0, but 0 /∈ S. Prove the following version of the Bolzano-Weierstrass theorem:

Theorem. Let S⊂ R be a bounded infinite set, then there exists at least one cluster point of S.

Hint: If S is infinite, then S contains a countably infinite subset. That is, there is a sequence {xn} of
distinct numbers in S.

Exercise 2.3.10 (Challenging): a) Prove that any sequence contains a monotone subsequence. Hint: Call
n ∈ N a peak if am ≤ an for all m≥ n. There are two possibilities: either the sequence has at most finitely
many peaks, or it has infinitely many peaks.
b) Conclude the Bolzano-Weierstrass theorem.

Exercise 2.3.11: Let us prove a stronger version of Theorem 2.3.7. Suppose {xn} is a sequence such that
every subsequence {xni} has a subsequence {xnmi

} that converges to x. a) First show that {xn} is bounded.
b) Now show that {xn} converges to x.

Exercise 2.3.12: Let {xn} be a bounded sequence.
a) Prove that there exists an s such that for any r > s there exists an M ∈ N such that for all n≥M we have
xn < r.
b) If s is a number as in a), then prove limsup xn ≤ s.
c) Show that if S is the set of all s as in a), then limsup xn = inf S.

Exercise 2.3.13 (Easy): Suppose {xn} is such that liminf xn =−∞, limsup xn = ∞. a) Show that {xn} is not
convergent, and also that neither lim xn = ∞ nor lim xn =−∞ is true. b) Find an example of such a sequence.

Exercise 2.3.14: Given a sequence {xn}. a) Show that lim xn = ∞ if and only if liminf xn = ∞. b) Then show
that lim xn =−∞ if and only if limsup xn =−∞. c) If {xn} is monotone increasing, show that either lim xn

exists and is finite or lim xn = ∞.
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2.4 Cauchy sequences
Note: 0.5–1 lecture

Often we wish to describe a certain number by a sequence that converges to it. In this case, it is
impossible to use the number itself in the proof that the sequence converges. It would be nice if we
could check for convergence without knowing the limit.

Definition 2.4.1. A sequence {xn} is a Cauchy sequence∗ if for every ε > 0 there exists an M ∈ N
such that for all n≥M and all k ≥M we have

|xn− xk|< ε.

Intuitively what it means is that the terms of the sequence are eventually arbitrarily close to each
other. We would expect such a sequence to be convergent. It turns out that is true because R has the
least-upper-bound property. First, let us look at some examples.

Example 2.4.2: The sequence {1/n} is a Cauchy sequence.
Proof: Given ε > 0, find M such that M > 2/ε. Then for n,k ≥M we have that 1/n < ε/2 and

1/k < ε/2. Therefore for n,k ≥M we have∣∣∣∣1n − 1
k

∣∣∣∣≤ ∣∣∣∣1n
∣∣∣∣+ ∣∣∣∣1k

∣∣∣∣< ε

2
+

ε

2
= ε.

Example 2.4.3: The sequence {n+1
n } is a Cauchy sequence.

Proof: Given ε > 0, find M such that M > 2/ε. Then for n,k ≥M we have that 1/n < ε/2 and
1/k < ε/2. Therefore for n,k ≥M we have∣∣∣∣n+1

n
− k+1

k

∣∣∣∣= ∣∣∣∣k(n+1)−n(k+1)
nk

∣∣∣∣
=

∣∣∣∣kn+ k−nk−n
nk

∣∣∣∣
=

∣∣∣∣k−n
nk

∣∣∣∣
≤
∣∣∣∣ k
nk

∣∣∣∣+ ∣∣∣∣−n
nk

∣∣∣∣
=

1
n
+

1
k
<

ε

2
+

ε

2
= ε.

Proposition 2.4.4. A Cauchy sequence is bounded.
∗Named after the French mathematician Augustin-Louis Cauchy (1789–1857).

http://en.wikipedia.org/wiki/Cauchy
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Proof. Suppose {xn} is Cauchy. Pick M such that for all n,k ≥ M we have |xn− xk| < 1. In
particular, we have that for all n≥M

|xn− xM|< 1.

Or by the reverse triangle inequality, |xn|− |xM| ≤ |xn− xM|< 1. Hence for n≥M we have

|xn|< 1+ |xM| .

Let
B := max{|x1| , |x2| , . . . , |xM−1| ,1+ |xM|}.

Then |xn| ≤ B for all n ∈ N.

Theorem 2.4.5. A sequence of real numbers is Cauchy if and only if it converges.

Proof. Let ε > 0 be given and suppose {xn} converges to x. Then there exists an M such that for
n≥M we have

|xn− x|< ε

2
.

Hence for n≥M and k ≥M we have

|xn− xk|= |xn− x+ x− xk| ≤ |xn− x|+ |x− xk|<
ε

2
+

ε

2
= ε.

Alright, that direction was easy. Now suppose {xn} is Cauchy. We have shown that {xn} is
bounded. If we show that

liminf
n→∞

xn = limsup
n→∞

xn,

then {xn} must be convergent by Theorem 2.3.5. Assuming that liminf and limsup exist is where
we use the least-upper-bound property.

Define a := limsup xn and b := liminf xn. By Theorem 2.3.7, there exist subsequences {xni}
and {xmi}, such that

lim
i→∞

xni = a and lim
i→∞

xmi = b.

Given an ε > 0, there exists an M1 such that for all i≥M1 we have |xni−a|< ε/3 and an M2 such
that for all i≥M2 we have |xmi−b|< ε/3. There also exists an M3 such that for all n,k ≥M3 we
have |xn− xk| < ε/3. Let M := max{M1,M2,M3}. Note that if i ≥ M, then ni ≥ M and mi ≥ M.
Hence

|a−b|= |a− xni + xni− xmi + xmi−b|
≤ |a− xni|+ |xni− xmi|+ |xmi−b|

<
ε

3
+

ε

3
+

ε

3
= ε.

As |a−b|< ε for all ε > 0, then a = b and the sequence converges.
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Remark 2.4.6. The statement of this proposition is sometimes used to define the completeness
property of the real numbers. We say a set is Cauchy-complete (or sometimes just complete) if every
Cauchy sequence converges. Above we proved that as R has the least-upper-bound property, then R
is Cauchy-complete. We can “complete” Q by “throwing in” just enough points to make all Cauchy
sequences converge (we omit the details). The resulting field has the least-upper-bound property.
The advantage of using Cauchy sequences to define completeness is that this idea generalizes to
more abstract settings.

It should be noted that the Cauchy criterion is stronger than just |xn+1− xn| (or
∣∣xn+ j− xn

∣∣ for a
fixed j) going to zero as n goes to infinity. In fact, when we get to the partial sums of the harmonic
series (see Example 2.5.9 in the next section), we will have a sequence such that xn+1− xn = 1/n,
yet {xn} is divergent. In fact, for that sequence it is true that limn→∞

∣∣xn+ j− xn
∣∣= 0 for any j ∈ N

(confer Exercise 2.5.12). The key point in the definition of Cauchy is that n and k vary independently
and can be arbitrarily far apart.

2.4.1 Exercises
Exercise 2.4.1: Prove that {n2−1

n2 } is Cauchy using directly the definition of Cauchy sequences.

Exercise 2.4.2: Let {xn} be a sequence such that there exists a 0 <C < 1 such that

|xn+1− xn| ≤C |xn− xn−1| .

Prove that {xn} is Cauchy. Hint: You can freely use the formula (for C 6= 1)

1+C+C2 + · · ·+Cn =
1−Cn+1

1−C
.

Exercise 2.4.3 (Challenging): Suppose F is an ordered field that contains the rational numbers Q, such that
Q is dense, that is: whenever x,y ∈ F are such that x < y, then there exists a q ∈Q such that x < q < y. Say
a sequence {xn}∞

n=1 of rational numbers is Cauchy if given any ε ∈Q with ε > 0, there exists an M such that
for all n,k ≥M we have |xn− xk|< ε . Suppose any Cauchy sequence of rational numbers has a limit in F.
Prove that F has the least-upper-bound property.

Exercise 2.4.4: Let {xn} and {yn} be sequences such that lim yn = 0. Suppose that for all k ∈ N and for all
m≥ k we have

|xm− xk| ≤ yk.

Show that {xn} is Cauchy.

Exercise 2.4.5: Suppose a Cauchy sequence {xn} is such that for every M ∈ N, there exists a k ≥M and an
n≥M such that xk < 0 and xn > 0. Using simply the definition of a Cauchy sequence and of a convergent
sequence, show that the sequence converges to 0.

Exercise 2.4.6: Suppose |xn− xk| ≤ n/k2 for all n and k. Show that {xn} is Cauchy.
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Exercise 2.4.7: Suppose {xn} is a Cauchy sequence such that for infinitely many n, xn = c. Using only the
definition of Cauchy sequence prove that lim xn = c.

Exercise 2.4.8: True/False prove or find a counterexample: If {xn} is a Cauchy sequence then there exists
an M such that for all n≥M we have |xn+1− xn| ≤ |xn− xn−1|.
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2.5 Series
Note: 2 lectures

A fundamental object in mathematics is that of a series. In fact, when foundations of analysis
were being developed, the motivation was to understand series. Understanding series is very
important in applications of analysis. For example, solving differential equations often includes
series, and differential equations are the basis for understanding almost all of modern science.

2.5.1 Definition
Definition 2.5.1. Given a sequence {xn}, we write the formal object

∞

∑
n=1

xn or sometimes just ∑xn

and call it a series. A series converges, if the sequence {sk} defined by

sk :=
k

∑
n=1

xn = x1 + x2 + · · ·+ xk,

converges. The numbers sk are called partial sums. If x := lim sk, we write
∞

∑
n=1

xn = x.

In this case, we cheat a little and treat ∑
∞
n=1 xn as a number.

On the other hand, if the sequence {sk} diverges, we say the series is divergent. In this case,
∑xn is simply a formal object and not a number.

In other words, for a convergent series we have

∞

∑
n=1

xn = lim
k→∞

k

∑
n=1

xn.

We should be careful to only use this equality if the limit on the right actually exists. That is, the
right-hand side does not make sense (the limit does not exist) if the series does not converge.

Remark 2.5.2. Before going further, let us remark that it is sometimes convenient to start the series
at an index different from 1. That is, for example we can write

∞

∑
n=0

rn =
∞

∑
n=1

rn−1.

The left-hand side is more convenient to write. The idea is the same as the notation for the tail of a
sequence.
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Remark 2.5.3. It is common to write the series ∑xn as

x1 + x2 + x3 + · · ·

with the understanding that the ellipsis indicates a series and not a simple sum. We do not use this
notation as it often leads to mistakes in proofs.

Example 2.5.4: The series
∞

∑
n=1

1
2n

converges and the limit is 1. That is,

∞

∑
n=1

1
2n = lim

k→∞

k

∑
n=1

1
2n = 1.

Proof: First we prove the following equality(
k

∑
n=1

1
2n

)
+

1
2k = 1.

The equality is easy to see when k = 1. The proof for general k follows by induction, which we
leave to the reader. Let sk be the partial sum. We write

|1− sk|=

∣∣∣∣∣1− k

∑
n=1

1
2n

∣∣∣∣∣=
∣∣∣∣ 1
2k

∣∣∣∣= 1
2k .

The sequence { 1
2k } and therefore {|1− sk|} converges to zero. So, {sk} converges to 1.

For −1 < r < 1, the geometric series
∞

∑
n=0

rn

converges. In fact, ∑
∞
n=0 rn = 1

1−r . The proof is left as an exercise to the reader. The proof consists
of showing

k−1

∑
n=0

rn =
1− rk

1− r
,

and then taking the limit as k goes to ∞.
A fact we often use is the following analogue of looking at the tail of a sequence.

Proposition 2.5.5. Let ∑xn be a series. Let M ∈ N. Then

∞

∑
n=1

xn converges if and only if
∞

∑
n=M

xn converges.
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Proof. We look at partial sums of the two series (for k ≥M)

k

∑
n=1

xn =

(
M−1

∑
n=1

xn

)
+

k

∑
n=M

xn.

Note that ∑
M−1
n=1 xn is a fixed number. Now use Proposition 2.2.5 to finish the proof.

2.5.2 Cauchy series
Definition 2.5.6. A series ∑xn is said to be Cauchy or a Cauchy series, if the sequence of partial
sums {sn} is a Cauchy sequence.

A sequence of real numbers converges if and only if it is Cauchy. Therefore a series is convergent
if and only if it is Cauchy.

The series ∑xn is Cauchy if for every ε > 0, there exists an M ∈ N, such that for every n≥M
and k ≥M we have ∣∣∣∣∣

(
k

∑
j=1

x j

)
−

(
n

∑
j=1

x j

)∣∣∣∣∣< ε.

Without loss of generality we assume n < k. Then we write∣∣∣∣∣
(

k

∑
j=1

x j

)
−

(
n

∑
j=1

x j

)∣∣∣∣∣=
∣∣∣∣∣ k

∑
j=n+1

x j

∣∣∣∣∣< ε.

We have proved the following simple proposition.

Proposition 2.5.7. The series ∑xn is Cauchy if for every ε > 0, there exists an M ∈ N such that for
every n≥M and every k > n we have ∣∣∣∣∣ k

∑
j=n+1

x j

∣∣∣∣∣< ε.

2.5.3 Basic properties
Proposition 2.5.8. Let ∑xn be a convergent series. Then the sequence {xn} is convergent and

lim
n→∞

xn = 0.

Proof. Let ε > 0 be given. As ∑xn is convergent, it is Cauchy. Thus we find an M such that for
every n≥M we have

ε >

∣∣∣∣∣ n+1

∑
j=n+1

x j

∣∣∣∣∣= |xn+1| .

Hence for every n≥M+1 we have |xn|< ε .
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So if a series converges, the terms of the series go to zero. The implication, however, goes only
one way. Let us give an example.

Example 2.5.9: The series ∑
1
n diverges (despite the fact that lim 1

n = 0). This is the famous
harmonic series∗.

Proof: We will show that the sequence of partial sums is unbounded, and hence cannot converge.
Write the partial sums sn for n = 2k as:

s1 = 1,

s2 = (1)+
(

1
2

)
,

s4 = (1)+
(

1
2

)
+

(
1
3
+

1
4

)
,

s8 = (1)+
(

1
2

)
+

(
1
3
+

1
4

)
+

(
1
5
+

1
6
+

1
7
+

1
8

)
,

...

s2k = 1+
k

∑
j=1

(
2 j

∑
m=2 j−1+1

1
m

)
.

We note that 1/3+ 1/4 ≥ 1/4+ 1/4 = 1/2 and 1/5+ 1/6+ 1/7+ 1/8 ≥ 1/8+ 1/8+ 1/8+ 1/8 = 1/2. More
generally

2k

∑
m=2k−1+1

1
m
≥

2k

∑
m=2k−1+1

1
2k = (2k−1)

1
2k =

1
2
.

Therefore

s2k = 1+
k

∑
j=1

(
2k

∑
m=2k−1+1

1
m

)
≥ 1+

k

∑
j=1

1
2
= 1+

k
2
.

As { k
2} is unbounded by the Archimedean property, that means that {s2k} is unbounded, and

therefore {sn} is unbounded. Hence {sn} diverges, and consequently ∑
1
n diverges.

Convergent series are linear. That is, we can multiply them by constants and add them and these
operations are done term by term.

Proposition 2.5.10 (Linearity of series). Let α ∈ R and ∑xn and ∑yn be convergent series. Then

(i) ∑αxn is a convergent series and
∞

∑
n=1

αxn = α

∞

∑
n=1

xn.

∗The divergence of the harmonic series was known before the theory of series was made rigorous. In fact the proof
we give is the earliest proof and was given by Nicole Oresme (1323?–1382).

http://en.wikipedia.org/wiki/Oresme
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(ii) ∑(xn + yn) is a convergent series and

∞

∑
n=1

(xn + yn) =

(
∞

∑
n=1

xn

)
+

(
∞

∑
n=1

yn

)
.

Proof. For the first item, we simply write the kth partial sum

k

∑
n=1

αxn = α

(
k

∑
n=1

xn

)
.

We look at the right-hand side and note that the constant multiple of a convergent sequence is
convergent. Hence, we simply take the limit of both sides to obtain the result.

For the second item we also look at the kth partial sum

k

∑
n=1

(xn + yn) =

(
k

∑
n=1

xn

)
+

(
k

∑
n=1

yn

)
.

We look at the right-hand side and note that the sum of convergent sequences is convergent. Hence,
we simply take the limit of both sides to obtain the proposition.

Note that multiplying series is not as simple as adding, see the next section. It is not true, of
course, that we can multiply term by term, since that strategy does not work even for finite sums.
For example, (a+b)(c+d) 6= ac+bd.

2.5.4 Absolute convergence
Since monotone sequences are easier to work with than arbitrary sequences, it is generally easier
to work with series ∑xn where xn ≥ 0 for all n. Then the sequence of partial sums is mono-
tone increasing and converges if it is bounded from above. Let us formalize this statement as a
proposition.

Proposition 2.5.11. If xn ≥ 0 for all n, then ∑xn converges if and only if the sequence of partial
sums is bounded from above.

As the limit of a monotone increasing sequence is the supremum, have the inequality

k

∑
n=1

xn ≤
∞

∑
n=1

xn.

The following criterion often gives a convenient way to test for convergence of a series.

Definition 2.5.12. A series ∑xn converges absolutely if the series ∑ |xn| converges. If a series
converges, but does not converge absolutely, we say it is conditionally convergent.
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Proposition 2.5.13. If the series ∑xn converges absolutely, then it converges.

Proof. A series is convergent if and only if it is Cauchy. Hence suppose ∑ |xn| is Cauchy. That is,
for every ε > 0, there exists an M such that for all k ≥M and n > k we have

n

∑
j=k+1

∣∣x j
∣∣= ∣∣∣∣∣ n

∑
j=k+1

∣∣x j
∣∣∣∣∣∣∣< ε.

We apply the triangle inequality for a finite sum to obtain∣∣∣∣∣ n

∑
j=k+1

x j

∣∣∣∣∣≤ n

∑
j=k+1

∣∣x j
∣∣< ε.

Hence ∑xn is Cauchy and therefore it converges.

Of course, if ∑xn converges absolutely, the limits of ∑xn and ∑ |xn| are different. Computing
one does not help us compute the other.

Absolutely convergent series have many wonderful properties. For example, absolutely conver-
gent series can be rearranged arbitrarily, or we can multiply such series together easily. Conditionally
convergent series on the other hand do not often behave as one would expect. See the next section.

We leave as an exercise to show that
∞

∑
n=1

(−1)n

n

converges, although the reader should finish this section before trying. On the other hand we proved

∞

∑
n=1

1
n

diverges. Therefore ∑
(−1)n

n is a conditionally convergent subsequence.

2.5.5 Comparison test and the p-series
We have noted above that for a series to converge the terms not only have to go to zero, but they
have to go to zero “fast enough.” If we know about convergence of a certain series we can use the
following comparison test to see if the terms of another series go to zero “fast enough.”

Proposition 2.5.14 (Comparison test). Let ∑xn and ∑yn be series such that 0 ≤ xn ≤ yn for all
n ∈ N.

(i) If ∑yn converges, then so does ∑xn.

(ii) If ∑xn diverges, then so does ∑yn.
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Proof. Since the terms of the series are all nonnegative, the sequences of partial sums are both
monotone increasing. Since xn ≤ yn for all n, the partial sums satisfy for all k

k

∑
n=1

xn ≤
k

∑
n=1

yn. (2.1)

If the series ∑yn converges the partial sums for the series are bounded. Therefore the right-hand
side of (2.1) is bounded for all k. Hence the partial sums for ∑xn are also bounded. Since the partial
sums are a monotone increasing sequence they are convergent. The first item is thus proved.

On the other hand if ∑xn diverges, the sequence of partial sums must be unbounded since it is
monotone increasing. That is, the partial sums for ∑xn are eventually bigger than any real number.
Putting this together with (2.1) we see that for any B ∈ R, there is a k such that

B≤
k

∑
n=1

xn ≤
k

∑
n=1

yn.

Hence the partial sums for ∑yn are also unbounded, and ∑yn also diverges.

A useful series to use with the comparison test is the p-series.

Proposition 2.5.15 (p-series or the p-test). For p ∈ R, the series
∞

∑
n=1

1
np

converges if and only if p > 1.

Proof. First suppose p ≤ 1. As n ≥ 1, we have 1
np ≥ 1

n . Since ∑
1
n diverges, we see that the ∑

1
np

must diverge for all p≤ 1 by the comparison test.
Now suppose p > 1. We proceed in a similar fashion as we did in the case of the harmonic series,

but instead of showing that the sequence of partial sums is unbounded we show that it is bounded.
Since the terms of the series are positive, the sequence of partial sums is monotone increasing and
will converge if we show that it is bounded above. Let sn denote the nth partial sum.

s1 = 1,

s3 = (1)+
(

1
2p +

1
3p

)
,

s7 = (1)+
(

1
2p +

1
3p

)
+

(
1
4p +

1
5p +

1
6p +

1
7p

)
,

...

s2k−1 = 1+
k−1

∑
j=1

(
2 j+1−1

∑
m=2 j

1
mp

)
.
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Instead of estimating from below, we estimate from above. In particular, as p is positive, then
2p < 3p, and hence 1

2p +
1

3p <
1

2p +
1

2p . Similarly 1
4p +

1
5p +

1
6p +

1
7p <

1
4p +

1
4p +

1
4p +

1
4p . Therefore

s2k−1 = 1+
k

∑
j=1

(
2 j+1−1

∑
m=2 j

1
mp

)

< 1+
k

∑
j=1

(
2 j+1−1

∑
m=2 j

1
(2 j)p

)

= 1+
k

∑
j=1

(
2 j

(2 j)p

)

= 1+
k

∑
j=1

(
1

2p−1

) j

.

As p > 1, then 1
2p−1 < 1. Then by using the result of Exercise 2.5.2, we note that

∞

∑
j=1

(
1

2p−1

) j

converges. Therefore

s2k−1 < 1+
k

∑
j=1

(
1

2p−1

) j

≤ 1+
∞

∑
j=1

(
1

2p−1

) j

.

As {sn} is a monotone sequence, then all sn ≤ s2k−1 for all n≤ 2k−1. Thus for all n,

sn < 1+
∞

∑
j=1

(
1

2p−1

) j

.

The sequence of partial sums is bounded and hence converges.

Note that neither the p-series test nor the comparison test tell us what the sum converges to.
They only tell us that a limit of the partial sums exists. For example, while we know that ∑ 1/n2

converges it is far harder to find∗ that the limit is π2/6. If we treat ∑ 1/np as a function of p, we get
the so-called Riemann ζ function. Understanding the behavior of this function contains one of the
most famous unsolved problems in mathematics today and has applications in seemingly unrelated
areas such as modern cryptography.

Example 2.5.16: The series ∑
1

n2+1 converges.
Proof: First note that 1

n2+1 < 1
n2 for all n ∈ N. Note that ∑

1
n2 converges by the p-series test.

Therefore, by the comparison test, ∑
1

n2+1 converges.
∗Demonstration of this fact is what made the Swiss mathematician Leonhard Paul Euler (1707 – 1783) famous.

http://en.wikipedia.org/wiki/Leonhard_Euler
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2.5.6 Ratio test
Proposition 2.5.17 (Ratio test). Let ∑xn be a series such that

L := lim
n→∞

|xn+1|
|xn|

exists. Then

(i) If L < 1, then ∑xn converges absolutely.

(ii) If L > 1, then ∑xn diverges.

Proof. From Lemma 2.2.12 we note that if L > 1, then xn diverges. Since it is a necessary condition
for the convergence of series that the terms go to zero, we know that ∑xn must diverge.

Thus suppose L < 1. We will argue that ∑ |xn| must converge. The proof is similar to that of
Lemma 2.2.12. Of course L≥ 0. Pick r such that L < r < 1. As r−L > 0, there exists an M ∈ N
such that for all n≥M ∣∣∣∣ |xn+1|

|xn|
−L
∣∣∣∣< r−L.

Therefore,
|xn+1|
|xn|

< r.

For n > M (that is for n≥M+1) write

|xn|= |xM|
|xM+1|
|xM|

|xM+2|
|xM+1|

· · · |xn|
|xn−1|

< |xM|rr · · ·r = |xM|rn−M = (|xM|r−M)rn.

For k > M we write the partial sum as

k

∑
n=1
|xn|=

(
M

∑
n=1
|xn|
)
+

(
k

∑
n=M+1

|xn|
)

≤

(
M

∑
n=1
|xn|
)
+

(
k

∑
n=M+1

(|xM|r−M)rn

)

≤

(
M

∑
n=1
|xn|
)
+(|xM|r−M)

(
k

∑
n=M+1

rn

)
.

As 0 < r < 1 the geometric series ∑
∞
n=0 rn converges, so ∑

∞
n=M+1 rn converges as well (why?). We

take the limit as k goes to infinity on the right-hand side above to obtain

k

∑
n=1
|xn| ≤

(
M

∑
n=1
|xn|
)
+(|xM|r−M)

(
k

∑
n=M+1

rn

)

≤

(
M

∑
n=1
|xn|
)
+(|xM|r−M)

(
∞

∑
n=M+1

rn

)
.
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The right-hand side is a number that does not depend on n. Hence the sequence of partial sums of
∑ |xn| is bounded and ∑ |xn| is convergent. Thus ∑xn is absolutely convergent.

Example 2.5.18: The series
∞

∑
n=1

2n

n!

converges absolutely.
Proof: We write

lim
n→∞

2(n+1)/(n+1)!
2n/n!

= lim
n→∞

2
n+1

= 0.

Therefore, the series converges absolutely by the ratio test.

2.5.7 Exercises
Exercise 2.5.1: For r 6= 1, prove

n−1

∑
k=0

rk =
1− rn

1− r
.

Hint: Let s := ∑
n−1
k=0 rk, then compute s(1− r) = s− rs, and solve for s.

Exercise 2.5.2: Prove that for −1 < r < 1 we have
∞

∑
n=0

rn =
1

1− r
.

Hint: Use the previous exercise.

Exercise 2.5.3: Decide the convergence or divergence of the following series.

a)
∞

∑
n=1

3
9n+1

b)
∞

∑
n=1

1
2n−1

c)
∞

∑
n=1

(−1)n

n2

d)
∞

∑
n=1

1
n(n+1)

e)
∞

∑
n=1

ne−n2

Exercise 2.5.4:

a) Prove that if
∞

∑
n=1

xn converges, then
∞

∑
n=1

(x2n + x2n+1) also converges.

b) Find an explicit example where the converse does not hold.

Exercise 2.5.5: For j = 1,2, . . . ,n, let {x j,k}∞
k=1 denote n sequences. Suppose that for each j

∞

∑
k=1

x j,k

is convergent. Then show
n

∑
j=1

(
∞

∑
k=1

x j,k

)
=

∞

∑
k=1

(
n

∑
j=1

x j,k

)
.
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Exercise 2.5.6: Prove the following stronger version of the ratio test: Let ∑xn be a series.

a) If there is an N and a ρ < 1 such that for all n ≥ N we have |xn+1|
|xn| < ρ , then the series converges

absolutely.

b) If there is an N such that for all n≥ N we have |xn+1|
|xn| ≥ 1, then the series diverges.

Exercise 2.5.7 (Challenging): Let {xn} be a decreasing sequence such that ∑xn converges. Show that
lim
n→∞

nxn = 0.

Exercise 2.5.8: Show that
∞

∑
n=1

(−1)n

n
converges. Hint: consider the sum of two subsequent entries.

Exercise 2.5.9:

a) Prove that if ∑xn and ∑yn converge absolutely, then ∑xnyn converges absolutely.

b) Find an explicit example where the converse does not hold.

c) Find an explicit example where all three series are absolutely convergent, are not just finite sums, and
(∑xn)(∑yn) 6= ∑xnyn. That is, show that series are not multiplied term-by-term.

Exercise 2.5.10: Prove the triangle inequality for series, that is if ∑xn converges absolutely then∣∣∣∣∣ ∞

∑
n=1

xn

∣∣∣∣∣≤ ∞

∑
n=1
|xn| .

Exercise 2.5.11: Prove the limit comparison test. That is, prove that if an > 0 and bn > 0 for all n, and

0 < lim
n→∞

an

bn
< ∞,

then either ∑an and ∑bn both converge of both diverge.

Exercise 2.5.12: Let xn = ∑
n
j=1 1/j. Show that for every k we have lim

n→∞
|xn+k− xn|= 0, yet {xn} is not Cauchy.

Exercise 2.5.13: Let sk be the kth partial sum of ∑xn.
a) Suppose that there exists a m ∈ N such that lim

k→∞

smk exists and lim xn = 0. Show that ∑xn converges.

b) Find an example where lim
k→∞

s2k exists and lim xn 6= 0 (and therefore ∑xn diverges).

c) (Challenging) Find an example where lim xn = 0, and there exists a subsequence {sk j} such that lim
j→∞

sk j

exists, but ∑xn still diverges.
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2.6 More on series
Note: up to 2–3 lectures (optional, can safely be skipped or covered partially)

2.6.1 Root test
We have seen the ratio test before. There is one more similar test called the root test. In fact, the
proof of this test is similar and somewhat easier.

Proposition 2.6.1 (Root test). Let ∑xn be a series and let

L := limsup
n→∞

|xn|1/n.

Then

(i) If L < 1 then ∑xn converges absolutely.

(ii) If L > 1 then ∑xn diverges.

Proof. If L > 1, then there exists a subsequence {xnk} such that L = limk→∞ |xnk |
1/nk . Let r be such

that L > r > 1. There exists an M such that for all k ≥M, we have |xnk |
1/nk > r > 1, or in other

words |xnk |> rnk > 1. The subsequence {|xnk |}, and therefore also {|xn|}, cannot possibly converge
to zero, and so the series diverges.

Now suppose L < 1. Pick r such that L < r < 1. By definition of limit supremum, pick M such
that for all n≥M we have

sup{|xk|1/k : k ≥ n}< r.

Therefore, for all n≥M we have

|xn|1/n < r, or in other words |xn|< rn.

Let k > M and let us estimate the kth partial sum

k

∑
n=1
|xn|=

(
M

∑
n=1
|xn|
)
+

(
k

∑
n=M+1

|xn|
)
≤

(
M

∑
n=1
|xn|
)
+

(
k

∑
n=M+1

rn

)
.

As 0 < r < 1, the geometric series ∑
∞
n=M+1 rn converges to rM+1

1−r . As everything is positive we have

k

∑
n=1
|xn| ≤

(
M

∑
n=1
|xn|
)
+

rM+1

1− r
.

Thus the sequence of partial sums of ∑ |xn| is bounded, and so the series converges. Therefore ∑xn
converges absolutely.
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2.6.2 Alternating series test

The tests we have so far only addressed absolute convergence. The following test gives a large
supply of conditionally convergent series.

Proposition 2.6.2 (Alternating series). Let {xn} be a monotone decreasing sequence of positive
real numbers such that lim xn = 0. Then

∞

∑
n=1

(−1)nxn

converges.

Proof. Write sm := ∑
m
k=1 (−1)kxk be the mth partial sum. Then write

s2n =
2n

∑
k=1

(−1)kxk = (−x1 + x2)+ · · ·+(−x2n−1 + x2n) =
n

∑
k=1

(−x2k−1 + x2k).

The sequence {xk} is decreasing and so (−x2k−1 + x2k)≤ 0 for all k. Therefore the subsequence
{s2n} of partial sums is a decreasing sequence. Similarly, (x2k− x2k+1)≥ 0, and so

s2n =−x1 +(x2− x3)+ · · ·+(x2n−2− x2n−1)+ x2n ≥−x1.

The sequence {s2n} is decreasing and bounded below, so it converges. Let a := lim s2n.
We wish to show that lim sm = a (not just for the subsequence). Notice

s2n+1 = s2n + x2n+1.

Given ε > 0, pick M such that |s2n−a|< ε/2 whenever 2n≥M. Since lim xn = 0, we also make M
possibly larger to obtain x2n+1 < ε/2 whenever 2n≥M. If 2n≥M, we have |s2n−a|< ε/2 < ε , so
we just need to check the situation for s2n+1:

|s2n+1−a|= |s2n−a+ x2n+1| ≤ |s2n−a|+ x2n+1 < ε/2+ ε/2 = ε.

In particular, there exist conditionally convergent series where the absolute values of the terms
go to zero arbitrarily slowly. For example,

∞

∑
n=1

(−1)n

np

converges for arbitrarily small p > 0, but it does not converge absolutely when p≤ 1.
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2.6.3 Rearrangements
Generally, absolutely convergent series behave as we imagine they should. For example, absolutely
convergent series can be summed in any order whatsoever. Nothing of the sort holds for conditionally
convergent series (see Example 2.6.4 and Exercise 2.6.3).

Take a series
∞

∑
n=1

xn.

Given a bijective function σ : N→ N, the corresponding rearrangement is the following series:
∞

∑
k=1

xσ(k).

We simply sum the series in a different order.

Proposition 2.6.3. Let ∑xn be an absolutely convergent series converging to a number x. Let
σ : N→ N be a bijection. Then ∑xσ(n) is absolutely convergent and converges to x.

In other words, a rearrangement of an absolutely convergent series converges (absolutely) to the
same number.

Proof. Let ε > 0 be given. Then take M to be such that∣∣∣∣∣
(

M

∑
n=1

xn

)
− x

∣∣∣∣∣< ε

2
and

∞

∑
n=M+1

|xn|<
ε

2
.

As σ is a bijection, there exists a number K such that for each n≤M, there exists k ≤ K such that
σ(k) = n. In other words {1,2, . . . ,M} ⊂ σ

(
{1,2, . . . ,K}

)
.

Then for any N ≥ K, let Q := maxσ({1,2, . . . ,K}) and compute∣∣∣∣∣
(

N

∑
n=1

xσ(n)

)
− x

∣∣∣∣∣=
∣∣∣∣∣∣∣
 M

∑
n=1

xn +
N

∑
n=1

σ(n)>M

xσ(n)

− x

∣∣∣∣∣∣∣
≤

∣∣∣∣∣
(

M

∑
n=1

xn

)
− x

∣∣∣∣∣+ N

∑
n=1

σ(n)>M

∣∣xσ(n)
∣∣

≤

∣∣∣∣∣
(

M

∑
n=1

xn

)
− x

∣∣∣∣∣+ Q

∑
n=M+1

|xn|

< ε/2+ ε/2 = ε.

So ∑xσ(n) converges to x. To see that the convergence is absolute, we apply the above argument to
∑ |xn| to show that ∑

∣∣xσ(n)
∣∣ converges.
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Example 2.6.4: Let us show that the alternating harmonic series ∑
(−1)n+1

n , which does not converge
absolutely, can be rearranged to converge to anything. The odd terms and the even terms both
diverge to infinity (prove this!):

∞

∑
n=1

1
2n−1

= ∞, and
∞

∑
n=1

1
2n

= ∞.

Let an := (−1)n+1

n for simplicity, let an arbitrary number L ∈R be given, and set σ(1) := 1. Suppose
we have defined σ(n) for all n≤ N. If

N

∑
n=1

aσ(n) ≤ L,

then let σ(N +1) := k be the smallest odd k ∈ N that we have not used yet, that is σ(n) 6= k for all
n≤ N. Otherwise let σ(N +1) := k be the smallest even k that we have not yet used.

By construction σ : N→ N is one-to-one. It is also onto, because if we keep adding either odd
(resp. even) terms, eventually we will pass L and switch to the evens (resp. odds). So we switch
infinitely many times.

Finally, let N be the N where we just pass L and switch. For example suppose we have just
switched from odd to even (so we start subtracting), and let N′ > N be where we first switch back
from even to odd. Then

L+
1

σ(N)
≥

N−1

∑
n=1

aσ(n) >
N′−1

∑
n=1

aσ(n) > L− 1
σ(N′)

.

And similarly for switching in the other direction. Therefore, the sum up to N′− 1 is within
1

min{σ(N),σ(N′)} of L. As we switch infinitely many times we obtain that σ(N)→ ∞ and σ(N′)→ ∞,
and hence

∞

∑
n=1

aσ(n) =
∞

∑
n=1

(−1)σ(n)+1

σ(n)
= L.

Here is an example to illustrate the proof. Suppose L = 1.2, then the order is

1+ 1/3− 1/2+ 1/5+ 1/7+ 1/9− 1/4+ 1/11+ 1/13− 1/6+ 1/15+ 1/17+ 1/19− 1/8+ · · · .

At this point we are no more than 1/8 from the limit.

2.6.4 Multiplication of series
As we have already mentioned, multiplication of series is somewhat harder than addition. If we
have that at least one of the series converges absolutely, than we can use the following theorem. For
this result it is convenient to start the series at 0, rather than at 1.
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Theorem 2.6.5 (Mertens’ theorem∗). Suppose ∑
∞
n=0 an and ∑

∞
n=0 bn are two convergent series,

converging to A and B respectively. If at least one of the series converges absolutely, then the series
∑

∞
n=0 cn where

cn = a0bn +a1bn−1 + · · ·+anb0 =
n

∑
j=0

a jbn− j,

converges to AB.

The series ∑cn is called the Cauchy product of ∑an and ∑bn.

Proof. Suppose ∑an converges absolutely, and let ε > 0 be given. In this proof instead of picking
complicated estimates just to make the final estimate come out as less than ε , let us simply obtain
an estimate that depends on ε and can be made arbitrarily small.

Write

Am :=
m

∑
n=0

an, Bm :=
m

∑
n=0

bn.

We rearrange the mth partial sum of ∑cn:∣∣∣∣∣
(

m

∑
n=0

cn

)
−AB

∣∣∣∣∣=
∣∣∣∣∣
(

m

∑
n=0

n

∑
j=0

a jbn− j

)
−AB

∣∣∣∣∣
=

∣∣∣∣∣
(

m

∑
n=0

Bnam−n

)
−AB

∣∣∣∣∣
=

∣∣∣∣∣
(

m

∑
n=0

(Bn−B)am−n

)
+BAm−AB

∣∣∣∣∣
≤

(
m

∑
n=0
|Bn−B| |am−n|

)
+ |B| |Am−A|

We can surely make the second term on the right hand side go to zero. The trick is to handle the
first term. Pick K such that for all m≥ K we have |Am−A|< ε and also |Bm−B|< ε . Finally, as
∑an converges absolutely, make sure that K is large enough such that for all m≥ K,

m

∑
n=K
|an|< ε.

As ∑bn converges, then we have that Bmax := sup{|Bn−B| : n = 0,1,2, . . .} is finite. Take m≥ 2K,

∗Proved by the German mathematician Franz Mertens (1840 – 1927).

http://en.wikipedia.org/wiki/Franz_Mertens
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then in particular m−K +1 > K. So

m

∑
n=0
|Bn−B| |am−n|=

(
m−K

∑
n=0
|Bn−B| |am−n|

)
+

(
m

∑
n=m−K+1

|Bn−B| |am−n|
)

<

(
m

∑
n=K
|an|
)

Bmax +

(
K−1

∑
n=0

ε |an|
)

< εBmax + ε

(
∞

∑
n=0
|an|
)
.

Therefore, for m≥ 2K we have∣∣∣∣∣
(

m

∑
n=0

cn

)
−AB

∣∣∣∣∣≤
(

m

∑
n=0
|Bn−B| |am−n|

)
+ |B| |Am−A|

< εBmax + ε

(
∞

∑
n=0
|an|
)
+ |B|ε = ε

(
Bmax +

(
∞

∑
n=0
|an|
)
+ |B|

)
.

The expression in the parenthesis on the right hand side is a fixed number. Hence, we can make the
right hand side arbitrarily small by picking a small enough ε > 0. So ∑

∞
n=0 cn converges to AB.

Example 2.6.6: If both series are only conditionally convergent, the Cauchy product series need not
even converge. Suppose we take an = bn = (−1)n 1√

n+1
. The series ∑

∞
n=0 an = ∑

∞
n=0 bn converges

by the alternating series test, however, it does not converge absolutely as can be seen from the p-test.
Let us look at the Cauchy product.

cn = (−1)n

(
1√

n+1
+

1√
2n

+
1√

3(n−1)
+ · · ·+ 1√

n+1

)
= (−1)n

n

∑
j=0

1√
( j+1)(n− j+1)

.

Therefore

|cn|=
n

∑
j=0

1√
( j+1)(n− j+1)

≥
n

∑
j=0

1√
(n+1)(n+1)

= 1.

The terms do not go to zero and hence ∑cn cannot converge.

2.6.5 Power series
Fix x0 ∈ R. A power series about x0 is a series of the form

∞

∑
n=0

an(x− x0)
n.
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A power series is really a function of x, and many important functions in analysis can be written as
a power series.

We say that a power series is convergent if there is at least one x 6= x0 that makes the series
converge. Note that it is trivial to see that if x = x0 then the series always converges since all terms
except the first are zero. If the series does not converge for any point x 6= x0, we say that the series
is divergent.

Example 2.6.7: The series
∞

∑
n=0

1
n!

xn

is absolutely convergent for all x ∈ R. This can be seen using the ratio test: For any x notice that

lim
n→∞

(
1/(n+1)!

)
xn+1

(1/n!)xn = lim
n→∞

x
n+1

= 0.

In fact, you may recall from calculus that this series converges to ex.

Example 2.6.8: The series
∞

∑
n=1

1
n

xn

converges absolutely for all x ∈ (−1,1) via the ratio test:

lim
n→∞

∣∣∣∣∣
(
1/(n+1)

)
xn+1

(1/n)xn

∣∣∣∣∣= lim
n→∞
|x| n

n+1
= |x|< 1.

It converges at x =−1, as ∑
∞
n=1

(−1)n

n converges by the alternating series test. But the power series
does not converge absolutely at x =−1, because ∑

∞
n=1

1
n does not converge. The series diverges at

x = 1. When |x|> 1, then the series diverges via the ratio test.

Example 2.6.9: The series
∞

∑
n=1

nnxn

diverges for all x 6= 0. Let us apply the root test

limsup
n→∞

|nnxn|1/n = limsup
n→∞

n |x|= ∞.

Therefore the series diverges for all x 6= 0.

In fact, convergence of power series in general always works analogously to one of the three
examples above.
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Proposition 2.6.10. Let ∑an(x− x0)
n be a power series. If the series is convergent, then either it

converges at all x ∈ R, or there exists a number ρ , such that the series converges absolutely on the
interval (x0−ρ,x0 +ρ) and diverges when x < x0−ρ or x > x0 +ρ .

The number ρ is called the radius of convergence of the power series. We write ρ = ∞ if
the series converges for all x, and we write ρ = 0 if the series is divergent. See Figure 2.5. In
Example 2.6.8 the radius of convergence is ρ = 1. In Example 2.6.7 the radius of convergence is
ρ = ∞, and in Example 2.6.9 the radius of convergence is ρ = 0.

x0 x0 +ρx0−ρ

diverges converges absolutely diverges

Figure 2.5: Convergence of a power series.

Proof. Write
R := limsup

n→∞

|an|1/n.

We use the root test to prove the proposition:

L = limsup
n→∞

|an(x− x0)
n|1/n = |x− x0| limsup

n→∞

|an|1/n = |x− x0|R.

In particular if R = ∞, then L = ∞ for any x 6= x0, and the series diverges by the root test. On the
other hand if R = 0, then L = 0 for any x, and the series converges absolutely for all x.

Suppose 0 < R < ∞. The series converges absolutely if 1 > L = R |x− x0|, or in other words
when

|x− x0|< 1/R.

The series diverges when 1 < L = R |x− x0|, or

|x− x0|> 1/R.

Letting ρ = 1/R completes the proof.

It may be useful to restate what we have learned in the proof as a separate proposition.

Proposition 2.6.11. Let ∑an(x− x0)
n be a power series, and let

R := limsup
n→∞

|an|1/n.

If R = ∞, the power series is divergent. If R = 0, then the power series converges everywhere.
Otherwise the radius of convergence ρ = 1/R.
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Often, radius of convergence is written as ρ = 1/R in all three cases, with the obvious under-
standing of what ρ should be if R = 0 or R = ∞.

Convergent power series can be added and multiplied together, and multiplied by constants. The
proposition has an easy proof using what we know about series in general, and power series in
particular. We leave the proof to the reader.

Proposition 2.6.12. Let ∑
∞
n=0 an(x− x0)

n and ∑
∞
n=0 bn(x− x0)

n be two convergent power series
with radius of convergence at least ρ > 0 and α ∈ R. Then for all x such that |x− x0|< ρ , we have(

∞

∑
n=0

an(x− x0)
n

)
+

(
∞

∑
n=0

bn(x− x0)
n

)
=

∞

∑
n=0

(an +bn)(x− x0)
n,

α

(
∞

∑
n=0

an(x− x0)
n

)
=

∞

∑
n=0

αan(x− x0)
n,

and (
∞

∑
n=0

an(x− x0)
n

)(
∞

∑
n=0

bn(x− x0)
n

)
=

∞

∑
n=0

cn(x− x0)
n,

where cn = a0bn +a1bn−1 + · · ·+anb0.

That is, after performing the algebraic operations, the radius of convergence of the resulting
series is at least ρ . For all x with |x− x0| < ρ , we have two convergent series so their term by
term addition and multiplication by constants follows by what we learned in the last section.
For multiplication of two power series, the series are absolutely convergent inside the radius of
convergence and that is why for those x we can apply Mertens’ theorem. Note that after applying an
algebraic operation the radius of convergence could increase. See the exercises.

Let us look at some examples of power series. Polynomials are simply finite power series.
That is, a polynomial is a power series where the an are zero for all n large enough. We expand
a polynomial as a power series about any point x0 by writing the polynomial as a polynomial in
(x− x0). For example, 2x2−3x+4 as a power series around x0 = 1 is

2x2−3x+4 = 3+(x−1)+2(x−1)2.

We can also expand rational functions, that is, ratios of polynomials as power series, although
we will not completely prove this fact here. Notice that a series for a rational function only defines
the function on an interval even if the function is defined elsewhere. For example, for the geometric
series we have that for x ∈ (−1,1)

1
1− x

=
∞

∑
n=0

xn.

The series diverges when |x|> 1, even though 1
1−x is defined for all x 6= 1.
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We can use the geometric series together with rules for addition and multiplication of power
series to expand rational functions as power series around x0, as long as the denominator is not
zero at x0. We state without proof that this is always possible, and we give an example of such a
computation using the geometric series.

Example 2.6.13: Let us expand x
1+2x+x2 as a power series around the origin (x0 = 0) and find the

radius of convergence.
Write 1+2x+ x2 = (1+ x)2 =

(
1− (−x)

)2, and suppose |x|< 1. Compute

x
1+2x+ x2 = x

(
1

1− (−x)

)2

= x

(
∞

∑
n=0

(−1)nxn

)2

= x

(
∞

∑
n=0

cnxn

)

=
∞

∑
n=0

cnxn+1,

where using the formula for the product of series we obtain, c0 = 1, c1 = −1− 1 = −2, c2 =
1+1+1 = 3, etc. . . . Therefore we get that for |x|< 1,

x
1+2x+ x2 =

∞

∑
n=1

(−1)n+1nxn.

The radius of convergence is at least 1. We leave it to the reader to verify that the radius of
convergence is exactly equal to 1.

You can use the method of partial fractions you know from calculus. For example, to find the
power series for x3+x

x2−1 at 0, write

x3 + x
x2−1

= x+
1

1+ x
− 1

1− x
= x+

∞

∑
n=0

(−1)nxn−
∞

∑
n=0

xn.

2.6.6 Exercises
Exercise 2.6.1: Decide the convergence or divergence of the following series.

a)
∞

∑
n=1

1
22n+1 b)

∞

∑
n=1

(−1)n(n−1)
n

c)
∞

∑
n=1

(−1)n

n1/10 d)
∞

∑
n=1

nn

(n+1)2n

Exercise 2.6.2: Suppose both ∑
∞
n=0 an and ∑

∞
n=0 bn converge absolutely. Show that the product series, ∑

∞
n=0 cn

where cn = a0bn +a1bn−1 + · · ·+anb0, also converges absolutely.
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Exercise 2.6.3 (Challenging): Let ∑an be conditionally convergent. Show that given any number x there
exists a rearrangement of ∑an such that the rearranged series converges to x. Hint: See Example 2.6.4.

Exercise 2.6.4: a) Show that the alternating harmonic series ∑
(−1)n+1

n has a rearrangement such that for
any x < y, there exists a partial sum sn of the rearranged series such that x < sn < y. b) Show that the
rearrangement you found does not converge. See Example 2.6.4. c) Show that for any x ∈ R, there exists a
subsequence of partial sums {snk} of your rearrangement such that lim snk = x.

Exercise 2.6.5: For the following power series, find if they are convergent or not, and if so find their radius
of convergence.

a)
∞

∑
n=0

2nxn b)
∞

∑
n=0

nxn c)
∞

∑
n=0

n!xn d)
∞

∑
n=0

1
(2k)!

(x−10)n e)
∞

∑
n=0

x2n f)
∞

∑
n=0

n!xn!

Exercise 2.6.6: Suppose ∑anxn converges for x = 1. a) What can you say about the radius of convergence?
b) If you further know that at x = 1 the convergence is not absolute, what can you say?

Exercise 2.6.7: Expand
x

4− x2 as a power series around x0 = 0 and compute its radius of convergence.

Exercise 2.6.8: a) Find an example where the radius of convergence of ∑anxn and ∑bnxn are 1, but the
radius of convergence of the sum of the two series is infinite. b) (Trickier) Find an example where the radius
of convergence of ∑anxn and ∑bnxn are 1, but the radius of convergence of the product of the two series is
infinite.

Exercise 2.6.9: Figure out how to compute the radius of convergence using the ratio test. That is, suppose
∑anxn is a power series and R := lim |an+1|

|an| exists or is ∞. Find the radius of convergence and prove your
claim.

Exercise 2.6.10: a) Prove that lim n1/n = 1. Hint: Write n1/n = 1+ bn and note bn > 0. Then show that
(1+bn)

n ≥ n(n−1)
2 b2

n and use this to show that lim bn = 0. b) Use the result of part a) to show that if ∑anxn

is a convergent power series with radius of convergence R, then ∑nanxn is also convergent with the same
radius of convergence.

There are different notions of summability (convergence) of a series than just the one we have seen. A
common one is Cesàro summability∗. Let ∑an be a series and let sn be the nth partial sum. The series is said
to be Cesàro summable to a if

a = lim
n→∞

s1 + s2 + · · ·+ sn

n
.

Exercise 2.6.11 (Challenging): a) If ∑an is convergent to a (in the usual sense), show that ∑an is Cesàro
summable to a. b) Show that in the sense of Cesàro ∑(−1)n is summable to 1/2. c) Let an := k when n = k3

for some k ∈ N, an :=−k when n = k3 +1 for some k ∈ N, otherwise let an := 0. Show that ∑an diverges in
the usual sense, (partial sums are unbounded), but it is Cesàro summable to 0 (seems a little paradoxical at
first sight).

Exercise 2.6.12 (Challenging): Show that the monotonicity in the alternating series test is necessary. That is,
find a sequence of positive real numbers {xn} with lim xn = 0 but such that ∑(−1)nxn diverges.

∗Named for the Italian mathematician Ernesto Cesàro (1859 – 1906).

http://en.wikipedia.org/wiki/Ernesto_Ces%C3%A0ro
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Chapter 3

Continuous Functions

3.1 Limits of functions
Note: 2–3 lectures

Before we define continuity of functions, we need to visit a somewhat more general notion of a
limit. That is, given a function f : S→ R, we want to see how f (x) behaves as x tends to a certain
point.

3.1.1 Cluster points
First, let us return to a concept we have previously seen in an exercise.

Definition 3.1.1. Let S ⊂ R be a set. A number x ∈ R is called a cluster point of S if for every
ε > 0, the set (x− ε,x+ ε)∩S\{x} is not empty.

That is, x is a cluster point of S if there are points of S arbitrarily close to x. Another way of
phrasing the definition is to say that x is a cluster point of S if for every ε > 0, there exists a y ∈ S
such that y 6= x and |x− y|< ε . Note that a cluster point of S need not lie in S.

Let us see some examples.

(i) The set {1/n : n ∈ N} has a unique cluster point zero.

(ii) The cluster points of the open interval (0,1) are all points in the closed interval [0,1].

(iii) For the set Q, the set of cluster points is the whole real line R.

(iv) For the set [0,1)∪{2}, the set of cluster points is the interval [0,1].

(v) The set N has no cluster points in R.

Proposition 3.1.2. Let S ⊂ R. Then x ∈ R is a cluster point of S if and only if there exists a
convergent sequence of numbers {xn} such that xn 6= x, xn ∈ S, and lim xn = x.

99
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Proof. First suppose x is a cluster point of S. For any n ∈ N, we pick xn to be an arbitrary point of
(x− 1/n,x+ 1/n)∩S\{x}, which we know is nonempty because x is a cluster point of S. Then xn is
within 1/n of x, that is,

|x− xn|< 1/n.

As {1/n} converges to zero, {xn} converges to x.
On the other hand, if we start with a sequence of numbers {xn} in S converging to x such that

xn 6= x for all n, then for every ε > 0 there is an M such that in particular |xM− x| < ε . That is,
xM ∈ (x− ε,x+ ε)∩S\{x}.

3.1.2 Limits of functions
If a function f is defined on a set S and c is a cluster point of S, then we can define the limit of
f (x) as x gets close to c. Do note that it is irrelevant for the definition if f is defined at c or not.
Furthermore, even if the function is defined at c, the limit of the function as x goes to c could very
well be different from f (c).

Definition 3.1.3. Let f : S→ R be a function and c a cluster point of S. Suppose there exists an
L ∈R and for every ε > 0, there exists a δ > 0 such that whenever x ∈ S\{c} and |x− c|< δ , then

| f (x)−L|< ε.

In this case we say f (x) converges to L as x goes to c. We say L is the limit of f (x) as x goes to c.
We write

lim
x→c

f (x) := L,

or
f (x)→ L as x→ c.

If no such L exists, then we say that the limit does not exist or that f diverges at c.

Again the notation and language we are using above assumes the limit is unique even though we
have not yet proved that. Let us do that now.

Proposition 3.1.4. Let c be a cluster point of S⊂ R and let f : S→ R be a function such that f (x)
converges as x goes to c. Then the limit of f (x) as x goes to c is unique.

Proof. Let L1 and L2 be two numbers that both satisfy the definition. Take an ε > 0 and find
a δ1 > 0 such that | f (x)−L1| < ε/2 for all x ∈ S \ {c} with |x− c| < δ1. Also find δ2 > 0 such
that | f (x)−L2| < ε/2 for all x ∈ S \ {c} with |x− c| < δ2. Put δ := min{δ1,δ2}. Suppose x ∈ S,
|x− c|< δ , and x 6= c. Then

|L1−L2|= |L1− f (x)+ f (x)−L2| ≤ |L1− f (x)|+ | f (x)−L2|<
ε

2
+

ε

2
= ε.

As |L1−L2|< ε for arbitrary ε > 0, then L1 = L2.
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Example 3.1.5: Let f : R→ R be defined as f (x) := x2. Then

lim
x→c

f (x) = lim
x→c

x2 = c2.

Proof: First let c be fixed. Let ε > 0 be given. Take

δ := min
{

1,
ε

2 |c|+1

}
.

Take x 6= c such that |x− c|< δ . In particular, |x− c|< 1. Then by reverse triangle inequality we
get

|x|− |c| ≤ |x− c|< 1.

Adding 2 |c| to both sides we obtain |x|+ |c|< 2 |c|+1. We compute∣∣ f (x)− c2∣∣= ∣∣x2− c2∣∣
= |(x+ c)(x− c)|
= |x+ c| |x− c|
≤ (|x|+ |c|) |x− c|
< (2 |c|+1) |x− c|

< (2 |c|+1)
ε

2 |c|+1
= ε.

Example 3.1.6: Define f : [0,1)→ R by

f (x) :=

{
x if x > 0,
1 if x = 0.

Then
lim
x→0

f (x) = 0,

even though f (0) = 1.
Proof: Let ε > 0 be given. Let δ := ε . Then for x ∈ [0,1), x 6= 0, and |x−0|< δ we get

| f (x)−0|= |x|< δ = ε.

3.1.3 Sequential limits
Let us connect the limit as defined above with limits of sequences.

Lemma 3.1.7. Let S⊂ R and c be a cluster point of S. Let f : S→ R be a function.
Then f (x)→ L as x→ c, if and only if for every sequence {xn} of numbers such that xn ∈ S\{c}

for all n, and such that lim xn = c, we have that the sequence { f (xn)} converges to L.
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Proof. Suppose f (x)→ L as x→ c, and {xn} is a sequence such that xn ∈ S \{c} and lim xn = c.
We wish to show that { f (xn)} converges to L. Let ε > 0 be given. Find a δ > 0 such that if
x ∈ S \ {c} and |x− c| < δ , then | f (x)−L| < ε . As {xn} converges to c, find an M such that for
n≥M we have that |xn− c|< δ . Therefore, for n≥M,

| f (xn)−L|< ε.

Thus { f (xn)} converges to L.
For the other direction, we use proof by contrapositive. Suppose it is not true that f (x)→ L as

x→ c. The negation of the definition is that there exists an ε > 0 such that for every δ > 0 there
exists an x ∈ S\{c}, where |x− c|< δ and | f (x)−L| ≥ ε .

Let us use 1/n for δ in the above statement to construct a sequence {xn}. We have that there
exists an ε > 0 such that for every n, there exists a point xn ∈ S \ {c}, where |xn− c| < 1/n and
| f (xn)−L| ≥ ε . The sequence {xn} just constructed converges to c, but the sequence { f (xn)} does
not converge to L. And we are done.

It is possible to strengthen the reverse direction of the lemma by simply stating that { f (xn)}
converges without requiring a specific limit. See Exercise 3.1.11.

Example 3.1.8: lim
x→0

sin(1/x) does not exist, but lim
x→0

xsin(1/x) = 0. See Figure 3.1.

Figure 3.1: Graphs of sin(1/x) and xsin(1/x). Note that the computer cannot properly graph sin(1/x)
near zero as it oscillates too fast.

Proof: Let us work with sin(1/x) first. Let us define the sequence xn := 1
πn+π/2

. It is not hard to
see that lim xn = 0. Furthermore,

sin(1/xn) = sin(πn+ π/2) = (−1)n.

Therefore, {sin(1/xn)} does not converge. Thus, by Lemma 3.1.7, limx→0 sin(1/x) does not exist.
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Now let us look at xsin(1/x). Let xn be a sequence such that xn 6= 0 for all n and such that
lim xn = 0. Notice that |sin(t)| ≤ 1 for any t ∈ R. Therefore,

|xn sin(1/xn)−0|= |xn| |sin(1/xn)| ≤ |xn| .

As xn goes to 0, then |xn| goes to zero, and hence {xn sin(1/xn)} converges to zero. By Lemma 3.1.7,
lim
x→0

xsin(1/x) = 0.

Keep in mind the phrase “for every sequence” in the lemma. For example, take sin(1/x) and the
sequence xn = 1/πn. Then {sin(1/xn)} is the constant zero sequence, and therefore converges to zero.

Using Lemma 3.1.7, we can start applying everything we know about sequential limits to limits
of functions. Let us give a few important examples.

Corollary 3.1.9. Let S⊂R and c be a cluster point of S. Let f : S→R and g : S→R be functions.
Suppose the limits of f (x) and g(x) as x goes to c both exist, and that

f (x)≤ g(x) for all x ∈ S.

Then
lim
x→c

f (x)≤ lim
x→c

g(x).

Proof. Take {xn} be a sequence of numbers in S\{c} that converges to c. Let

L1 := lim
x→c

f (x), and L2 := lim
x→c

g(x).

By Lemma 3.1.7 we know { f (xn)} converges to L1 and {g(xn)} converges to L2. We also have
f (xn)≤ g(xn). We obtain L1 ≤ L2 using Lemma 2.2.3.

By applying constant functions, we get the following corollary. The proof is left as an exercise.

Corollary 3.1.10. Let S⊂R and c be a cluster point of S. Let f : S→R be a function. And suppose
the limit of f (x) as x goes to c exists. Suppose there are two real numbers a and b such that

a≤ f (x)≤ b for all x ∈ S.

Then
a≤ lim

x→c
f (x)≤ b.

Using Lemma 3.1.7 in the same way as above we also get the following corollaries, whose
proofs are again left as an exercise.
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Corollary 3.1.11. Let S⊂R and c be a cluster point of S. Let f : S→R, g : S→R, and h : S→R
be functions. Suppose

f (x)≤ g(x)≤ h(x) for all x ∈ S,

and the limits of f (x) and h(x) as x goes to c both exist, and

lim
x→c

f (x) = lim
x→c

h(x).

Then the limit of g(x) as x goes to c exists and

lim
x→c

g(x) = lim
x→c

f (x) = lim
x→c

h(x).

Corollary 3.1.12. Let S⊂R and c be a cluster point of S. Let f : S→R and g : S→R be functions.
Suppose limits of f (x) and g(x) as x goes to c both exist. Then

(i) lim
x→c

(
f (x)+g(x)

)
=
(

lim
x→c

f (x)
)
+
(

lim
x→c

g(x)
)
.

(ii) lim
x→c

(
f (x)−g(x)

)
=
(

lim
x→c

f (x)
)
−
(

lim
x→c

g(x)
)
.

(iii) lim
x→c

(
f (x)g(x)

)
=
(

lim
x→c

f (x)
)(

lim
x→c

g(x)
)
.

(iv) If lim
x→c

g(x) 6= 0, and g(x) 6= 0 for all x ∈ S\{c}, then

lim
x→c

f (x)
g(x)

=
limx→c f (x)
limx→c g(x)

.

3.1.4 Limits of restrictions and one-sided limits
Sometimes we work with the function defined on a subset.

Definition 3.1.13. Let f : S→ R be a function. Let A⊂ S. Define the function f |A : A→ R by

f |A(x) := f (x) for x ∈ A.

The function f |A is called the restriction of f to A.

The function f |A is simply the function f taken on a smaller domain. The following proposition
is the analogue of taking a tail of a sequence.

Proposition 3.1.14. Let S⊂ R, c ∈ R, and let f : S→ R be a function. Suppose A⊂ S is such that
there is some α > 0 such that A∩ (c−α,c+α) = S∩ (c−α,c+α).

(i) The point c is a cluster point of A if and only if c is a cluster point of S.

(ii) Supposing c is a cluster point of S, then f (x)→ L as x→ c if and only if f |A(x)→ L as x→ c.
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Proof. First, let c be a cluster point of A. Since A⊂ S, then if (A\{c})∩ (c− ε,c+ ε) is nonempty
for every ε > 0, then (S \ {c})∩ (c− ε,c+ ε) is nonempty for every ε > 0. Thus c is a cluster
point of S. Second, suppose c is a cluster point of S. Then for ε > 0 such that ε < α we get that
(A\{c})∩ (c− ε,c+ ε) = (S\{c})∩ (c− ε,c+ ε), which is nonempty. This is true for all ε < α

and hence (A\{c})∩ (c− ε,c+ ε) must be nonempty for all ε > 0. Thus c is a cluster point of A.
Now suppose f (x)→ L as x→ c. That is, for every ε > 0 there is a δ > 0 such that if x ∈ S\{c}

and |x− c|< δ , then | f (x)−L|< ε . Because A⊂ S, if x is in A\{c}, then x is in S\{c}, and hence
f |A(x)→ L as x→ c.

Finally suppose f |A(x)→ L as x→ c. Hence for every ε > 0 there is a δ > 0 such that if
x ∈ A \ {c} and |x− c| < δ , then

∣∣ f |A(x)−L
∣∣ < ε . Without loss of generality assume δ ≤ α . If

|x− c|< δ , then x ∈ S\{c} if and only if x ∈ A\{c}. Thus | f (x)−L|=
∣∣ f |A(x)−L

∣∣< ε .

The hypothesis of the proposition is necessary. For an arbitrary restriction we generally only get
implication in only one direction, see Exercise 3.1.6.

A common use of restriction with respect to limits are one-sided limits.

Definition 3.1.15. Let f : S→ R be function and let c be a cluster point of S∩ (c,∞). Then if the
limit of the restriction of f to S∩ (c,∞) as x→ c exists, we define

lim
x→c+

f (x) := lim
x→c

f |S∩(c,∞)(x).

Similarly if c is a cluster point of S∩ (−∞,c) and the limit of the restriction as x→ c exists, we
define

lim
x→c−

f (x) := lim
x→c

f |S∩(−∞,c)(x).

The proposition above does not apply to one-sided limits. It is possible to have one-sided limits,
but no limit at a point. For example, define f : R→ R by f (x) := 1 for x < 0 and f (x) := 0 for
x≥ 0. We leave it to the reader to verify that

lim
x→0−

f (x) = 1, lim
x→0+

f (x) = 0, lim
x→0

f (x) does not exist.

We have the following replacement.

Proposition 3.1.16. Let S ⊂ R be a set such that c is a cluster point of both S∩ (−∞,c) and
S∩ (c,∞), and let f : S→ R be a function. Then

lim
x→c

f (x) = L if and only if lim
x→c−

f (x) = lim
x→c+

f (x) = L.

That is, a limit exists if both one-sided limits exist and are equal, and vice-versa. The proof is a
straightforward application of the definition of limit and is left as an exercise. The key point is that(
S∩ (−∞,c)

)
∪
(
S∩ (c,∞)

)
= S\{c}.
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3.1.5 Exercises
Exercise 3.1.1: Find the limit or prove that the limit does not exist

a) lim
x→c

√
x, for c≥ 0 b) lim

x→c
x2 + x+1, for any c ∈ R c) lim

x→0
x2 cos(1/x)

d) lim
x→0

sin(1/x)cos(1/x) e) lim
x→0

sin(x)cos(1/x)

Exercise 3.1.2: Prove Corollary 3.1.10.

Exercise 3.1.3: Prove Corollary 3.1.11.

Exercise 3.1.4: Prove Corollary 3.1.12.

Exercise 3.1.5: Let A ⊂ S. Show that if c is a cluster point of A, then c is a cluster point of S. Note the
difference from Proposition 3.1.14.

Exercise 3.1.6: Let A⊂ S. Suppose c is a cluster point of A and it is also a cluster point of S. Let f : S→ R
be a function. Show that if f (x)→ L as x→ c, then f |A(x)→ L as x→ c. Note the difference from
Proposition 3.1.14.

Exercise 3.1.7: Find an example of a function f : [−1,1]→ R such that for A := [0,1], the restriction
f |A(x)→ 0 as x→ 0, but the limit of f (x) as x→ 0 does not exist. Note why you cannot apply Proposi-
tion 3.1.14.

Exercise 3.1.8: Find example functions f and g such that the limit of neither f (x) nor g(x) exists as x→ 0,
but such that the limit of f (x)+g(x) exists as x→ 0.

Exercise 3.1.9: Let c1 be a cluster point of A⊂ R and c2 be a cluster point of B⊂ R. Suppose f : A→ B
and g : B→ R are functions such that f (x)→ c2 as x→ c1 and g(y)→ L as y→ c2. If c2 ∈ B also suppose
that g(c2) = L. Let h(x) := g

(
f (x)

)
and show h(x)→ L as x→ c1. Hint: note that f (x) could equal c2 for

many x ∈ A, see also Exercise 3.1.14.

Exercise 3.1.10: Let c be a cluster point of A⊂R, and f : A→R be a function. Suppose for every sequence
{xn} in A, such that lim xn = c, the sequence { f (xn)}∞

n=1 is Cauchy. Prove that limx→c f (x) exists.

Exercise 3.1.11: Prove the following stronger version of one direction of Lemma 3.1.7: Let S⊂ R, c be a
cluster point of S, and f : S→ R be a function. Suppose that for every sequence {xn} in S \{c} such that
lim xn = c the sequence { f (xn)} is convergent. Then show f (x)→ L as x→ c for some L ∈ R.

Exercise 3.1.12: Prove Proposition 3.1.16.

Exercise 3.1.13: Suppose S ⊂ R and c is a cluster point of S. Suppose f : S→ R is bounded. Show that
there exists a sequence {xn} with xn ∈ S\{c} and lim xn = c such that { f (xn)} converges.

Exercise 3.1.14 (Challenging): Show that the hypothesis that g(c2) = L in Exercise 3.1.9 is necessary. That
is, find f and g such that f (x)→ c2 as x→ c1 and g(y)→ L as y→ c2, but g

(
f (x)

)
does not go to L as

x→ c1.
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3.2 Continuous functions
Note: 2–2.5 lectures

You undoubtedly heard of continuous functions in your schooling. A high-school criterion for
this concept is that a function is continuous if we can draw its graph without lifting the pen from
the paper. While that intuitive concept may be useful in simple situations, we require rigor. The
following definition took three great mathematicians (Bolzano, Cauchy, and finally Weierstrass) to
get correctly and its final form dates only to the late 1800s.

3.2.1 Definition and basic properties
Definition 3.2.1. Let S⊂R, c ∈ S, and let f : S→R be a function. We say that f is continuous at c
if for every ε > 0 there is a δ > 0 such that whenever x ∈ S and |x− c|< δ , then | f (x)− f (c)|< ε .

When f : S→ R is continuous at all c ∈ S, then we simply say f is a continuous function.

y = f (x)ε

c

δ

f (c)ε

δ

Figure 3.2: For |x− c|< δ , f (x) should be within the gray region.

If f is continuous for all c ∈ A, we say f is continuous on A⊂ S. It is left as an easy exercise to
show that this implies that f |A is continuous, although the converse does not hold.

Continuity may be the most important definition to understand in analysis, and it is not an easy
one. See Figure 3.2. Note that δ not only depends on ε , but also on c; we need not pick one δ for
all c ∈ S. It is no accident that the definition of continuity is similar to the definition of a limit of
a function. The main feature of continuous functions is that these are precisely the functions that
behave nicely with limits.

Proposition 3.2.2. Suppose f : S→ R is a function and c ∈ S. Then

(i) If c is not a cluster point of S, then f is continuous at c.

(ii) If c is a cluster point of S, then f is continuous at c if and only if the limit of f (x) as x→ c
exists and

lim
x→c

f (x) = f (c).

(iii) f is continuous at c if and only if for every sequence {xn} where xn ∈ S and lim xn = c, the
sequence { f (xn)} converges to f (c).
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Proof. Let us start with the first item. Suppose c is not a cluster point of S. Then there exists a
δ > 0 such that S∩ (c−δ ,c+δ ) = {c}. Therefore, for any ε > 0, simply pick this given delta. The
only x ∈ S such that |x− c|< δ is x = c. Then | f (x)− f (c)|= | f (c)− f (c)|= 0 < ε .

Let us move to the second item. Suppose c is a cluster point of S. Let us first suppose that
limx→c f (x) = f (c). Then for every ε > 0 there is a δ > 0 such that if x ∈ S\{c} and |x− c|< δ ,
then | f (x)− f (c)|< ε . As | f (c)− f (c)|= 0 < ε , then the definition of continuity at c is satisfied.
On the other hand, suppose f is continuous at c. For every ε > 0, there exists a δ > 0 such that for
x ∈ S where |x− c| < δ we have | f (x)− f (c)| < ε . Then the statement is, of course, still true if
x ∈ S\{c} ⊂ S. Therefore limx→c f (x) = f (c).

For the third item, suppose f is continuous at c. Let {xn} be a sequence such that xn ∈ S
and lim xn = c. Let ε > 0 be given. Find a δ > 0 such that | f (x)− f (c)| < ε for all x ∈ S where
|x− c|< δ . Find an M ∈ N such that for n≥M we have |xn− c|< δ . Then for n≥M we have that
| f (xn)− f (c)|< ε , so { f (xn)} converges to f (c).

Let us prove the converse of the third item by contrapositive. Suppose f is not continuous at c.
Then there exists an ε > 0 such that for all δ > 0, there exists an x ∈ S such that |x− c| < δ and
| f (x)− f (c)| ≥ ε . Let us define a sequence {xn} as follows. Let xn ∈ S be such that |xn− c|< 1/n

and | f (xn)− f (c)| ≥ ε . Now {xn} is a sequence of numbers in S such that lim xn = c and such
that | f (xn)− f (c)| ≥ ε for all n ∈ N. Thus { f (xn)} does not converge to f (c). It may or may not
converge, but it definitely does not converge to f (c).

The last item in the proposition is particularly powerful. It allows us to quickly apply what we
know about limits of sequences to continuous functions and even to prove that certain functions are
continuous. It can also be strengthened, see Exercise 3.2.13.

Example 3.2.3: f : (0,∞)→ R defined by f (x) := 1/x is continuous.
Proof: Fix c ∈ (0,∞). Let {xn} be a sequence in (0,∞) such that lim xn = c. Then we know that

f (c) =
1
c
=

1
lim xn

= lim
n→∞

1
xn

= lim
n→∞

f (xn).

Thus f is continuous at c. As f is continuous at all c ∈ (0,∞), f is continuous.

We have previously shown limx→c x2 = c2 directly. Therefore the function x2 is continuous. We
can use the continuity of algebraic operations with respect to limits of sequences, which we proved
in the previous chapter, to prove a much more general result.

Proposition 3.2.4. Let f : R→ R be a polynomial. That is

f (x) = adxd +ad−1xd−1 + · · ·+a1x+a0,

for some constants a0,a1, . . . ,ad . Then f is continuous.
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Proof. Fix c ∈ R. Let {xn} be a sequence such that lim xn = c. Then

f (c) = adcd +ad−1cd−1 + · · ·+a1c+a0

= ad(lim xn)
d +ad−1(lim xn)

d−1 + · · ·+a1(lim xn)+a0

= lim
n→∞

(
adxd

n +ad−1xd−1
n + · · ·+a1xn +a0

)
= lim

n→∞
f (xn).

Thus f is continuous at c. As f is continuous at all c ∈ R, f is continuous.

By similar reasoning, or by appealing to Corollary 3.1.12, we can prove the following. The
details of the proof are left as an exercise.

Proposition 3.2.5. Let f : S→ R and g : S→ R be functions continuous at c ∈ S.

(i) The function h : S→ R defined by h(x) := f (x)+g(x) is continuous at c.

(ii) The function h : S→ R defined by h(x) := f (x)−g(x) is continuous at c.

(iii) The function h : S→ R defined by h(x) := f (x)g(x) is continuous at c.

(iv) If g(x) 6= 0 for all x ∈ S, the function h : S→ R defined by h(x) := f (x)
g(x) is continuous at c.

Example 3.2.6: The functions sin(x) and cos(x) are continuous. In the following computations
we use the sum-to-product trigonometric identities. We also use the simple facts that |sin(x)| ≤ |x|,
|cos(x)| ≤ 1, and |sin(x)| ≤ 1.

|sin(x)− sin(c)|=
∣∣∣∣2sin

(
x− c

2

)
cos
(

x+ c
2

)∣∣∣∣
= 2

∣∣∣∣sin
(

x− c
2

)∣∣∣∣ ∣∣∣∣cos
(

x+ c
2

)∣∣∣∣
≤ 2

∣∣∣∣sin
(

x− c
2

)∣∣∣∣
≤ 2

∣∣∣∣x− c
2

∣∣∣∣= |x− c|

|cos(x)− cos(c)|=
∣∣∣∣−2sin

(
x− c

2

)
sin
(

x+ c
2

)∣∣∣∣
= 2

∣∣∣∣sin
(

x− c
2

)∣∣∣∣ ∣∣∣∣sin
(

x+ c
2

)∣∣∣∣
≤ 2

∣∣∣∣sin
(

x− c
2

)∣∣∣∣
≤ 2

∣∣∣∣x− c
2

∣∣∣∣= |x− c|

The claim that sin and cos are continuous follows by taking an arbitrary sequence {xn} converg-
ing to c, or by applying the definition of continuity directly. Details are left to the reader.
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3.2.2 Composition of continuous functions
You have probably already realized that one of the basic tools in constructing complicated functions
out of simple ones is composition. A useful property of continuous functions is that compositions of
continuous functions are again continuous. Recall that for two functions f and g, the composition
f ◦g is defined by ( f ◦g)(x) := f

(
g(x)

)
.

Proposition 3.2.7. Let A,B⊂ R and f : B→ R and g : A→ B be functions. If g is continuous at
c ∈ A and f is continuous at g(c), then f ◦g : A→ R is continuous at c.

Proof. Let {xn} be a sequence in A such that lim xn = c. Then as g is continuous at c, then {g(xn)}
converges to g(c). As f is continuous at g(c), then { f

(
g(xn)

)
} converges to f

(
g(c)

)
. Thus f ◦g is

continuous at c.

Example 3.2.8: Claim:
(
sin(1/x)

)2 is a continuous function on (0,∞).
Proof: First note that 1/x is a continuous function on (0,∞) and sin(x) is a continuous function

on (0,∞) (actually on all of R, but (0,∞) is the range for 1/x). Hence the composition sin(1/x) is
continuous. We also know that x2 is continuous on the interval (−1,1) (the range of sin). Thus the
composition

(
sin(1/x)

)2 is also continuous on (0,∞).

3.2.3 Discontinuous functions
When f is not continuous at c, we say f is discontinuous at c, or that it has a discontinuity at c. If
we state the contrapositive of the third item of Proposition 3.2.2 as a separate claim we get an easy
to use test for discontinuities.

Proposition 3.2.9. Let f : S→R be a function. Suppose that for some c∈ S, there exists a sequence
{xn}, xn ∈ S, and lim xn = c such that { f (xn)} does not converge to f (c) (or does not converge at
all), then f is not continuous at c.

Example 3.2.10: The function f : R→ R defined by

f (x) :=

{
−1 if x < 0,
1 if x≥ 0,

is not continuous at 0.
Proof: Take the sequence {−1/n}. Then f (−1/n) =−1 and so lim f (−1/n) =−1, but f (0) = 1.

Example 3.2.11: For an extreme example we take the so-called Dirichlet function.

f (x) :=

{
1 if x is rational,
0 if x is irrational.
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The function f is discontinuous at all c ∈ R.
Proof: Suppose c is rational. Take a sequence {xn} of irrational numbers such that lim xn = c

(why can we?). Then f (xn) = 0 and so lim f (xn) = 0, but f (c) = 1. If c is irrational, take a sequence
of rational numbers {xn} that converges to c (why can we?). Then lim f (xn) = 1, but f (c) = 0.

Let us yet again test the limits of your intuition. Can there exist a function that is continuous
on all irrational numbers, but discontinuous at all rational numbers? There are rational numbers
arbitrarily close to any irrational number. Perhaps strangely, the answer is yes. The following
example is called the Thomae function∗ or the popcorn function.

Example 3.2.12: Let f : (0,1)→ R be defined by

f (x) :=

{
1/k if x = m/k where m,k ∈ N and m and k have no common divisors,
0 if x is irrational.

Then f is continuous at all irrational c ∈ (0,1) and discontinuous at all rational c. See the graph of
f in Figure 3.3.

Figure 3.3: Graph of the “popcorn function.”

Proof: Suppose c = m/k is rational. Take a sequence of irrational numbers {xn} such that
lim xn = c. Then lim f (xn) = lim 0 = 0, but f (c) = 1/k 6= 0. So f is discontinuous at c.

Now let c be irrational, so f (c) = 0. Take a sequence {xn} of numbers in (0,1) such that
lim xn = c. Given ε > 0, find K ∈ N such that 1/K < ε by the Archimedean property. If m/k ∈ (0,1)
is lowest terms (no common divisors), then m < k. So there are only finitely many rational numbers
in (0,1) whose denominator k in lowest terms is less than K. Hence there is an M such that for
n≥M, all the numbers xn that are rational have a denominator larger than or equal to K. Thus for
n≥M

| f (xn)−0|= f (xn)≤ 1/K < ε.

Therefore f is continuous at irrational c.

Let us end on an easier example.

∗Named after the German mathematician Johannes Karl Thomae (1840 – 1921).

http://en.wikipedia.org/wiki/Thomae
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Example 3.2.13: Define g : R→ R by g(x) := 0 if x 6= 0 and g(0) := 1. Then g is not continuous
at zero, but continuous everywhere else (why?). The point x = 0 is called a removable discontinuity.
That is because if we would change the definition of g, by insisting that g(0) be 0, we would obtain
a continuous function. On the other hand let f be the function of example Example 3.2.10. Then f
does not have a removable discontinuity at 0. No matter how we would define f (0) the function
will still fail to be continuous. The difference is that limx→0 g(x) exists while limx→0 f (x) does not.

Let us stay with this example but show another phenomenon. Let A= {0}, then g|A is continuous
(why?), while g is not continuous on A.

3.2.4 Exercises
Exercise 3.2.1: Using the definition of continuity directly prove that f : R→ R defined by f (x) := x2 is
continuous.

Exercise 3.2.2: Using the definition of continuity directly prove that f : (0,∞)→ R defined by f (x) := 1/x is
continuous.

Exercise 3.2.3: Let f : R→ R be defined by

f (x) :=

{
x if x is rational,
x2 if x is irrational.

Using the definition of continuity directly prove that f is continuous at 1 and discontinuous at 2.

Exercise 3.2.4: Let f : R→ R be defined by

f (x) :=

{
sin(1/x) if x 6= 0,
0 if x = 0.

Is f continuous? Prove your assertion.

Exercise 3.2.5: Let f : R→ R be defined by

f (x) :=

{
xsin(1/x) if x 6= 0,
0 if x = 0.

Is f continuous? Prove your assertion.

Exercise 3.2.6: Prove Proposition 3.2.5.

Exercise 3.2.7: Prove the following statement. Let S⊂R and A⊂ S. Let f : S→R be a continuous function.
Then the restriction f |A is continuous.

Exercise 3.2.8: Suppose S ⊂ R. Suppose for some c ∈ R and α > 0, we have A = (c−α,c+α)⊂ S. Let
f : S→ R be a function. Prove that if f |A is continuous at c, then f is continuous at c.
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Exercise 3.2.9: Give an example of functions f : R→ R and g : R→ R such that the function h defined by
h(x) := f (x)+g(x) is continuous, but f and g are not continuous. Can you find f and g that are nowhere
continuous, but h is a continuous function?

Exercise 3.2.10: Let f : R→ R and g : R→ R be continuous functions. Suppose that for all rational
numbers r, f (r) = g(r). Show that f (x) = g(x) for all x.

Exercise 3.2.11: Let f : R→ R be continuous. Suppose f (c)> 0. Show that there exists an α > 0 such that
for all x ∈ (c−α,c+α) we have f (x)> 0.

Exercise 3.2.12: Let f : Z→ R be a function. Show that f is continuous.

Exercise 3.2.13: Let f : S→R be a function and c∈ S, such that for every sequence {xn} in S with lim xn = c,
the sequence { f (xn)} converges. Show that f is continuous at c.

Exercise 3.2.14: Suppose f : [−1,0] → R and g : [0,1] → R are continuous and f (0) = g(0). Define
h : [−1,1]→ R by h(x) := f (x) if x≤ 0 and h(x) := g(x) if x > 0. Show that h is continuous.

Exercise 3.2.15: Suppose g : R→ R is a continuous function such that g(0) = 0, and supppse f : R→ R is
such that | f (x)− f (y)| ≤ g(x− y) for all x and y. Show that f is continuous.

Exercise 3.2.16 (Challenging): Suppose f (x+y) = f (x)+ f (y) for some f : R→R such that f is continuous
at 0. Show that f (x) = ax for some a ∈ R. Hint: Show that f (nx) = n f (x), then show f is continuous on R.
Then show that f (x)/x = f (1) for all rational x.
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3.3 Min-max and intermediate value theorems

Note: 1.5 lectures

Continuous functions defined on closed and bounded intervals have some interesting and very
useful properties.

3.3.1 Min-max theorem

Recall a function f : [a,b]→ R is bounded if there exists a B ∈ R such that | f (x)| ≤ B for all
x ∈ [a,b]. We have the following lemma.

Lemma 3.3.1. Let f : [a,b]→ R be a continuous function. Then f is bounded.

Proof. Let us prove this claim by contrapositive. Suppose f is not bounded, then for each n ∈ N,
there is an xn ∈ [a,b], such that

| f (xn)| ≥ n.

Now {xn} is a bounded sequence as a≤ xn ≤ b. By the Bolzano-Weierstrass theorem, there is a
convergent subsequence {xni}. Let x := lim xni . Since a ≤ xni ≤ b for all i, then a ≤ x ≤ b. The
limit lim f (xni) does not exist as the sequence is not bounded as | f (xni)| ≥ ni ≥ i. On the other hand
f (x) is a finite number and

f (x) = f
(

lim
i→∞

xni

)
.

Thus f is not continuous at x.

In fact, for a continuous f , we will see that the minimum and the maximum are actually achieved.
Recall from calculus that f : S→ R achieves an absolute minimum at c ∈ S if

f (x)≥ f (c) for all x ∈ S.

On the other hand, f achieves an absolute maximum at c ∈ S if

f (x)≤ f (c) for all x ∈ S.

We say f achieves an absolute minimum or an absolute maximum on S if such a c ∈ S exists. If S is
a closed and bounded interval, then a continuous f must have an absolute minimum and an absolute
maximum on S.

Theorem 3.3.2 (Minimum-maximum theorem). Let f : [a,b]→ R be a continuous function. Then
f achieves both an absolute minimum and an absolute maximum on [a,b].
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Proof. We have shown that f is bounded by the lemma. Therefore, the set f ([a,b]) = { f (x) : x ∈
[a,b]} has a supremum and an infimum. From what we know about suprema and infima, there exist
sequences in the set f ([a,b]) that approach them. That is, there are sequences { f (xn)} and { f (yn)},
where xn,yn are in [a,b], such that

lim
n→∞

f (xn) = inf f ([a,b]) and lim
n→∞

f (yn) = sup f ([a,b]).

We are not done yet, we need to find where the minimum and the maxima are. The problem is
that the sequences {xn} and {yn} need not converge. We know {xn} and {yn} are bounded (their
elements belong to a bounded interval [a,b]). We apply the Bolzano-Weierstrass theorem. Hence
there exist convergent subsequences {xni} and {ymi}. Let

x := lim
i→∞

xni and y := lim
i→∞

ymi.

Then as a≤ xni ≤ b, we have that a≤ x≤ b. Similarly a≤ y≤ b, so x and y are in [a,b]. We apply
that a limit of a subsequence is the same as the limit of the sequence, and we apply the continuity of
f to obtain

inf f ([a,b]) = lim
n→∞

f (xn) = lim
i→∞

f (xni) = f
(

lim
i→∞

xni

)
= f (x).

Similarly,

sup f ([a,b]) = lim
n→∞

f (mn) = lim
i→∞

f (ymi) = f
(

lim
i→∞

ymi

)
= f (y).

Therefore, f achieves an absolute minimum at x and f achieves an absolute maximum at y.

Example 3.3.3: The function f (x) := x2 +1 defined on the interval [−1,2] achieves a minimum at
x = 0 when f (0) = 1. It achieves a maximum at x = 2 where f (2) = 5. Do note that the domain of
definition matters. If we instead took the domain to be [−10,10], then x = 2 would no longer be a
maximum of f . Instead the maximum would be achieved at either x = 10 or x =−10.

Let us show by examples that the different hypotheses of the theorem are truly needed.

Example 3.3.4: The function f (x) := x, defined on the whole real line, achieves neither a minimum,
nor a maximum. So it is important that we are looking at a bounded interval.

Example 3.3.5: The function f (x) := 1/x, defined on (0,1) achieves neither a minimum, nor a
maximum. The values of the function are unbounded as we approach 0. Also as we approach x = 1,
the values of the function approach 1, but f (x)> 1 for all x ∈ (0,1). There is no x ∈ (0,1) such that
f (x) = 1. So it is important that we are looking at a closed interval.

Example 3.3.6: Continuity is important. Define f : [0,1]→ R by f (x) := 1/x for x > 0 and let
f (0) := 0. Then the function does not achieve a maximum. The problem is that the function is not
continuous at 0.
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3.3.2 Bolzano’s intermediate value theorem
Bolzano’s intermediate value theorem is one of the cornerstones of analysis. It is sometimes called
only intermediate value theorem, or just Bolzano’s theorem. To prove Bolzano’s theorem we prove
the following simpler lemma.

Lemma 3.3.7. Let f : [a,b]→ R be a continuous function. Suppose f (a)< 0 and f (b)> 0. Then
there exists a number c ∈ (a,b) such that f (c) = 0.

Proof. We define two sequences {an} and {bn} inductively:

(i) Let a1 := a and b1 := b.

(ii) If f
(

an+bn
2

)
≥ 0, let an+1 := an and bn+1 := an+bn

2 .

(iii) If f
(

an+bn
2

)
< 0, let an+1 := an+bn

2 and bn+1 := bn.

a1 b1
a2 b2
a3 b3

a4 b4
a5 b5

c

Figure 3.4: Finding roots (bisection method).

See Figure 3.4 for an example defining the first five steps. From the definition of the two sequences
it is obvious that if an < bn, then an+1 < bn+1. Thus by induction an < bn for all n. Furthermore,
an ≤ an+1 and bn ≥ bn+1 for all n, that is the sequences are monotone. As an < bn ≤ b1 = b and
bn > an ≥ a1 = a for all n, the sequences are also bounded. Therefore, the sequences converge. Let
c := lim an and d := lim bn. We now want to show that c = d. We notice

bn+1−an+1 =
bn−an

2
.

By induction we see that

bn−an =
b1−a1

2n−1 = 21−n(b−a).
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As 21−n(b−a) converges to zero, we take the limit as n goes to infinity to get

d− c = lim
n→∞

(bn−an) = lim
n→∞

21−n(b−a) = 0.

In other words d = c.
By construction, for all n we have

f (an)< 0 and f (bn)≥ 0.

We use the fact that lim an = lim bn = c and the continuity of f to take limits in those inequalities
to get

f (c) = lim f (an)≤ 0 and f (c) = lim f (bn)≥ 0.

As f (c)≥ 0 and f (c)≤ 0, we conclude f (c) = 0. Obviously, a < c < b.

Notice that the proof tells us how to find the c. The proof is not only useful for us pure
mathematicians, but it is a useful idea in applied mathematics.

Theorem 3.3.8 (Bolzano’s intermediate value theorem). Let f : [a,b]→R be a continuous function.
Suppose there exists a y such that f (a)< y < f (b) or f (a)> y > f (b). Then there exists a c∈ (a,b)
such that f (c) = y.

The theorem says that a continuous function on a closed interval achieves all the values between
the values at the endpoints.

Proof. If f (a)< y < f (b), then define g(x) := f (x)− y. Then we see that g(a)< 0 and g(b)> 0
and we can apply Lemma 3.3.7 to g. If g(c) = 0, then f (c) = y.

Similarly if f (a)> y > f (b), then define g(x) := y− f (x). Then again g(a)< 0 and g(b)> 0
and we can apply Lemma 3.3.7. Again if g(c) = 0, then f (c) = y.

If a function is continuous, then the restriction to a subset is continuous. So if f : S→ R is
continuous and [a,b]⊂ S, then f |[a,b] is also continuous. Hence, we generally apply the theorem to
a function continuous on some large set S, but we restrict attention to an interval.

Example 3.3.9 (Bisection method): The polynomial f (x) := x3− 2x2 + x− 1 has a real root in
(1,2). We simply notice that f (1) =−1 and f (2) = 1. Hence there must exist a point c∈ (1,2) such
that f (c) = 0. To find a better approximation of the root we could follow the proof of Lemma 3.3.7.
For example, next we would look at 1.5 and find that f (1.5) =−0.625. Therefore, there is a root
of the equation in (1.5,2). Next we look at 1.75 and note that f (1.75)≈−0.016. Hence there is a
root of f in (1.75,2). Next we look at 1.875 and find that f (1.875)≈ 0.44, thus there is a root in
(1.75,1.875). We follow this procedure until we gain sufficient precision.
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The technique above is the simplest method of finding roots of polynomials. Finding roots of
polynomials is perhaps the most common problem in applied mathematics. In general it is hard to
do quickly, precisely and automatically. We can use the intermediate value theorem to find roots for
any continuous function, not just a polynomial.

There are better and faster methods of finding roots of equations, such as Newton’s method.
One advantage of the above method is its simplicity. The moment we find an initial interval where
the intermediate value theorem applies, we are guaranteed to find a root up to a desired precision in
finitely many steps. Furthermore, the method only requires a continuous function.

The theorem guarantees at least one c such that f (c) = y, but there may be many different
roots of the equation f (c) = y. If we follow the procedure of the proof, we are guaranteed to find
approximations to one such root. We need to work harder to find any other roots.

Polynomials of even degree may not have any real roots. For example, there is no real number x
such that x2 +1 = 0. Odd polynomials, on the other hand, always have at least one real root.

Proposition 3.3.10. Let f (x) be a polynomial of odd degree. Then f has a real root.

Proof. Suppose f is a polynomial of odd degree d. We write

f (x) = adxd +ad−1xd−1 + · · ·+a1x+a0,

where ad 6= 0. We divide by ad to obtain a polynomial

g(x) := xd +bd−1xd−1 + · · ·+b1x+b0,

where bk = ak/ad. Let us show that g(n) is positive for some large n ∈ N.∣∣∣∣bd−1nd−1 + · · ·+b1n+b0

nd

∣∣∣∣=
∣∣bd−1nd−1 + · · ·+b1n+b0

∣∣
nd

≤ |bd−1|nd−1 + · · ·+ |b1|n+ |b0|
nd

≤ |bd−1|nd−1 + · · ·+ |b1|nd−1 + |b0|nd−1

nd

=
nd−1(|bd−1|+ · · ·+ |b1|+ |b0|

)
nd

=
1
n

(
|bd−1|+ · · ·+ |b1|+ |b0|

)
.

Therefore

lim
n→∞

bd−1nd−1 + · · ·+b1n+b0

nd = 0.

Thus there exists an M ∈ N such that∣∣∣∣bd−1Md−1 + · · ·+b1M+b0

Md

∣∣∣∣< 1,
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which implies
−(bd−1Md−1 + · · ·+b1M+b0)< Md.

Therefore g(M)> 0.
Next we look at g(−n) for n ∈ N. By a similar argument (exercise) we find that there exists

some K ∈ N such that bd−1(−K)d−1 + · · ·+b1(−K)+b0 < Kd and therefore g(−K)< 0 (why?).
In the proof make sure you use the fact that d is odd. In particular, if d is odd then (−n)d =−(nd).

We appeal to the intermediate value theorem, to find a c ∈ [−K,M] such that g(c) = 0. As
g(x) = f (x)

ad
, we see that f (c) = 0, and the proof is done.

Example 3.3.11: An interesting fact is that there do exist discontinuous functions that have the
intermediate value property. The function

f (x) :=

{
sin(1/x) if x 6= 0,
0 if x = 0,

is not continuous at 0, however, it has the intermediate value property. That is, for any a < b, and
any y such that f (a)< y < f (b) or f (a)> y > f (b), there exists a c such that f (y) = c. Proof is
left as an exercise.

3.3.3 Exercises
Exercise 3.3.1: Find an example of a discontinuous function f : [0,1]→ R where the intermediate value
theorem fails.

Exercise 3.3.2: Find an example of a bounded discontinuous function f : [0,1]→ R that has neither an
absolute minimum nor an absolute maximum.

Exercise 3.3.3: Let f : (0,1)→ R be a continuous function such that lim
x→0

f (x) = lim
x→1

f (x) = 0. Show that f

achieves either an absolute minimum or an absolute maximum on (0,1) (but perhaps not both).

Exercise 3.3.4: Let

f (x) :=

{
sin(1/x) if x 6= 0,
0 if x = 0.

Show that f has the intermediate value property. That is, for any a < b, if there exists a y such that
f (a)< y < f (b) or f (a)> y > f (b), then there exists a c ∈ (a,b) such that f (c) = y.

Exercise 3.3.5: Suppose g(x) is a polynomial of odd degree d such that

g(x) = xd +bd−1xd−1 + · · ·+b1x+b0,

for some real numbers b0,b1, . . . ,bd−1. Show that there exists a K ∈ N such that g(−K) < 0. Hint: Make
sure to use the fact that d is odd. You will have to use that (−n)d =−(nd).
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Exercise 3.3.6: Suppose g(x) is a polynomial of positive even degree d such that

g(x) = xd +bd−1xd−1 + · · ·+b1x+b0,

for some real numbers b0,b1, . . . ,bd−1. Suppose g(0)< 0. Show that g has at least two distinct real roots.

Exercise 3.3.7: Suppose f : [a,b]→ R is a continuous function. Prove that the direct image f ([a,b]) is a
closed and bounded interval or a single number.

Exercise 3.3.8: Suppose f : R→ R is continuous and periodic with period P > 0. That is, f (x+P) = f (x)
for all x ∈ R. Show that f achieves an absolute minimum and an absolute maximum.

Exercise 3.3.9 (Challenging): Suppose f (x) is a bounded polynomial, in other words, there is an M such
that | f (x)| ≤M for all x ∈ R. Prove that f must be a constant.

Exercise 3.3.10: Suppose f : [0,1]→ [0,1] is continuous. Show that f has a fixed point, in other words,
show that there exists an x ∈ [0,1] such that f (x) = x.

Exercise 3.3.11: Find an example of a bounded function f : R→ R that does not achieve an absolute
minimum nor an absolute maximum on R.

Exercise 3.3.12: Suppose f : R→ R is a continuous function such that x≤ f (x)≤ x+1 for all x ∈ R. Find
f (R).

Exercise 3.3.13: True/False, prove or find a counterexample. If f : R→R is a continuous function such that
f |Z is bounded, then f is bounded.
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3.4 Uniform continuity
Note: 1.5–2 lectures (Continuous extension and Lipschitz can be optional)

3.4.1 Uniform continuity
We made a fuss of saying that the δ in the definition of continuity depended on the point c. There
are situations when it is advantageous to have a δ independent of any point. Let us give a name to
this concept.

Definition 3.4.1. Let S ⊂ R, and let f : S→ R be a function. Suppose for any ε > 0 there exists
a δ > 0 such that whenever x,c ∈ S and |x− c| < δ , then | f (x)− f (c)| < ε . Then we say f is
uniformly continuous.

It is not hard to see that a uniformly continuous function must be continuous. The only difference
in the definitions is that for a given ε > 0 we pick a δ > 0 that works for all c ∈ S. That is, δ

can no longer depend on c, it only depends on ε . The domain of definition of the function makes
a difference now. A function that is not uniformly continuous on a larger set, may be uniformly
continuous when restricted to a smaller set.

Example 3.4.2: The function f : (0,1)→ R, defined by f (x) := 1/x is not uniformly continuous,
but it is continuous.

Proof: Given ε > 0, then for ε > |1/x− 1/y| to hold we must have

ε > |1/x− 1/y|= |y− x|
|xy|

=
|y− x|

xy
,

or
|x− y|< xyε.

Therefore, to satisfy the definition of uniform continuity we would have to have δ ≤ xyε for all x,y
in (0,1), but that would mean that δ ≤ 0. Therefore there is no single δ > 0.

Example 3.4.3: f : [0,1]→ R, defined by f (x) := x2 is uniformly continuous.
Proof: Note that 0≤ x,c≤ 1. Then∣∣x2− c2∣∣= |x+ c| |x− c| ≤ (|x|+ |c|) |x− c| ≤ (1+1) |x− c| .

Therefore given ε > 0, let δ := ε/2. If |x− c|< δ , then
∣∣x2− c2

∣∣< ε .
On the other hand, f : R→ R, defined by f (x) := x2 is not uniformly continuous.
Proof: Suppose it is uniformly continuous, then for all ε > 0, there would exist a δ > 0 such

that if |x− c|< δ , then
∣∣x2− c2

∣∣< ε . Take x > 0 and let c := x+ δ/2. Write

ε >
∣∣x2− c2∣∣= |x+ c| |x− c|= (2x+ δ/2)δ/2≥ δx.

Therefore x < ε/δ for all x > 0, which is a contradiction.
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We have seen that if f is defined on an interval that is either not closed or not bounded, then f
can be continuous, but not uniformly continuous. For a closed and bounded interval [a,b], we can,
however, make the following statement.

Theorem 3.4.4. Let f : [a,b]→ R be a continuous function. Then f is uniformly continuous.

Proof. We prove the statement by contrapositive. Suppose f is not uniformly continuous. We
will prove that there is some c ∈ [a,b] where f is not continuous. Let us negate the definition of
uniformly continuous. There exists an ε > 0 such that for every δ > 0, there exist points x,y in S
with |x− y|< δ and | f (x)− f (y)| ≥ ε .

So for the ε > 0 above, we find sequences {xn} and {yn} such that |xn− yn|< 1/n and such that
| f (xn)− f (yn)| ≥ ε . By Bolzano-Weierstrass, there exists a convergent subsequence {xnk}. Let
c := lim xnk . As a≤ xnk ≤ b, then a≤ c≤ b. Write

|ynk− c|= |ynk− xnk + xnk− c| ≤ |ynk− xnk |+ |xnk− c|< 1/nk + |xnk− c| .

As 1/nk and |xnk− c| both go to zero when k goes to infinity, {ynk} converges and the limit is c. We
now show that f is not continuous at c. We estimate

| f (xnk)− f (c)|= | f (xnk)− f (ynk)+ f (ynk)− f (c)|
≥ | f (xnk)− f (ynk)|− | f (ynk)− f (c)|
≥ ε−| f (ynk)− f (c)| .

Or in other words
| f (xnk)− f (c)|+ | f (ynk)− f (c)| ≥ ε.

At least one of the sequences { f (xnk)} or { f (ynk)} cannot converge to f (c), otherwise the left hand
side of the inequality would go to zero while the right-hand side is positive. Thus f cannot be
continuous at c.

3.4.2 Continuous extension
Before we get to continuous extension, we show the following useful lemma. It says that uniformly
continuous functions behave nicely with respect to Cauchy sequences. The new issue here is that
for a Cauchy sequence we no longer know where the limit ends up; it may not end up in the domain
of the function.

Lemma 3.4.5. Let f : S→ R be a uniformly continuous function. Let {xn} be a Cauchy sequence
in S. Then { f (xn)} is Cauchy.

Proof. Let ε > 0 be given. Then there is a δ > 0 such that | f (x)− f (y)|< ε whenever |x− y|< δ .
Now find an M ∈ N such that for all n,k ≥M we have |xn− xk|< δ . Then for all n,k ≥M we have
| f (xn)− f (xk)|< ε .
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An application of the above lemma is the following theorem. It says that a function on an open
interval is uniformly continuous if and only if it can be extended to a continuous function on the
closed interval.

Theorem 3.4.6. A function f : (a,b)→ R is uniformly continuous if and only if the limits

La := lim
x→a

f (x) and Lb := lim
x→b

f (x)

exist and the function f̃ : [a,b]→ R defined by

f̃ (x) :=


f (x) if x ∈ (a,b),
La if x = a,
Lb if x = b,

is continuous.

Proof. One direction is not hard to prove. If f̃ is continuous, then it is uniformly continuous by
Theorem 3.4.4. As f is the restriction of f̃ to (a,b), then f is also uniformly continuous (easy
exercise).

Now suppose f is uniformly continuous. We must first show that the limits La and Lb exist. Let
us concentrate on La. Take a sequence {xn} in (a,b) such that lim xn = a. The sequence is a Cauchy
sequence and hence by Lemma 3.4.5, the sequence { f (xn)} is Cauchy and therefore convergent. We
have some number L1 := lim f (xn). Take another sequence {yn} in (a,b) such that lim yn = a. By
the same reasoning we get L2 := lim f (yn). If we show that L1 = L2, then the limit La = limx→a f (x)
exists. Let ε > 0 be given, find δ > 0 such that |x− y|< δ implies | f (x)− f (y)|< ε/3. Find M ∈N
such that for n≥M we have |a− xn|< δ/2, |a− yn|< δ/2, | f (xn)−L1|< ε/3, and | f (yn)−L2|< ε/3.
Then for n≥M we have

|xn− yn|= |xn−a+a− yn| ≤ |xn−a|+ |a− yn|< δ/2+ δ/2 = δ .

So

|L1−L2|= |L1− f (xn)+ f (xn)− f (yn)+ f (yn)−L2|
≤ |L1− f (xn)|+ | f (xn)− f (yn)|+ | f (yn)−L2|
≤ ε/3+ ε/3+ ε/3 = ε.

Therefore L1 = L2. Thus La exists. To show that Lb exists is left as an exercise.
Now that we know that the limits La and Lb exist, we are done. If limx→a f (x) exists, then

limx→a f̃ (x) exists (See Proposition 3.1.14). Similarly with Lb. Hence f̃ is continuous at a and b.
And since f is continuous at c ∈ (a,b), then f̃ is continuous at c ∈ (a,b).
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3.4.3 Lipschitz continuous functions
Definition 3.4.7. Let f : S→ R be a function such that there exists a number K such that for all x
and y in S we have

| f (x)− f (y)| ≤ K |x− y| .

Then f is said to be Lipschitz continuous∗.

A large class of functions is Lipschitz continuous. Be careful, just as for uniformly continuous
functions, the domain of definition of the function is important. See the examples below and the
exercises. First we justify the use of the word continuous.

Proposition 3.4.8. A Lipschitz continuous function is uniformly continuous.

Proof. Let f : S→ R be a function and let K be a constant such that for all x,y in S we have
| f (x)− f (y)| ≤ K |x− y|.

Let ε > 0 be given. Take δ := ε/K. For any x and y in S such that |x− y|< δ we have that

| f (x)− f (y)| ≤ K |x− y|< Kδ = K
ε

K
= ε.

Therefore f is uniformly continuous.

We interpret Lipschitz continuity geometrically. If f is a Lipschitz continuous function with
some constant K. We rewrite the inequality to say that for x 6= y we have∣∣∣∣ f (x)− f (y)

x− y

∣∣∣∣≤ K.

The quantity f (x)− f (y)
x−y is the slope of the line between the points

(
x, f (x)

)
and

(
y, f (y)

)
, that is, a

secant line. Therefore, f is Lipschitz continuous if and only if every line that intersects the graph of
f in at least two distinct points has slope less than or equal to K. See Figure 3.5.

Example 3.4.9: The functions sin(x) and cos(x) are Lipschitz continuous. We have seen (Exam-
ple 3.2.6) the following two inequalities.

|sin(x)− sin(y)| ≤ |x− y| and |cos(x)− cos(y)| ≤ |x− y| .

Hence sin and cos are Lipschitz continuous with K = 1.

Example 3.4.10: The function f : [1,∞)→ R defined by f (x) :=
√

x is Lipschitz continuous.
Proof: ∣∣√x−√y

∣∣= ∣∣∣∣ x− y√
x+
√

y

∣∣∣∣= |x− y|√
x+
√

y
.

∗Named after the German mathematician Rudolf Otto Sigismund Lipschitz (1832–1903).

http://en.wikipedia.org/wiki/Rudolf_Lipschitz
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x y

slope = f (x)− f (y)
x−y

Figure 3.5: Illustration of the slope of a secant line. The function is Lipschitz if |slope| =∣∣∣ f (x)− f (y)
x−y

∣∣∣≤ K for all x and y.

As x≥ 1 and y≥ 1, we see that 1√
x+
√

y ≤
1
2 . Therefore

∣∣√x−√y
∣∣= ∣∣∣∣ x− y√

x+
√

y

∣∣∣∣≤ 1
2
|x− y| .

On the other hand f : [0,∞)→ R defined by f (x) :=
√

x is not Lipschitz continuous. Let us see
why: Suppose we have ∣∣√x−√y

∣∣≤ K |x− y| ,

for some K. Let y = 0 to obtain
√

x ≤ Kx. If K > 0, then for x > 0 we then get 1/K ≤
√

x. This
cannot possibly be true for all x > 0. Thus no such K > 0 exists and f is not Lipschitz continuous.

The last example is a function that is uniformly continuous but not Lipschitz continuous. To
see that

√
x is uniformly continuous on [0,∞) note that it is uniformly continuous on [0,1] by

Theorem 3.4.4. It is also Lipschitz (and therefore uniformly continuous) on [1,∞). It is not hard
(exercise) to show that this means that

√
x is uniformly continuous on [0,∞).

3.4.4 Exercises
Exercise 3.4.1: Let f : S→ R be uniformly continuous. Let A ⊂ S. Then the restriction f |A is uniformly
continuous.

Exercise 3.4.2: Let f : (a,b)→ R be a uniformly continuous function. Finish the proof of Theorem 3.4.6 by
showing that the limit lim

x→b
f (x) exists.

Exercise 3.4.3: Show that f : (c,∞)→ R for some c > 0 and defined by f (x) := 1/x is Lipschitz continuous.

Exercise 3.4.4: Show that f : (0,∞)→ R defined by f (x) := 1/x is not Lipschitz continuous.
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Exercise 3.4.5: Let A,B be intervals. Let f : A→ R and g : B→ R be uniformly continuous functions such
that f (x) = g(x) for x ∈ A∩B. Define the function h : A∪B→R by h(x) := f (x) if x ∈ A and h(x) := g(x) if
x ∈ B\A. a) Prove that if A∩B 6= /0, then h is uniformly continuous. b) Find an example where A∩B = /0
and h is not even continuous.

Exercise 3.4.6 (Challenging): Let f : R→ R be a polynomial of degree d ≥ 2. Show that f is not Lipschitz
continuous.

Exercise 3.4.7: Let f : (0,1)→ R be a bounded continuous function. Show that the function g(x) :=
x(1− x) f (x) is uniformly continuous.

Exercise 3.4.8: Show that f : (0,∞)→ R defined by f (x) := sin(1/x) is not uniformly continuous.

Exercise 3.4.9 (Challenging): Let f : Q→ R be a uniformly continuous function. Show that there exists a
uniformly continuous function f̃ : R→ R such that f (x) = f̃ (x) for all x ∈Q.

Exercise 3.4.10: a) Find a continuous f : (0,1)→ R and a sequence {xn} in (0,1) that is Cauchy, but such
that { f (xn)} is not Cauchy. b) Prove that if f : R→ R is continuous, and {xn} is Cauchy, then { f (xn)} is
Cauchy.

Exercise 3.4.11: a) If f : S→ R and g : S→ R are uniformly continuous, then show that h : S→ R given by
h(x) := f (x)+g(x) is uniformly continuous.
b) If f : S→ R is uniformly continuous and a ∈ R, then show that h : S→ R given by h(x) := a f (x) is
uniformly continuous.

Exercise 3.4.12: a) If f : S→ R and g : S→ R are Lipschitz, then show that h : S→ R given by h(x) :=
f (x)+g(x) is Lipschitz.
b) If f : S→ R is Lipschitz and a ∈ R, then show that h : S→ R given by h(x) := a f (x) is Lipschitz.

Exercise 3.4.13: a) If f : [0,1]→ R is given by f (x) := xm for an integer m ≥ 0, show f is Lipschitz and
find the best (the smallest) Lipschitz constant K (depending on m of course). Hint: (x− y)(xm−1 + xm−2y+
xm−3y2 + · · ·+ xym−2 + ym−1) = xm− ym.
b) Using the previous exercise, show that if f : [0,1]→R is a polynomial, that is, f (x) := amxm+am−1xm−1+
· · ·+a0, then f is Lipschitz.

Exercise 3.4.14: Suppose for f : [0,1]→ R we have | f (x)− f (y)| ≤ K |x− y|, and f (0) = f (1) = 0. Prove
that | f (x)| ≤ K/2. Further show by example that K/2 is the best possible, that is, there exists such a continuous
function for which | f (x)|= K/2 for some x ∈ [0,1].
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3.5 Limits at infinity
Note: less than 1 lecture (optional, can safely be omitted unless §3.6 or §5.5 is also covered)

3.5.1 Limits at infinity
As for sequences, a continuous variable can also approach infinity. Let us make this notion precise.

Definition 3.5.1. We say ∞ is a cluster point of S ⊂ R, if for every M ∈ R, there exists an x ∈ S
such that x≥M. Similarly −∞ is a cluster point of S⊂ R, if for every M ∈ R, there exists an x ∈ S
such that x≤M.

Let f : S→ R be a function, where ∞ is a cluster point of S. If there exists an L ∈ R such that
for every ε > 0, there is an M ∈ R such that

| f (x)−L|< ε

whenever x≥M, then we say f (x) converges to L as x goes to ∞. We call L the limit and write

lim
x→∞

f (x) := L.

Alternatively we write f (x)→ L as x→ ∞.
Similarly, if −∞ is a cluster point of S and there exists an L ∈ R such that for every ε > 0, there

is an M ∈ R such that
| f (x)−L|< ε

whenever x≤M, then we say f (x) converges to L as x goes to −∞. We call L the limit and write

lim
x→−∞

f (x) := L.

Alternatively we write f (x)→ L as x→−∞.

We cheated a little bit again and said the limit. We leave it as an exercise for the reader to prove
the following proposition.

Proposition 3.5.2. The limit at ∞ or −∞ as defined above is unique if it exists.

Example 3.5.3: Let f (x) := 1
|x|+1 . Then

lim
x→∞

f (x) = 0 and lim
x→−∞

f (x) = 0.

Proof: Let ε > 0 be given. Find M > 0 large enough so that 1
M+1 < ε . If x ≥ M, then

1
x+1 ≤

1
M+1 < ε . Since 1

|x|+1 > 0 for all x the first limit is proved. The proof for −∞ is left to the
reader.
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Example 3.5.4: Let f (x) := sin(πx). Then limx→∞ f (x) does not exist. To prove this fact note that
if x = 2n+ 1/2 for some n ∈ N then f (x) = 1, while if x = 2n+ 3/2 then f (x) =−1, so they cannot
both be within a small ε of a single real number.

We must be careful not to confuse continuous limits with limits of sequences. For f (x) = sin(πx)
we could say

lim
n→∞

f (n) = 0, but lim
x→∞

f (x) does not exist.

Of course the notation is ambiguous. We are simply using the convention that n ∈ N, while x ∈ R.
When the notation is not clear, it is good to explicitly mention where the variable lives, or what kind
of limit are you using.

There is a connection of continuous limits to limits of sequences, but we must take all sequences
going to infinity, just as before in Lemma 3.1.7.

Lemma 3.5.5. Suppose f : S→ R is a function, ∞ is a cluster point of S⊂ R, and L ∈ R. Then

lim
x→∞

f (x) = L

if and only if
lim
n→∞

f (xn) = L

for all sequences {xn} such that lim
n→∞

xn = ∞.

The lemma holds for the limit as x→−∞. Its proof is almost identical and is left as an exercise.

Proof. First suppose f (x)→ L as x→ ∞. Given an ε > 0, there exists an M such that for all x≥M
we have | f (x)−L|< ε . Let {xn} be a sequence in S such that lim xn = ∞. Then there exists an N
such that for all n≥ N we have xn ≥M. And thus | f (xn)−L|< ε .

We prove the converse by contrapositive. Suppose f (x) does not go to L as x→ ∞. This means
that there exists an ε > 0, such that for every M ∈ N, there exists an x ∈ S, x≥M, let us call it xM,
such that | f (xM)−L| ≥ ε . Consider the sequence {xn}. Clearly { f (xn)} does not converge to L. It
remains to note that lim xn = ∞, because xn ≥ n for all n.

Using the lemma, we again translate results about sequential limits into results about continuous
limits as x goes to infinity. That is, we have almost immediate analogues of the corollaries in §3.1.3.
We simply allow the cluster point c to be either ∞ or −∞, in addition to a real number. We leave it
to the student to verify these statements.

3.5.2 Infinite limit
Just as for sequences, it is often convenient to distinguish certain divergent sequences, and talk
about limits being infinite almost as if the limits existed.
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Definition 3.5.6. Let f : S→ R be a function and suppose S has ∞ as a cluster point. We say f (x)
diverges to infinity as x goes to ∞, if for every N ∈ R there exists an M ∈ R such that

f (x)> N

whenever x ∈ S and x≥M. We write

lim
x→∞

f (x) := ∞,

or we say that f (x)→ ∞ as x→ ∞.

A similar definition can be made for limits as x→−∞ or as x→ c for a finite c. Also similar
definitions can be made for limits being −∞. Stating these definitions is left as an exercise. Note
that sometimes converges to infinity is used. We can again use sequential limits, and an analogue of
Lemma 3.1.7 is left as an exercise.

Example 3.5.7: Let us show that limx→∞
1+x2

1+x = ∞.
Proof: For x≥ 1 we have

1+ x2

1+ x
≥ x2

x+ x
=

x
2
.

Given N ∈ R, take M = max{2N +1,1}. If x≥M, then x≥ 1 and x/2 > N. So

1+ x2

1+ x
≥ x

2
> N.

3.5.3 Compositions
Finally, just as for limits at finite numbers we can compose functions easily.

Proposition 3.5.8. Suppose f : A→ B, g : B→ R, A,B⊂ R, a ∈ R∪{−∞,∞} is a cluster point of
A, and b ∈ R∪{−∞,∞} is a cluster point of B. Suppose

lim
x→a

f (x) = b and lim
y→b

g(y) = c

for some c ∈ R∪{−∞,∞}. If b ∈ B, then suppose g(b) = c. Then

lim
x→a

g
(

f (x)
)
= c.

The proof is straightforward, and left as an exercise. We already know the proposition when
a,b,c ∈ R, see Exercises 3.1.9 and 3.1.14. Again the requirement that g is continuous at b, if b ∈ B,
is necessary.
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Example 3.5.9: Let h(x) := e−x2+x. Then

lim
x→∞

h(x) = 0.

Proof: The claim follows once we know

lim
x→∞
−x2 + x =−∞

and
lim

y→−∞
ey = 0,

which is usually proved when the exponential function is defined.

3.5.4 Exercises
Exercise 3.5.1: Prove Proposition 3.5.2.

Exercise 3.5.2: Let f : [1,∞)→ R be a function. Define g : (0,1]→ R via g(x) := f (1/x). Using the
definitions of limits directly, show that limx→0+ g(x) exists if and only if limx→∞ f (x) exists, in which case
they are equal.

Exercise 3.5.3: Prove Proposition 3.5.8.

Exercise 3.5.4: Let us justify terminology. Let f : R→ R be a function such that limx→∞ f (x) = ∞ (diverges
to infinity). Show that f (x) diverges (i.e. does not converge) as x→ ∞.

Exercise 3.5.5: Come up with the definitions for limits of f (x) going to −∞ as x→ ∞, x→−∞, and as
x→ c for a finite c ∈ R. Then state the definitions for limits of f (x) going to ∞ as x→−∞, and as x→ c for
a finite c ∈ R.

Exercise 3.5.6: Suppose P(x) := xn + an−1xn−1 + · · ·+ a1x+ a0 is a monic polynomial of degree n ≥ 1
(monic means that the coefficient of xn is 1). a) Show that if n is even then limx→∞ P(x) = limx→−∞ P(x) = ∞.
b) Show that if n is odd then limx→∞ P(x) = ∞ and limx→−∞ P(x) =−∞ (see previous exercise).

Exercise 3.5.7: Let {xn} be a sequence. Consider S := N⊂ R, and f : S→ R defined by f (n) := xn. Show
that the two notions of limit,

lim
n→∞

xn and lim
x→∞

f (x)

are equivalent. That is, show that if one exists so does the other one, and in this case they are equal.

Exercise 3.5.8: Extend Lemma 3.5.5 as follows. Suppose S⊂R has a cluster point c ∈R, c = ∞, or c =−∞.
Let f : S→ R be a function and let L = ∞ or L =−∞. Show that

lim
x→c

f (x) = L if and only if lim
n→∞

f (xn) = L for all sequences {xn} such that lim xn = c.
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3.6 Monotone functions and continuity
Note: 1 lecture (optional, can safely be omitted unless §4.4 is also covered, requires §3.5)

Definition 3.6.1. Let S ⊂ R. We say f : S→ R is increasing (resp. strictly increasing) if x,y ∈ S
with x < y implies f (x)≤ f (y) (resp. f (x)< f (y)). We define decreasing and strictly decreasing in
the same way by switching the inequalities for f .

If a function is either increasing or decreasing we say it is monotone. If it is strictly increasing
or strictly decreasing we say it is strictly monotone.

Sometimes nondecreasing (resp. nonincreasing) is used for increasing (resp. decreasing) func-
tion to emphasize it is not strictly increasing (resp. strictly decreasing).

3.6.1 Continuity of monotone functions
It is easy to compute one-sided limits for monotone functions.

Proposition 3.6.2. Let S ⊂ R, c ∈ R, and f : S→ R be increasing. If c is a cluster point of
S∩ (−∞,c), then

lim
x→c−

f (x) = sup{ f (x) : x < c,x ∈ S},

and if c is a cluster point of S∩ (c,∞), then

lim
x→c+

f (x) = inf{ f (x) : x > c,x ∈ S}.

Similarly, if f is decreasing and c is a cluster point of S∩ (−∞,c), then

lim
x→c−

f (x) = inf{ f (x) : x < c,x ∈ S},

and if c is a cluster point of S∩ (c,∞), then

lim
x→c+

f (x) = sup{ f (x) : x > c,x ∈ S}.

In particular all the one-sided limits exist whenever they make sense. If we from now on say
that say a the left hand limit x→ c− exists we mean that c is a cluster point of S∩ (−∞,c).

Proof. Let us assume f is increasing, and we will show the first equality. The rest of the proof is
very similar and is left as an exercise.

Let a := sup{ f (x) : x < c,x ∈ S}. If a = ∞, then for every M ∈ R, there exists an xM such that
f (xM)> M. As f is increasing, f (x)≥ f (xM)> M for all x ∈ S with x > xM. If we take δ = c−xM
we obtain the definition of the limit going to infinity.

So assume a < ∞. Let ε > 0 be given. Because a is the supremum, there exists an xε < c, xε ∈ S,
such that f (xε)> a−ε . As f is increasing, if x∈ S and xε < x< c, we have a−ε < f (xε)≤ f (x)≤ a.
Let δ := c− xε . Then for x ∈ S∩ (−∞,c) with |x− c|< δ , we have | f (x)−a|< ε .
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Suppose f : S→ R, c ∈ S and that both one-sided limits exist. Since f (x) ≤ f (c) ≤ f (y)
whenever x < c < y, taking the limits we obtain

lim
x→c−

f (x)≤ f (c)≤ lim
x→c+

f (x).

Then f is continuous at c if and only if both limits are equal to each other (and hence equal to f (c)).
See also Proposition 3.1.16. See Figure 3.6 to get an idea of a what a discontinuity looks like.

Corollary 3.6.3. If I ⊂ R is an interval and f : I→ R is monotone and not constant, then f (I) is
an interval if and only if f is continuous.

Assuming f is not constant is to avoid the technicality that f (I) is a single point in that case;
f (I) is a single point if and only if f is constant. A constant function is continuous.

Proof. If f is continuous then f (I) being an interval is a consequence of intermediate value theorem.
See also Exercise 3.3.7.

Let us prove the reverse direction by contrapositive. Suppose f is not continuous at c ∈ I, and
that c is not an endpoint of I. Without loss of generality suppose f is increasing. Let

a := lim
x→c−

f (x) = sup{ f (x) : x ∈ I,x < c}, b := lim
x→c+

f (x) = inf{ f (x) : x ∈ I,x > c}.

As c is a discontinuity, a < b. If x < c, then f (x)≤ a, and if x > c, then f (x)≥ b. Therefore any
point in (a,b)\{ f (c)} is not in f (I). However there exists x1 ∈ S, x1 < c so f (x1)≤ a, and there
exists x2 ∈ S, x2 > c so f (x2)≥ b. Both f (x1) and f (x2) are in f (I), and so f (I) is not an interval.
See Figure 3.6.

When c ∈ I is an endpoint, the proof is similar and is left as an exercise.

A striking property of monotone functions is that they cannot have too many discontinuities.

Corollary 3.6.4. Let I ⊂R be an interval and f : I→R be monotone. Then f has at most countably
many discontinuities.

Proof. Let E ⊂ I be the set of all discontinuities that are not endpoints of I. As there are only
two endpoints, it is enough to show that E is countable. Without loss of generality, suppose f is
increasing. We will define an injection h : E →Q. For each c ∈ E the one-sided limits of f both
exist as c is not an endpoint. Let

a := lim
x→c−

f (x) = sup{ f (x) : x ∈ I,x < c}, b := lim
x→c+

f (x) = inf{ f (x) : x ∈ I,x > c}.

As c is a discontinuity, we have a < b. There exists a rational number q ∈ (a,b), so let h(c) := q.
Because f is increasing, q cannot correspond to any other discontinuity, so after making this choice
for all c ∈ E, we have that h is one-to-one (injective). Therefore, E is countable.
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y = f (x)

f (c)

c

I

f (x1)

f (I)

x1 x2

lim
x→c+

f (x) = b

lim
x→c−

f (x) = a

f (x2)

Figure 3.6: Increasing function f : I→ R discontinuity at c.

Example 3.6.5: By bxc denote the largest integer less than or equal to x. Define f : [0,1]→ R by

f (x) := x+
b1/(1−x)c

∑
n=0

2−n,

for x < 1 and f (1) = 3. It is left as an exercise to show that f is strictly increasing, bounded, and has
a discontinuity at all points 1− 1/k for k ∈N. In particular, there are countably many discontinuities,
but the function is bounded and defined on a closed bounded interval.

3.6.2 Continuity of inverse functions
A strictly monotone function f is one-to-one (injective). To see this notice that if x 6= y then we
can assume x < y. Then either f (x)< f (y) if f is strictly increasing or f (x)> f (y) if f is strictly
decreasing, so f (x) 6= f (y). Hence, it must have an inverse f−1 defined on its range.

Proposition 3.6.6. If I ⊂ R is an interval and f : I → R is strictly monotone. Then the inverse
f−1 : f (I)→ I is continuous.

Proof. Let us suppose f is strictly increasing. The proof is almost identical for a strictly decreasing
function. Since f is strictly increasing, so is f−1. That is, if f (x)< f (y), then we must have x < y
and therefore f−1( f (x)

)
< f−1( f (y)

)
.

Take c ∈ f (I). If c is not a cluster point of f (I), then f−1 is continuous at c automatically. So
let c be a cluster point of f (I). Suppose both of the following one-sided limits exist:

x0 := lim
y→c−

f−1(y) = sup{ f−1(y) : y < c,y ∈ f (I)}= sup{x : f (x)< c,x ∈ I},

x1 := lim
y→c+

f−1(y) = inf{ f−1(y) : y > c,y ∈ f (I)}= inf{x : f (x)> c,x ∈ I}.
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We have x0 ≤ x1 as f−1 is increasing. For all x > x0 with x ∈ I, we have f (x)≥ c. As f is strictly
increasing, we must have f (x)> c for all x > x0, x ∈ I. Therefore,

{x : x > x0,x ∈ I} ⊂ {x : f (x)> c,x ∈ I}.

The infimum of the left hand set is x0 and the infimum of the right hand set is x1, so we obtain
x0 ≥ x1. So x1 = x0, and f−1 is continuous at c.

If one of the one-sided limits does not exist the argument is similar and is left as an exercise.

Example 3.6.7: The proposition does not require f itself to be continuous. For example, let
f : R→ R

f (x) :=

{
x if x < 0,
x+1 if x≥ 0.

The function f is not continuous at 0. The image of I =R is the set (−∞,0)∪ [1,∞), not an interval.
Then f−1 : (−∞,0)∪ [1,∞)→ R can be written as

f−1(x) =

{
x if x < 0,
x−1 if x≥ 1.

It is not difficult to see that f−1 is a continuous function.

Notice what happens with the proposition if f (I) is an interval. In that case we could simply
apply Corollary 3.6.3 to both f and f−1. That is, if f : I→ J is an onto strictly monotone function
and I and J are intervals, then both f and f−1 are continuous. Furthermore f (I) is an interval
precisely when f is continuous.

3.6.3 Exercises
Exercise 3.6.1: Suppose f : [0,1]→ R is monotone. Prove f is bounded.

Exercise 3.6.2: Finish the proof of Proposition 3.6.2.

Exercise 3.6.3: Finish the proof of Corollary 3.6.3.

Exercise 3.6.4: Prove the claims in Example 3.6.5.

Exercise 3.6.5: Finish the proof of Proposition 3.6.6.

Exercise 3.6.6: Suppose S⊂R, and f : S→R is an increasing function. a) If c is a cluster point of S∩ (c,∞)
show that lim

x→c+
f (x)< ∞. b) If c is a cluster point of S∩ (−∞,c) and lim

x→c−
f (x) = ∞, prove that S⊂ (−∞,c).

Exercise 3.6.7: Suppose I ⊂ R is an interval and f : I→ R is a function such that for each c ∈ I, there exist
a,b ∈R with a > 0 such that f (x)≥ ax+b for all x ∈ I and f (c) = ac+b. Show that f is strictly increasing.
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Exercise 3.6.8: Suppose f : I→ J is a continuous, bijective (one-to-one and onto) function for two intervals
I and J. Show that f is strictly monotone.

Exercise 3.6.9: Consider a monotone function f : I→ R on an interval I. Prove that there exists a function
g : I → R such that lim

x→c−
g(x) = g(c) for all c ∈ I, except the smaller (left) endpoint of I, and such that

g(x) = f (x) for all but countably many x.

Exercise 3.6.10: a) Let S ⊂ R be any subset. If f : S→ R is increasing, then show that there exists an
increasing F : R→ R such that f (x) = F(x) for all x ∈ S. b) Find an example of a strictly increasing
f : S→ R such that an increasing F as above is never strictly increasing.

Exercise 3.6.11 (Challenging): Find an example of an increasing function f : [0,1]→ R that has a disconti-
nuity at each rational number. Then show that the image f ([0,1]) contains no interval. Hint: Enumerate the
rational numbers and define the function with a series.



136 CHAPTER 3. CONTINUOUS FUNCTIONS



Chapter 4

The Derivative

4.1 The derivative
Note: 1 lecture

The idea of a derivative is the following. Let us suppose a graph of a function looks locally like
a straight line. We can then talk about the slope of this line. The slope tells us the rate at which the
value of the function changing at the particular point. Of course, we are leaving out any function
that has corners or discontinuities. Let us be precise.

4.1.1 Definition and basic properties
Definition 4.1.1. Let I be an interval, let f : I→ R be a function, and let c ∈ I. If the limit

L := lim
x→c

f (x)− f (c)
x− c

exists, then we say f is differentiable at c, that L is the derivative of f at c, and write f ′(c) := L.

If f is differentiable at all c ∈ I, then we simply say that f is differentiable, and then we obtain a
function f ′ : I→ R.

The expression f (x)− f (c)
x−c is called the difference quotient.

The graphical interpretation of the derivative is depicted in Figure 4.1. The left-hand plot gives
the line through

(
c, f (c)

)
and

(
x, f (x)

)
with slope f (x)− f (c)

x−c , that is, the so-called secant line. When
we take the limit as x goes to c, we get the right-hand plot, where we see that the derivative of the
function at the point c is the slope of the line tangent to the graph of f at the point

(
c, f (c)

)
.

We allow I to be a closed interval and we allow c to be an endpoint of I. Some calculus books
do not allow c to be an endpoint of an interval, but all the theory still works by allowing it, and it
makes our work easier.

137
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c x

slope = f (x)− f (c)
x−c

c

slope = f ′(c)

Figure 4.1: Graphical interpretation of the derivative.

Example 4.1.2: Let f (x) := x2 defined on the whole real line. We find that

lim
x→c

x2− c2

x− c
= lim

x→c

(x+ c)(x− c)
x− c

= lim
x→c

(x+ c) = 2c.

Therefore f ′(c) = 2c.

Example 4.1.3: The function f (x) := |x| is not differentiable at the origin. When x > 0, then

|x|− |0|
x−0

=
x−0
x−0

= 1,

and when x < 0 we have
|x|− |0|

x−0
=
−x−0
x−0

=−1.

A famous example of Weierstrass shows that there exists a continuous function that is not
differentiable at any point. The construction of this function is beyond the scope of this book. On
the other hand, a differentiable function is always continuous.

Proposition 4.1.4. Let f : I→ R be differentiable at c ∈ I, then it is continuous at c.

Proof. We know the limits

lim
x→c

f (x)− f (c)
x− c

= f ′(c) and lim
x→c

(x− c) = 0

exist. Furthermore,

f (x)− f (c) =
(

f (x)− f (c)
x− c

)
(x− c).
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Therefore the limit of f (x)− f (c) exists and

lim
x→c

(
f (x)− f (c)

)
=

(
lim
x→c

f (x)− f (c)
x− c

)(
lim
x→c

(x− c)
)
= f ′(c) ·0 = 0.

Hence lim
x→c

f (x) = f (c), and f is continuous at c.

An important property of the derivative is linearity. The derivative is the approximation of
a function by a straight line. The slope of a line through two points changes linearly when the
y-coordinates are changed linearly. By taking the limit, it makes sense that the derivative is linear.

Proposition 4.1.5. Let I be an interval, let f : I→ R and g : I→ R be differentiable at c ∈ I, and
let α ∈ R.

(i) Define h : I→ R by h(x) := α f (x). Then h is differentiable at c and h′(c) = α f ′(c).

(ii) Define h : I→R by h(x) := f (x)+g(x). Then h is differentiable at c and h′(c) = f ′(c)+g′(c).

Proof. First, let h(x) := α f (x). For x ∈ I, x 6= c we have

h(x)−h(c)
x− c

=
α f (x)−α f (c)

x− c
= α

f (x)− f (c)
x− c

.

The limit as x goes to c exists on the right by Corollary 3.1.12. We get

lim
x→c

h(x)−h(c)
x− c

= α lim
x→c

f (x)− f (c)
x− c

.

Therefore h is differentiable at c, and the derivative is computed as given.
Next, define h(x) := f (x)+g(x). For x ∈ I, x 6= c we have

h(x)−h(c)
x− c

=

(
f (x)+g(x)

)
−
(

f (c)+g(c)
)

x− c
=

f (x)− f (c)
x− c

+
g(x)−g(c)

x− c
.

The limit as x goes to c exists on the right by Corollary 3.1.12. We get

lim
x→c

h(x)−h(c)
x− c

= lim
x→c

f (x)− f (c)
x− c

+ lim
x→c

g(x)−g(c)
x− c

.

Therefore h is differentiable at c and the derivative is computed as given.

It is not true that the derivative of a multiple of two functions is the multiple of the derivatives.
Instead we get the so-called product rule or the Leibniz rule∗.

∗Named for the German mathematician Gottfried Wilhelm Leibniz (1646–1716).

http://en.wikipedia.org/wiki/Leibniz
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Proposition 4.1.6 (Product rule). Let I be an interval, let f : I → R and g : I → R be functions
differentiable at c. If h : I→ R is defined by

h(x) := f (x)g(x),

then h is differentiable at c and

h′(c) = f (c)g′(c)+ f ′(c)g(c).

The proof of the product rule is left as an exercise. The key is to use the identity f (x)g(x)−
f (c)g(c) = f (x)

(
g(x)−g(c)

)
+g(c)

(
f (x)− f (c)

)
.

Proposition 4.1.7 (Quotient Rule). Let I be an interval, let f : I→R and g : I→R be differentiable
at c and g(x) 6= 0 for all x ∈ I. If h : I→ R is defined by

h(x) :=
f (x)
g(x)

,

then h is differentiable at c and

h′(c) =
f ′(c)g(c)− f (c)g′(c)(

g(c)
)2 .

Again the proof is left as an exercise.

4.1.2 Chain rule
A useful rule for computing derivatives is the chain rule.

Proposition 4.1.8 (Chain Rule). Let I1, I2 be intervals, let g : I1→ I2 be differentiable at c ∈ I1, and
f : I2→ R be differentiable at g(c). If h : I1→ R is defined by

h(x) := ( f ◦g)(x) = f
(
g(x)

)
,

then h is differentiable at c and
h′(c) = f ′

(
g(c)

)
g′(c).

Proof. Let d := g(c). Define u : I2→ R and v : I1→ R by

u(y) :=

{
f (y)− f (d)

y−d if y 6= d,

f ′(d) if y = d,

v(x) :=

{
g(x)−g(c)

x−c if x 6= c,
g′(c) if x = c.
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We note that

f (y)− f (d) = u(y)(y−d) and g(x)−g(c) = v(x)(x− c).

We plug in to obtain

h(x)−h(c) = f
(
g(x)

)
− f
(
g(c)

)
= u
(
g(x)

)(
g(x)−g(c)

)
= u
(
g(x)

)(
v(x)(x− c)

)
.

Therefore,
h(x)−h(c)

x− c
= u
(
g(x)

)
v(x). (4.1)

We compute the limits limy→d u(y) = f ′(d) = f ′
(
g(c)

)
and limx→c v(x) = g′(c). That is, the

functions u and v are continuous at d = g(c) and c respectively. Furthermore the function g is
continuous at c. Hence the limit of the right-hand side of (4.1) as x goes to c exists and is equal to
f ′
(
g(c)

)
g′(c). Thus h is differentiable at c and the limit is f ′

(
g(c)

)
g′(c).

4.1.3 Exercises
Exercise 4.1.1: Prove the product rule. Hint: Use f (x)g(x)− f (c)g(c) = f (x)

(
g(x)−g(c)

)
+g(c)

(
f (x)−

f (c)
)
.

Exercise 4.1.2: Prove the quotient rule. Hint: You can do this directly, but it may be easier to find the
derivative of 1/x and then use the chain rule and the product rule.

Exercise 4.1.3: For n ∈ Z, prove that xn is differentiable and find the derivative, unless, of course, n < 0 and
x = 0. Hint: Use the product rule.

Exercise 4.1.4: Prove that a polynomial is differentiable and find the derivative. Hint: Use the previous
exercise.

Exercise 4.1.5: Define f : R→ R by

f (x) :=

{
x2 if x ∈Q,
0 otherwise.

Prove that f is differentiable at 0, but discontinuous at all points except 0.

Exercise 4.1.6: Assume the inequality |x− sin(x)| ≤ x2. Prove that sin is differentiable at 0, and find the
derivative at 0.

Exercise 4.1.7: Using the previous exercise, prove that sin is differentiable at all x and that the derivative is
cos(x). Hint: Use the sum-to-product trigonometric identity as we did before.

Exercise 4.1.8: Let f : I→ R be differentiable. Given n ∈ Z, define f n be the function defined by f n(x) :=(
f (x)

)n. If n < 0 assume f (x) 6= 0. Prove that ( f n)′(x) = n
(

f (x)
)n−1 f ′(x).
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Exercise 4.1.9: Suppose f : R→ R is a differentiable Lipschitz continuous function. Prove that f ′ is a
bounded function.

Exercise 4.1.10: Let I1, I2 be intervals. Let f : I1→ I2 be a bijective function and g : I2→ I1 be the inverse.
Suppose that both f is differentiable at c ∈ I1 and f ′(c) 6= 0 and g is differentiable at f (c). Use the chain
rule to find a formula for g′

(
f (c)

)
(in terms of f ′(c)).

Exercise 4.1.11: Suppose f : I→ R is a bounded function and g : I→ R is a function differentiable at c ∈ I
and g(c) = g′(c) = 0. Show that h(x) := f (x)g(x) is differentiable at c. Hint: Note that you cannot apply the
product rule.

Exercise 4.1.12: Suppose f : I → R, g : I → R, and h : I → R, are functions. Suppose c ∈ I is such that
f (c)= g(c)= h(c), g and h are differentiable at c, and g′(c)= h′(c). Furthermore suppose h(x)≤ f (x)≤ g(x)
for all x ∈ I. Prove f is differentiable at c and f ′(c) = g′(c) = h′(c).
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4.2 Mean value theorem
Note: 2 lectures (some applications may be skipped)

4.2.1 Relative minima and maxima
We talked about absolute maxima and minima. These are the tallest peaks and lowest valleys in the
whole mountain range. We might also want to talk about peaks of individual mountains and valleys.

Definition 4.2.1. Let S⊂ R be a set and let f : S→ R be a function. The function f is said to have
a relative maximum at c ∈ S if there exists a δ > 0 such that for all x ∈ S such that |x− c|< δ we
have f (x)≤ f (c). The definition of relative minimum is analogous.

Theorem 4.2.2. Let f : [a,b]→ R be a function differentiable at c ∈ (a,b), and c is a relative
minimum or a relative maximum of f . Then f ′(c) = 0.

Proof. We prove the statement for a maximum. For a minimum the statement follows by considering
the function − f .

Let c be a relative maximum of f . In particular as long as |x− c|< δ we have f (x)− f (c)≤ 0.
Then we look at the difference quotient. If x > c we note that

f (x)− f (c)
x− c

≤ 0,

and if y < c we have
f (y)− f (c)

y− c
≥ 0.

See Figure 4.2 for an illustration.

cy

slope = f (y)− f (c)
y−c ≥ 0

x

slope = f (x)− f (c)
x−c ≤ 0

Figure 4.2: Slopes of secants at a relative maximum.

We now take sequences {xn} and {yn}, such that xn > c, and yn < c for all n ∈ N, and such that
lim xn = lim yn = c. Since f is differentiable at c we know

0≥ lim
n→∞

f (xn)− f (c)
xn− c

= f ′(c) = lim
n→∞

f (yn)− f (c)
yn− c

≥ 0.
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For a differentiable function, a point where f ′(c) = 0 is called a critical point. When f is not
differentiable at some points, it is common to also say c is a critical point if f ′(c) does not exist.
The theorem says that a relative minimum or maximum at an interior point of an interval must be a
critical point. As you remember from calculus, finding minima and maxima of a function can be
done by finding all the critical points together with the endpoints of the interval and simply checking
where is the function biggest or smallest.

4.2.2 Rolle’s theorem
Suppose a function is zero at both endpoints of an interval. Intuitively it ought to attain a minimum
or a maximum in the interior of the interval, then at such a minimum or a maximum, the derivative
should be zero. See Figure 4.3 for the geometric idea. This is the content of the so-called Rolle’s
theorem∗.

ca
b

Figure 4.3: Point where tangent line is horizontal, that is f ′(c) = 0.

Theorem 4.2.3 (Rolle). Let f : [a,b]→ R be continuous function differentiable on (a,b) such that
f (a) = f (b). Then there exists a c ∈ (a,b) such that f ′(c) = 0.

Proof. As f is continuous on [a,b] it attains an absolute minimum and an absolute maximum in
[a,b]. We wish to apply Theorem 4.2.2 and so we need a minimum or maximum at some c ∈ (a,b).
Write K := f (a) = f (b). If there exists an x such that f (x) > K, then the absolute maximum is
bigger than K and hence occurs at c ∈ (a,b), and therefore we get f ′(c) = 0. On the other hand if
there exists an x such that f (x)< K, then the absolute minimum occurs at some c ∈ (a,b) and we
have that f ′(c) = 0. If there is no x such that f (x)> K or f (x)< K, then we have that f (x) = K for
all x and then f ′(x) = 0 for all x ∈ [a,b], so any c will work.

Note that it is absolutely necessary for the derivative to exist for all x ∈ (a,b). For example take
the function f (x) = |x| on [−1,1]. Clearly f (−1) = f (1), but there is no point where f ′(c) = 0.

∗Named after the French mathematician Michel Rolle (1652–1719).

https://en.wikipedia.org/wiki/Michel_Rolle
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4.2.3 Mean value theorem

We extend Rolle’s theorem to functions that attain different values at the endpoints.

Theorem 4.2.4 (Mean value theorem). Let f : [a,b]→R be a continuous function differentiable on
(a,b). Then there exists a point c ∈ (a,b) such that

f (b)− f (a) = f ′(c)(b−a).

Proof. The theorem follows from Rolle’s theorem. Define the function g : [a,b]→ R by

g(x) := f (x)− f (b)+
(

f (b)− f (a)
)b− x

b−a
.

The function g is a differentiable on (a,b), continuous on [a,b], such that g(a) = 0 and g(b) = 0.
Thus there exists c ∈ (a,b) such that g′(c) = 0.

0 = g′(c) = f ′(c)+
(

f (b)− f (a)
) −1

b−a
.

Or in other words f ′(c)(b−a) = f (b)− f (a).

For a geometric interpretation of the mean value theorem, see Figure 4.4. The idea is that the
value f (b)− f (a)

b−a is the slope of the line between the points
(
a, f (a)

)
and

(
b, f (b)

)
. Then c is the

point such that f ′(c) = f (b)− f (a)
b−a , that is, the tangent line at the point

(
c, f (c)

)
has the same slope

as the line between
(
a, f (a)

)
and

(
b, f (b)

)
.

c

(a, f (a))

(b, f (b))

Figure 4.4: Graphical interpretation of the mean value theorem.
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4.2.4 Applications
We now solve our very first differential equation.

Proposition 4.2.5. Let I be an interval and let f : I → R be a differentiable function such that
f ′(x) = 0 for all x ∈ I. Then f is constant.

Proof. Take arbitrary x,y ∈ I with x < y. Then f restricted to [x,y] satisfies the hypotheses of the
mean value theorem. Therefore there is a c ∈ (x,y) such that

f (y)− f (x) = f ′(c)(y− x).

as f ′(c) = 0, we have f (y) = f (x). Therefore, the function is constant.

Now that we know what it means for the function to stay constant, let us look at increasing and
decreasing functions. We say f : I→ R is increasing (resp. strictly increasing) if x < y implies
f (x)≤ f (y) (resp. f (x)< f (y)). We define decreasing and strictly decreasing in the same way by
switching the inequalities for f .

Proposition 4.2.6. Let I be an interval and let f : I→ R be a differentiable function.

(i) f is increasing if and only if f ′(x)≥ 0 for all x ∈ I.

(ii) f is decreasing if and only if f ′(x)≤ 0 for all x ∈ I.

Proof. Let us prove the first item. Suppose f is increasing, then for all x and c in I we have

f (x)− f (c)
x− c

≥ 0.

Taking a limit as x goes to c we see that f ′(c)≥ 0.
For the other direction, suppose f ′(x)≥ 0 for all x ∈ I. Take any x,y ∈ I where x < y. By the

mean value theorem there is some c ∈ (x,y) such that

f (x)− f (y) = f ′(c)(x− y).

As f ′(c)≥ 0, and x− y < 0, then f (x)− f (y)≤ 0 or f (x)≤ f (y) and so f is increasing.
We leave the decreasing part to the reader as exercise.

Example 4.2.7: We can make a similar but weaker statement about strictly increasing and decreas-
ing functions. If f ′(x)> 0 for all x ∈ I, then f is strictly increasing. The proof is left as an exercise.
The converse is not true. For example, f (x) := x3 is a strictly increasing function, but f ′(0) = 0.

Another application of the mean value theorem is the following result about location of extrema.
The theorem is stated for an absolute minimum and maximum, but the way it is applied to find
relative minima and maxima is to restrict f to an interval (c−δ ,c+δ ).
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Proposition 4.2.8. Let f : (a,b)→ R be continuous. Let c ∈ (a,b) and suppose f is differentiable
on (a,c) and (c,b).

(i) If f ′(x)≤ 0 for x ∈ (a,c) and f ′(x)≥ 0 for x ∈ (c,b), then f has an absolute minimum at c.

(ii) If f ′(x)≥ 0 for x ∈ (a,c) and f ′(x)≤ 0 for x ∈ (c,b), then f has an absolute maximum at c.

Proof. Let us prove the first item. The second is left to the reader. Let x be in (a,c) and {yn} a
sequence such that x < yn < c and lim yn = c. By the previous proposition, the function is decreasing
on (a,c) so f (x)≥ f (yn). The function is continuous at c so we can take the limit to get f (x)≥ f (c)
for all x ∈ (a,c).

Similarly take x ∈ (c,b) and {yn} a sequence such that c < yn < x and lim yn = c. The function
is increasing on (c,b) so f (x) ≥ f (yn). By continuity of f we get f (x) ≥ f (c) for all x ∈ (c,b).
Thus f (x)≥ f (c) for all x ∈ (a,b).

The converse of the proposition does not hold. See Example 4.2.10 below.

4.2.5 Continuity of derivatives and the intermediate value theorem

Derivatives of functions satisfy an intermediate value property. The result is usually called Darboux’s
theorem.

Theorem 4.2.9 (Darboux). Let f : [a,b]→ R be differentiable. Suppose that there exists a y ∈ R
such that f ′(a)< y < f ′(b) or f ′(a)> y > f ′(b). Then there exists a c ∈ (a,b) such that f ′(c) = y.

Proof. Suppose without loss of generality that f ′(a)< y < f ′(b). Define

g(x) := yx− f (x).

As g is continuous on [a,b], then g attains a maximum at some c ∈ [a,b].
Now compute g′(x) = y− f ′(x). Thus g′(a) > 0. As the derivative is the limit of difference

quotients and is positive, there must be some difference quotient that is positive. That is, there must
exist an x > a such that

g(x)−g(a)
x−a

> 0,

or g(x)> g(a). Thus a cannot possibly be a maximum of g. Similarly as g′(b)< 0, we find an x < b
(a different x) such that g(x)−g(b)

x−b < 0 or that g(x)> g(b), thus b cannot possibly be a maximum.
Therefore c ∈ (a,b). Then as c is a maximum of g we find g′(c) = 0 and f ′(c) = y.

We have seen already that there exist discontinuous functions that have the intermediate value
property. While it is hard to imagine at first, there also exist functions that are differentiable
everywhere and the derivative is not continuous.
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Example 4.2.10: Let f : R→ R be the function defined by

f (x) :=

{(
xsin(1/x)

)2 if x 6= 0,
0 if x = 0.

We claim that f is differentiable everywhere, but f ′ : R→ R is not continuous at the origin.
Furthermore, f has a minimum at 0, but the derivative changes sign infinitely often near the origin.
See Figure 4.5.

Figure 4.5: A function with a discontinuous derivative. The function f is on the left and f ′ is on the
right. Notice that f (x)≤ x2 on the left graph.

Proof: It is easy to see from the definition that f has an absolute minimum at 0: we know
f (x)≥ 0 for all x and f (0) = 0.

The function f is differentiable for x 6= 0 and the derivative is 2sin(1/x)
(
xsin(1/x)− cos(1/x)

)
.

As an exercise show that for xn =
4

(8n+1)π we have lim f ′(xn) =−1, and for yn =
4

(8n+3)π we have
lim f ′(yn) = 1. Hence if f ′ exists at 0, then it cannot be continuous.

Let us show that f ′ exists at 0. We claim that the derivative is zero. In other words
∣∣∣ f (x)− f (0)

x−0 −0
∣∣∣

goes to zero as x goes to zero. For x 6= 0 we have∣∣∣∣ f (x)− f (0)
x−0

−0
∣∣∣∣= ∣∣∣∣x2 sin2(1/x)

x

∣∣∣∣= ∣∣xsin2(1/x)
∣∣≤ |x| .

And, of course, as x tends to zero, then |x| tends to zero and hence
∣∣∣ f (x)− f (0)

x−0 −0
∣∣∣ goes to zero.

Therefore, f is differentiable at 0 and the derivative at 0 is 0. A key point in the above calculation is
that is that | f (x)| ≤ x2, see also Exercises 4.1.11 and 4.1.12.

It is sometimes useful to assume the derivative of a differentiable function is continuous. If
f : I→ R is differentiable and the derivative f ′ is continuous on I, then we say f is continuously
differentiable. It is common to write C1(I) for the set of continuously differentiable functions on I.
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4.2.6 Exercises
Exercise 4.2.1: Finish the proof of Proposition 4.2.6.

Exercise 4.2.2: Finish the proof of Proposition 4.2.8.

Exercise 4.2.3: Suppose f : R→R is a differentiable function such that f ′ is a bounded function. Prove f is
a Lipschitz continuous function.

Exercise 4.2.4: Suppose f : [a,b]→ R is differentiable and c ∈ [a,b]. Then show there exists a sequence
{xn} converging to c, xn 6= c for all n, such that

f ′(c) = lim
n→∞

f ′(xn).

Do note this does not imply that f ′ is continuous (why?).

Exercise 4.2.5: Suppose f : R→R is a function such that | f (x)− f (y)| ≤ |x− y|2 for all x and y. Show that
f (x) =C for some constant C. Hint: Show that f is differentiable at all points and compute the derivative.

Exercise 4.2.6: Suppose I is an interval and f : I→ R is a differentiable function. If f ′(x)> 0 for all x ∈ I,
show that f is strictly increasing.

Exercise 4.2.7: Suppose f : (a,b)→ R is a differentiable function such that f ′(x) 6= 0 for all x ∈ (a,b).
Suppose there exists a point c ∈ (a,b) such that f ′(c)> 0. Prove f ′(x)> 0 for all x ∈ (a,b).

Exercise 4.2.8: Suppose f : (a,b)→R and g : (a,b)→R are differentiable functions such that f ′(x) = g′(x)
for all x ∈ (a,b), then show that there exists a constant C such that f (x) = g(x)+C.

Exercise 4.2.9: Prove the following version of L’Hopital’s rule. Suppose f : (a,b)→ R and g : (a,b)→ R
are differentiable functions. Suppose that at c ∈ (a,b), f (c) = 0, g(c) = 0, and that the limit of f ′(x)/g′(x) as x
goes to c exists. Show that

lim
x→c

f (x)
g(x)

= lim
x→c

f ′(x)
g′(x)

.

Exercise 4.2.10: Let f : (a,b) → R be an unbounded differentiable function. Show f ′ : (a,b) → R is
unbounded.

Exercise 4.2.11: Prove the theorem Rolle actually proved in 1691: If f is a polynomial, f ′(a) = f ′(b) = 0
for some a < b, and there is no c ∈ (a,b) such that f ′(c) = 0, then there is at most one root of f in (a,b), that
is at most one x ∈ (a,b) such that f (x) = 0. In other words, between any two consecutive roots of f ′ is at
most one root of f . Hint: suppose there are two roots and see what happens.

Exercise 4.2.12: Suppose a,b ∈ R and f : R→ R is differentiable, f ′(x) = a for all x, and f (0) = b. Find f
and prove that it is the unique differentiable function with this property.
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4.3 Taylor’s theorem
Note: half a lecture (optional section)

4.3.1 Derivatives of higher orders
When f : I→ R is differentiable, we obtain a function f ′ : I→ R. The function f ′ is called the first
derivative of f . If f ′ is differentiable, we denote by f ′′ : I→R the derivative of f ′. The function f ′′

is called the second derivative of f . We similarly obtain f ′′′, f ′′′′, and so on. With a larger number
of derivatives the notation would get out of hand; we denote by f (n) the nth derivative of f .

When f possesses n derivatives, we say f is n times differentiable.

4.3.2 Taylor’s theorem
Taylor’s theorem∗ is a generalization of the mean value theorem. Mean value theorem says that up
to a small error f (x) for x near x0 can be approximated by f (x0), that is

f (x) = f (x0)+ f ′(c)(x− x0),

where the “error” is measured in terms of the first derivative at some point c between x and x0.
Taylor’s theorem generalizes this result to higher derivatives. It tells us that up to a small error, any
n times differentiable function can be approximated at a point x0 by a polynomial. The error of this
approximation behaves like (x− x0)

n near the point x0. To see why this is a good approximation
notice that for a big n, (x− x0)

n is very small in a small interval around x0.

Definition 4.3.1. For an n times differentiable function f defined near a point x0 ∈ R, define the
nth Taylor polynomial for f at x0 as

Px0
n (x) :=

n

∑
k=0

f (k)(x0)

k!
(x− x0)

k

= f (x0)+ f ′(x0)(x− x0)+
f ′′(x0)

2
(x− x0)

2 +
f (3)(x0)

6
(x− x0)

3 + · · ·+ f (n)(x0)

n!
(x− x0)

n.

Taylor’s theorem says a function behaves like its nth Taylor polynomial. The mean value
theorem is really Taylor’s theorem for the first derivative.

Theorem 4.3.2 (Taylor). Suppose f : [a,b]→R is a function with n continuous derivatives on [a,b]
and such that f (n+1) exists on (a,b). Given distinct points x0 and x in [a,b], we can find a point c
between x0 and x such that

f (x) = Px0
n (x)+

f (n+1)(c)
(n+1)!

(x− x0)
n+1.

∗Named for the English mathematician Brook Taylor (1685–1731). It was first found by the Scottish mathematician
James Gregory (1638 – 1675). The statement we give was proved by Joseph-Louis Lagrange (1736 – 1813)

http://en.wikipedia.org/wiki/Brook_Taylor
http://en.wikipedia.org/wiki/James_Gregory_(mathematician)
http://en.wikipedia.org/wiki/Lagrange
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The term Rx0
n (x) := f (n+1)(c)

(n+1)! (x− x0)
n+1 is called the remainder term. This form of the remainder

term is called the Lagrange form of the remainder. There are other ways to write the remainder
term, but we skip those. Note that c depends on both x and x0.

Proof. Find a number Mx,x0 (depending on x and x0) solving the equation

f (x) = Px0
n (x)+Mx,x0(x− x0)

n+1.

Define a function g(s) by

g(s) := f (s)−Px0
n (s)−Mx,x0(s− x0)

n+1.

We compute the kth derivative at x0 of the Taylor polynomial (Px0
n )

(k)
(x0) = f (k)(x0) for k =

0,1,2, . . . ,n (the zeroth derivative corresponds to the function itself). Therefore,

g(x0) = g′(x0) = g′′(x0) = · · ·= g(n)(x0) = 0.

In particular g(x0) = 0. On the other hand g(x) = 0. By the mean value theorem there exists an x1
between x0 and x such that g′(x1) = 0. Applying the mean value theorem to g′ we obtain that there
exists x2 between x0 and x1 (and therefore between x0 and x) such that g′′(x2) = 0. We repeat the
argument n+1 times to obtain a number xn+1 between x0 and xn (and therefore between x0 and x)
such that g(n+1)(xn+1) = 0.

Let c := xn+1. We compute the (n+1)th derivative of g to find

g(n+1)(s) = f (n+1)(s)− (n+1)!Mx,x0.

Plugging in c for s we obtain Mx,x0 =
f (n+1)(c)
(n+1)! , and we are done.

In the proof we have computed (Px0
n )

(k)
(x0) = f (k)(x0) for k = 0,1,2, . . . ,n. Therefore the Taylor

polynomial has the same derivatives as f at x0 up to the nth derivative. That is why the Taylor
polynomial is a good approximation to f .

The definition of derivative says that a function is differentiable if it is locally approximated by
a line. Similarly we mention in passing that there exists a converse to Taylor’s theorem, which we
will neither state nor prove, saying that if a function is locally approximated in a certain way by a
polynomial of degree d, then it has d derivatives.

4.3.3 Exercises
Exercise 4.3.1: Compute the nth Taylor Polynomial at 0 for the exponential function.

Exercise 4.3.2: Suppose p is a polynomial of degree d. Given any x0 ∈ R, show that the (d +1)th Taylor
polynomial for p at x0 is equal to p.
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Exercise 4.3.3: Let f (x) := |x|3. Compute f ′(x) and f ′′(x) for all x, but show that f (3)(0) does not exist.

Exercise 4.3.4: Suppose f : R→ R has n continuous derivatives. Show that for any x0 ∈ R, there exist
polynomials P and Q of degree n and an ε > 0 such that P(x)≤ f (x)≤ Q(x) for all x ∈ [x0− ε,x0 + ε] and
Q(x)−P(x) = λ (x− x0)

n for some λ ≥ 0.

Exercise 4.3.5: If f : [a,b]→ R has n+1 continuous derivatives and x0 ∈ [a,b], prove lim
x→x0

R
x0
n (x)

(x−x0)
n = 0.

Exercise 4.3.6: Suppose f : [a,b]→R has n+1 continuous derivatives and x0 ∈ (a,b). Show that f (k)(x0) =

0 for all k = 0,1,2, . . . ,n if and only if g(x) := f (x)
(x−x0)

n+1 is continuous at x0.

Exercise 4.3.7: Suppose a,b,c ∈ R and f : R→ R is differentiable, f ′′(x) = a for all x, f ′(0) = b, and
f (0) = c. Find f and prove that it is the unique differentiable function with this property.

Exercise 4.3.8 (Challenging): Show that a simple converse to Taylor’s theorem does not hold. Find a function
f : R→ R with no second derivative at x = 0 such that | f (x)| ≤

∣∣x3
∣∣, that is, f goes to zero at 0 faster than

x3, and while f ′(0) exists, f ′′(0) does not.
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4.4 Inverse function theorem
Note: less than 1 lecture (optional section, needed for §5.4, requires §3.6)

4.4.1 Inverse function theorem
The main idea of differentiating inverse functions is the following lemma.

Lemma 4.4.1. Let I,J ⊂ R be intervals. If f : I→ J is strictly monotone (hence one-to-one), onto
( f (I) = J), differentiable at x, and f ′(x) 6= 0, then the inverse f−1 is differentiable at y = f (x) and

( f−1)′(y) =
1

f ′
(

f−1(y)
) = 1

f ′(x)
.

If f is continuously differentiable and f ′ is never zero, then f−1 is continuously differentiable.

Proof. By Proposition 3.6.6 f has a continuous inverse. Let us call the inverse g : J → I for
convenience. Let x,y be as in the statement, take t ∈ I to be arbitrary and let s := f (t). Then

g(s)−g(y)
s− y

=
g
(

f (t)
)
−g
(

f (x)
)

f (t)− f (x)
=

t− x
f (t)− f (x)

.

As f is differentiable at x and f ′(x) 6= 0, then t−x
f (t)− f (x) → 1/f ′(x) as t→ x. Because g(s)→ g(y) as

s→ y, we can plug in g(s) for t, and g(y) for x and take the limit as s goes to y, that is, the limit
exists. In other words,

lim
s→y

g(s)−g(y)
s− y

= lim
t→x

t− x
f (t)− f (x)

=
1

f ′(x)
=

1
f ′
(
g(y)

)
See Figure 4.6 for the geometric idea.

If both f ′ and g are continuous, f ′ is nonzero at all x, then the lemma applies at all points x ∈ I
and the resulting function g′(y) = 1

f ′
(

g(t)
) must be continuous.

What is usually called the inverse function theorem is the following result.

Theorem 4.4.2 (Inverse function theorem). Let f : (a,b)→ R be a continuously differentiable
function, x0 ∈ (a,b) a point where f ′(x0) 6= 0. Then there exists an interval I ⊂ (a,b) with x0 ∈ I,
the restriction f |I is injective with an inverse g : J→ I defined on J := f (I), which is continuously
differentiable and

g′(y) =
1

f ′
(
g(y)

) , for all y ∈ J.
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t = g(s) x = g(y)

f (t) = s

f (x) = y
slope = f (t)− f (x)

t−x = s−y
g(s)−g(y)

f (t) = s f (x) = y

t = g(s)

x = g(y)

slope = t−x
f (t)− f (x) =

g(s)−g(y)
s−y

Figure 4.6: Interpretation of the derivative of the inverse function.

Proof. Without loss of generality, suppose f ′(x0) > 0. As f ′ is continuous, there must exist an
interval I with x0 ∈ I such that f ′(x)> 0 for all x0 ∈ I.

By Exercise 4.2.6 f is strictly increasing on I, and hence the restriction f |I bijective onto
J := f (I). As f is continuous, then by the intermediate value theorem (see also Corollary 3.6.3),
f (I) is in interval. Now apply Lemma 4.4.1.

If you tried to prove the existence of roots directly as in Example 1.2.3 you may have seen
how difficult that endeavor is. However, with the machinery we have built for inverse functions it
becomes an almost trivial exercise, and with and the inverse function theorem we prove far more
than mere existence.

Corollary 4.4.3. Given any n ∈ N and any x ≥ 0 there exists a unique number y ≥ 0 (denoted
x1/n := y), such that yn = x. Furthermore, the function g : (0,∞)→ (0,∞) defined by g(x) := x1/n

is continuously differentiable and

g′(x) =
1

nx(n−1)/n
=

1
n

x(1−n)/n,

using the convention xn/m := (x1/m)
n
.

Proof. For x = 0 the existence of a unique root is trivial.
Let f (x) := xn. Using product rule, f is continuously differentiable and f ′(x) = nxn−1, see

Exercise 4.1.3. For x > 0 the derivative f ′ is strictly positive and so again by Exercise 4.2.6, f is
strictly increasing (this can also be proved directly). It is also easy to see that the image of f is the
entire interval (0,∞). We obtain a unique inverse g and so the existence and uniqueness of positive
nth roots. We apply Lemma 4.4.1 to obtain the derivative.
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Example 4.4.4: The corollary provides a good example of where the inverse function theorem
gives us an interval smaller than (a,b). Take f : R→ R defined by f (x) := x2. Then f ′(x) 6= 0 as
long as x 6= 0. If x0 > 0, we can take I = (0,∞), but no larger.

Example 4.4.5: Another useful example is f (x) := x3. The function f : R→ R is one-to-one and
onto, so f−1(x) = x1/3 exists on the entire real line including zero and negative x. The function f
has a continuous derivative, but f−1 has no derivative at the origin. The point is that f ′(0) = 0. See
also Exercise 4.4.4.

4.4.2 Exercises
Exercise 4.4.1: Suppose f : R→ R is continuously differentiable such that f ′(x)> 0 for all x. Show that f
is invertible on the interval J = f (R), the inverse is continuously differentiable, and ( f−1)

′
(y)> 0 for all

y ∈ f (R).

Exercise 4.4.2: Suppose I,J are intervals and a monotone onto f : I→ J has an inverse g : J→ I. Suppose
you already know that both f and g are differentiable everywhere and f ′ is never zero. Using chain rule but
not Lemma 4.4.1 prove the formula g′(y) = 1/f ′

(
g(y)
)
.

Exercise 4.4.3: Let n ∈ N be even. Prove that every x > 0 has a unique negative nth root. That is, there
exists a negative number y such that yn = x. Compute the derivative of the function g(x) := y.

Exercise 4.4.4: Let n ∈ N be odd and n≥ 3. Prove that every x has a unique nth root. That is, there exists a
number y such that yn = x. Prove that the function defined by g(x) := y is differentiable except at x = 0 and
compute the derivative. Prove that g is not differentiable at x = 0.

Exercise 4.4.5 (requires §4.3): Show that if in the inverse function theorem f has k continuous derivatives,
then the inverse function g also has k continuous derivatives.

Exercise 4.4.6: Let f (x) := x+ 2x2 sin(1/x) for x 6= 0 and f (0) = 0. Show that f is differentiable at all x,
that f ′(0)> 0, but that f is not invertible on any interval containing the origin.

Exercise 4.4.7: a) Let f : R→ R be a continuously differentiable function and k > 0 be a number such
that f ′(x)≥ k for all x ∈ R. Show f is one-to-one and onto, and has a continuously differentiable inverse
f−1 : R→ R. b) Find an example f : R→ R where f ′(x)> 0 for all x, but f is not onto.

Exercise 4.4.8: Suppose I,J are intervals and a monotone onto f : I→ J has an inverse g : J→ I. Suppose
x ∈ I and y := f (x) ∈ J, and that g is differentiable at y. Prove:
a) If g′(y) 6= 0, then f is differentiable at x.
b) If g′(y) = 0, then f is not differentiable at x.
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Chapter 5

The Riemann Integral

5.1 The Riemann integral

Note: 1.5 lectures

We now get to the fundamental concept of integration. There is often confusion among students
of calculus between integral and antiderivative. The integral is (informally) the area under the
curve, nothing else. That we can compute an antiderivative using the integral is a nontrivial result
we have to prove. In this chapter we define the Riemann integral∗ using the Darboux integral†,
which is technically simpler than (but equivalent to) the traditional definition as done by Riemann.

5.1.1 Partitions and lower and upper integrals

We want to integrate a bounded function defined on an interval [a,b]. We first define two auxiliary
integrals that can be defined for all bounded functions. Only then can we talk about the Riemann
integral and the Riemann integrable functions.

Definition 5.1.1. A partition P of the interval [a,b] is a finite set of numbers {x0,x1,x2, . . . ,xn}
such that

a = x0 < x1 < x2 < · · ·< xn−1 < xn = b.

We write

∆xi := xi− xi−1.

∗Named after the German mathematician Georg Friedrich Bernhard Riemann (1826–1866).
†Named after the French mathematician Jean-Gaston Darboux (1842–1917).
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http://en.wikipedia.org/wiki/Riemann
http://en.wikipedia.org/wiki/Darboux
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Let f : [a,b]→ R be a bounded function. Let P be a partition of [a,b]. Define

mi := inf{ f (x) : xi−1 ≤ x≤ xi},
Mi := sup{ f (x) : xi−1 ≤ x≤ xi},

L(P, f ) :=
n

∑
i=1

mi∆xi,

U(P, f ) :=
n

∑
i=1

Mi∆xi.

We call L(P, f ) the lower Darboux sum and U(P, f ) the upper Darboux sum.

The geometric idea of Darboux sums is indicated in Figure 5.1. The lower sum is the area of
the shaded rectangles, and the upper sum is the area of the entire rectangles, shaded plus unshaded
parts. The width of the ith rectangle is ∆xi, the height of the shaded rectangle is mi and the height of
the entire rectangle is Mi.

x0 x1 x2 x3 x4 x5 x6 x7 x8

∆x5

m5

M5

Figure 5.1: Sample Darboux sums.

Proposition 5.1.2. Let f : [a,b]→R be a bounded function. Let m,M ∈R be such that for all x we
have m≤ f (x)≤M. For any partition P of [a,b] we have

m(b−a)≤ L(P, f )≤U(P, f )≤M(b−a). (5.1)

Proof. Let P be a partition. Then note that m≤ mi for all i and Mi ≤M for all i. Also mi ≤Mi for
all i. Finally ∑

n
i=1 ∆xi = (b−a). Therefore,

m(b−a) = m

(
n

∑
i=1

∆xi

)
=

n

∑
i=1

m∆xi ≤
n

∑
i=1

mi∆xi ≤

≤
n

∑
i=1

Mi∆xi ≤
n

∑
i=1

M∆xi = M

(
n

∑
i=1

∆xi

)
= M(b−a).

Hence we get (5.1). In other words, the set of lower and upper sums are bounded sets.
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Definition 5.1.3. As the sets of lower and upper Darboux sums are bounded, we define∫ b

a
f (x) dx := sup{L(P, f ) : P a partition of [a,b]},

∫ b

a
f (x) dx := inf{U(P, f ) : P a partition of [a,b]}.

We call
∫

the lower Darboux integral and
∫

the upper Darboux integral. To avoid worrying about
the variable of integration, we often simply write∫ b

a
f :=

∫ b

a
f (x) dx and

∫ b

a
f :=

∫ b

a
f (x) dx.

If integration is to make sense, then the lower and upper Darboux integrals should be the same
number, as we want a single number to call the integral. However, these two integrals may in fact
differ for some functions.

Example 5.1.4: Take the Dirichlet function f : [0,1]→ R, where f (x) := 1 if x ∈Q and f (x) := 0
if x /∈Q. Then ∫ 1

0
f = 0 and

∫ 1

0
f = 1.

The reason is that for every i we have mi = inf{ f (x) : x ∈ [xi−1,xi]}= 0 and Mi = sup{ f (x) : x ∈
[xi−1,xi]}= 1. Thus

L(P, f ) =
n

∑
i=1

0 ·∆xi = 0,

U(P, f ) =
n

∑
i=1

1 ·∆xi =
n

∑
i=1

∆xi = 1.

Remark 5.1.5. The same definition of
∫ b

a f and
∫ b

a f is used when f is defined on a larger set S
such that [a,b]⊂ S. In that case, we use the restriction of f to [a,b] and we must ensure that the
restriction is bounded on [a,b].

To compute the integral we often take a partition P and make it finer. That is, we cut intervals in
the partition into yet smaller pieces.

Definition 5.1.6. Let P = {x0,x1, . . . ,xn} and P̃ = {x̃0, x̃1, . . . , x̃m} be partitions of [a,b]. We say P̃
is a refinement of P if as sets P⊂ P̃.

That is, P̃ is a refinement of a partition if it contains all the numbers in P and perhaps some other
numbers in between. For example, {0,0.5,1,2} is a partition of [0,2] and {0,0.2,0.5,1,1.5,1.75,2}
is a refinement. The main reason for introducing refinements is the following proposition.
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Proposition 5.1.7. Let f : [a,b]→R be a bounded function, and let P be a partition of [a,b]. Let P̃
be a refinement of P. Then

L(P, f )≤ L(P̃, f ) and U(P̃, f )≤U(P, f ).

Proof. The tricky part of this proof is to get the notation correct. Let P̃ := {x̃0, x̃1, . . . , x̃m} be
a refinement of P := {x0,x1, . . . ,xn}. Then x0 = x̃0 and xn = x̃m. In fact, we can find integers
k0 < k1 < · · ·< kn such that x j = x̃k j for j = 0,1,2, . . . ,n.

Let ∆x̃ j = x̃ j−1− x̃ j. We get

∆x j =
k j

∑
p=k j−1+1

∆x̃p.

Let m j be as before and correspond to the partition P. Let m̃ j := inf{ f (x) : x̃ j−1 ≤ x≤ x̃ j}. Now,
m j ≤ m̃p for k j−1 < p≤ k j. Therefore,

m j∆x j = m j

k j

∑
p=k j−1+1

∆x̃p =
k j

∑
p=k j−1+1

m j∆x̃p ≤
k j

∑
p=k j−1+1

m̃p∆x̃p.

So

L(P, f ) =
n

∑
j=1

m j∆x j ≤
n

∑
j=1

k j

∑
p=k j−1+1

m̃p∆x̃p =
m

∑
j=1

m̃ j∆x̃ j = L(P̃, f ).

The proof of U(P̃, f )≤U(P, f ) is left as an exercise.

Armed with refinements we prove the following. The key point of this next proposition is that
the lower Darboux integral is less than or equal to the upper Darboux integral.

Proposition 5.1.8. Let f : [a,b]→ R be a bounded function. Let m,M ∈ R be such that for all
x ∈ [a,b] we have m≤ f (x)≤M. Then

m(b−a)≤
∫ b

a
f ≤

∫ b

a
f ≤M(b−a). (5.2)

Proof. By Proposition 5.1.2 we have for any partition P

m(b−a)≤ L(P, f )≤U(P, f )≤M(b−a).

The inequality m(b− a) ≤ L(P, f ) implies m(b− a) ≤
∫ b

a f . Also U(P, f ) ≤ M(b− a) implies∫ b
a f ≤M(b−a).

The key point of this proposition is the middle inequality in (5.2). Let P1,P2 be partitions of [a,b].
Define P̃ := P1∪P2. The set P̃ is a partition of [a,b]. Furthermore, P̃ is a refinement of P1 and it is
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also a refinement of P2. By Proposition 5.1.7 we have L(P1, f )≤ L(P̃, f ) and U(P̃, f )≤U(P2, f ).
Putting it all together we have

L(P1, f )≤ L(P̃, f )≤U(P̃, f )≤U(P2, f ).

In other words, for two arbitrary partitions P1 and P2 we have L(P1, f )≤U(P2, f ). Now we recall
Proposition 1.2.7. Taking the supremum and infimum over all partitions we get

sup{L(P, f ) : P a partition of [a,b]} ≤ inf{U(P, f ) : P a partition of [a,b]}.

In other words
∫ b

a f ≤
∫ b

a f .

5.1.2 Riemann integral
We can finally define the Riemann integral. However, the Riemann integral is only defined on a
certain class of functions, called the Riemann integrable functions.

Definition 5.1.9. Let f : [a,b]→ R be a bounded function such that

∫ b

a
f (x) dx =

∫ b

a
f (x) dx.

Then f is said to be Riemann integrable. The set of Riemann integrable functions on [a,b] is denoted
by R[a,b]. When f ∈R[a,b] we define

∫ b

a
f (x) dx :=

∫ b

a
f (x) dx =

∫ b

a
f (x) dx.

As before, we often simply write ∫ b

a
f :=

∫ b

a
f (x) dx.

The number
∫ b

a f is called the Riemann integral of f , or sometimes simply the integral of f .

By definition, any Riemann integrable function is bounded. By appealing to Proposition 5.1.8
we immediately obtain the following proposition.

Proposition 5.1.10. Let f : [a,b]→R be a Riemann integrable function. Let m,M ∈R be such that
m≤ f (x)≤M for all x ∈ [a,b]. Then

m(b−a)≤
∫ b

a
f ≤M(b−a).
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Often we use a weaker form of this proposition. That is, if | f (x)| ≤M for all x ∈ [a,b], then∣∣∣∣∫ b

a
f
∣∣∣∣≤M(b−a).

Example 5.1.11: We integrate constant functions using Proposition 5.1.8. If f (x) := c for some
constant c, then we take m = M = c. In inequality (5.2) all the inequalities must be equalities. Thus
f is integrable on [a,b] and

∫ b
a f = c(b−a).

Example 5.1.12: Let f : [0,2]→ R be defined by

f (x) :=


1 if x < 1,
1/2 if x = 1,
0 if x > 1.

We claim f is Riemann integrable and
∫ 2

0 f = 1.
Proof: Let 0 < ε < 1 be arbitrary. Let P := {0,1−ε,1+ε,2} be a partition. We use the notation

from the definition of the Darboux sums. Then

m1 = inf{ f (x) : x ∈ [0,1− ε]}= 1, M1 = sup{ f (x) : x ∈ [0,1− ε]}= 1,
m2 = inf{ f (x) : x ∈ [1− ε,1+ ε]}= 0, M2 = sup{ f (x) : x ∈ [1− ε,1+ ε]}= 1,
m3 = inf{ f (x) : x ∈ [1+ ε,2]}= 0, M3 = sup{ f (x) : x ∈ [1+ ε,2]}= 0.

Furthermore, ∆x1 = 1− ε , ∆x2 = 2ε and ∆x3 = 1− ε . We compute

L(P, f ) =
3

∑
i=1

mi∆xi = 1 · (1− ε)+0 ·2ε +0 · (1− ε) = 1− ε,

U(P, f ) =
3

∑
i=1

Mi∆xi = 1 · (1− ε)+1 ·2ε +0 · (1− ε) = 1+ ε.

Thus, ∫ 2

0
f −

∫ 2

0
f ≤U(P, f )−L(P, f ) = (1+ ε)− (1− ε) = 2ε.

By Proposition 5.1.8 we have
∫ 2

0 f ≤
∫ 2

0 f . As ε was arbitrary we see
∫ 2

0 f =
∫ 2

0 f . So f is Riemann
integrable. Finally,

1− ε = L(P, f )≤
∫ 2

0
f ≤U(P, f ) = 1+ ε.

Hence,
∣∣∫ 2

0 f −1
∣∣≤ ε . As ε was arbitrary, we have

∫ 2
0 f = 1.

It may be worthwhile to extract part of the technique of the example into a proposition.
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Proposition 5.1.13. Let f : [a,b]→ R be a bounded function. Then f is Riemann integrable if for
every ε > 0, there exists a partition P such that

U(P, f )−L(P, f )< ε.

Proof. If for every ε > 0, a P exists we have:

0≤
∫ b

a
f −

∫ b

a
f ≤U(P, f )−L(P, f )< ε.

Therefore,
∫ b

a f =
∫ b

a f , and f is integrable.

Example 5.1.14: Let us show 1
1+x is integrable on [0,b] for any b > 0. We will see later that all

continuous functions are integrable, but let us demonstrate how we do it directly.
Let ε > 0 be given. Take n ∈ N and pick x j := jb/n, to form the partition P := {x0,x1, . . . ,xn} of

[0,b]. We have ∆x j = b/n for all j. As f is decreasing, for any subinterval [x j−1,x j] we obtain

m j = inf
{

1
1+ x

: x ∈ [x j−1,x j]

}
=

1
1+ x j

, M j = sup
{

1
1+ x

: x ∈ [x j−1,x j]

}
=

1
1+ x j−1

.

Then we have

U(P, f )−L(P, f ) =
n

∑
j=1

∆x j(M j−m j) =

=
b
n

n

∑
j=1

(
1

1+ ( j−1)b/n
− 1

1+ jb/n

)
=

b
n

(
1

1+ 0b/n
− 1

1+ nb/n

)
=

b2

n(b+1)
.

The sum telescopes, the terms successively cancel each other, something we have seen before.
Picking n to be such that b2

n(b+1) < ε the proposition is satisfied and the function is integrable.

5.1.3 More notation
When f : S→ R is defined on a larger set S and [a,b]⊂ S, we say f is Riemann integrable on [a,b]
if the restriction of f to [a,b] is Riemann integrable. In this case, we say f ∈R[a,b], and we write∫ b

a f to mean the Riemann integral of the restriction of f to [a,b].
It is useful to define the integral

∫ b
a f even if a 6< b. Suppose b < a and f ∈R[b,a], then define∫ b

a
f :=−

∫ a

b
f .

For any function f we define ∫ a

a
f := 0.
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At times, the variable x may already have some other meaning. When we need to write down
the variable of integration, we may simply use a different letter. For example,∫ b

a
f (s) ds :=

∫ b

a
f (x) dx.

5.1.4 Exercises
Exercise 5.1.1: Let f : [0,1]→R be defined by f (x) := x3 and let P := {0,0.1,0.4,1}. Compute L(P, f ) and
U(P, f ).

Exercise 5.1.2: Let f : [0,1]→ R be defined by f (x) := x. Show that f ∈R[0,1] and compute
∫ 1

0 f using
the definition of the integral (but feel free to use the propositions of this section).

Exercise 5.1.3: Let f : [a,b]→ R be a bounded function. Suppose there exists a sequence of partitions {Pk}
of [a,b] such that

lim
k→∞

(
U(Pk, f )−L(Pk, f )

)
= 0.

Show that f is Riemann integrable and that∫ b

a
f = lim

k→∞

U(Pk, f ) = lim
k→∞

L(Pk, f ).

Exercise 5.1.4: Finish the proof of Proposition 5.1.7.

Exercise 5.1.5: Suppose f : [−1,1]→ R is defined as

f (x) :=

{
1 if x > 0,
0 if x≤ 0.

Prove that f ∈ R[−1,1] and compute
∫ 1
−1 f using the definition of the integral (but feel free to use the

propositions of this section).

Exercise 5.1.6: Let c ∈ (a,b) and let d ∈ R. Define f : [a,b]→ R as

f (x) :=

{
d if x = c,
0 if x 6= c.

Prove that f ∈R[a,b] and compute
∫ b

a f using the definition of the integral (but feel free to use the propositions
of this section).

Exercise 5.1.7: Suppose f : [a,b]→R is Riemann integrable. Let ε > 0 be given. Then show that there exists
a partition P = {x0,x1, . . . ,xn} such that if we pick any set of numbers {c1,c2, . . . ,cn} with ck ∈ [xk−1,xk] for
all k, then ∣∣∣∣∣

∫ b

a
f −

n

∑
k=1

f (ck)∆xk

∣∣∣∣∣< ε.
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Exercise 5.1.8: Let f : [a,b]→ R be a Riemann integrable function. Let α > 0 and β ∈ R. Then define
g(x) := f (αx+β ) on the interval I = [a−β

α
, b−β

α
]. Show that g is Riemann integrable on I.

Exercise 5.1.9: Suppose f : [0,1]→R and g : [0,1]→R are such that for all x ∈ (0,1] we have f (x) = g(x).
Suppose f is Riemann integrable. Prove g is Riemann integrable and

∫ 1
0 f =

∫ 1
0 g.

Exercise 5.1.10: Let f : [0,1]→R be a bounded function. Let Pn = {x0,x1, . . . ,xn} be a uniform partition of
[0,1], that is, x j := j/n. Is {L(Pn, f )}∞

n=1 always monotone? Yes/No: Prove or find a counterexample.

Exercise 5.1.11 (Challenging): For a bounded function f : [0,1]→R let Rn := (1/n)∑
n
j=1 f ( j/n) (the uniform

right hand rule). a) If f is Riemann integrable show
∫ 1

0 f = lim Rn. b) Find an f that is not Riemann
integrable, but lim Rn exists.

Exercise 5.1.12 (Challenging): Generalize the previous exercise. Show that f ∈R[a,b] if and only if there
exists an I ∈ R, such that for every ε > 0 there exists a δ > 0 such that if P is a partition with ∆xi < δ for all
i, then |L(P, f )− I|< ε and |U(P, f )− I|< ε . If f ∈R[a,b], then I =

∫ b
a f .

Exercise 5.1.13: Using Exercise 5.1.12 and the idea of the proof in Exercise 5.1.7, show that Darboux
integral is the same as the standard definition of Riemann integral, which you have most likely seen in
calculus. That is, show that f ∈R[a,b] if and only if there exists an I ∈ R, such that for every ε > 0 there
exists a δ > 0 such that if P = {x0,x1, . . . ,xn} is a partition with ∆xi < δ for all i, then |∑n

i=1 f (ci)∆xi− I|< ε

for any set {c1,c2, . . . ,cn} with ci ∈ [xi−1,xi]. If f ∈R[a,b], then I =
∫ b

a f .

Exercise 5.1.14 (Challenging): Find an example of functions f : [0,1]→ R which is Riemann integrable,
and g : [0,1]→ [0,1] which is one-to-one and onto, such that the composition f ◦g is not Riemann integrable.
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5.2 Properties of the integral
Note: 2 lectures, integrability of functions with discontinuities can safely be skipped

5.2.1 Additivity
The next result we prove is usually referred to as the additive property of the integral. First we prove
the additivity property for the lower and upper Darboux integrals.

Lemma 5.2.1. Suppose a < b < c and f : [a,c]→ R is a bounded function. Then∫ c

a
f =

∫ b

a
f +

∫ c

b
f

and ∫ c

a
f =

∫ b

a
f +

∫ c

b
f .

Proof. If we have partitions P1 = {x0,x1, . . . ,xk} of [a,b] and P2 = {xk,xk+1, . . . ,xn} of [b,c], then
the set P := P1∪P2 = {x0,x1, . . . ,xn} is a partition of [a,c]. Then

L(P, f ) =
n

∑
j=1

m j∆x j =
k

∑
j=1

m j∆x j +
n

∑
j=k+1

m j∆x j = L(P1, f )+L(P2, f ).

When we take the supremum of the right hand side over all P1 and P2, we are taking a supremum
of the left hand side over all partitions P of [a,c] that contain b. If Q is any partition of [a,c] and
P = Q∪{b}, then P is a refinement of Q and so L(Q, f )≤ L(P, f ). Therefore, taking a supremum
only over the P that contain b is sufficient to find the supremum of L(P, f ) over all partitions P, see
Exercise 1.1.9. Finally recall Exercise 1.2.9 to compute∫ c

a
f = sup{L(P, f ) : P a partition of [a,c]}

= sup{L(P, f ) : P a partition of [a,c], b ∈ P}
= sup{L(P1, f )+L(P2, f ) : P1 a partition of [a,b], P2 a partition of [b,c]}
= sup{L(P1, f ) : P1 a partition of [a,b]}+ sup{L(P2, f ) : P2 a partition of [b,c]}

=
∫ b

a
f +

∫ c

b
f .

Similarly, for P, P1, and P2 as above we obtain

U(P, f ) =
n

∑
j=1

M j∆x j =
k

∑
j=1

M j∆x j +
n

∑
j=k+1

M j∆x j =U(P1, f )+U(P2, f ).
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We wish to take the infimum on the right over all P1 and P2, and so we are taking the infimum
over all partitions P of [a,c] that contain b. If Q is any partition of [a,c] and P = Q∪{b}, then P
is a refinement of Q and so U(Q, f )≥U(P, f ). Therefore, taking an infimum only over the P that
contain b is sufficient to find the infimum of U(P, f ) for all P. We obtain

∫ c

a
f =

∫ b

a
f +

∫ c

b
f .

Theorem 5.2.2. Let a < b < c. A function f : [a,c]→ R is Riemann integrable if and only if f is
Riemann integrable on [a,b] and [b,c]. If f is Riemann integrable, then∫ c

a
f =

∫ b

a
f +

∫ c

b
f .

Proof. Suppose f ∈R[a,c], then
∫ c

a f =
∫ c

a f =
∫ c

a f . We apply the lemma to get

∫ c

a
f =

∫ c

a
f =

∫ b

a
f +

∫ c

b
f ≤

∫ b

a
f +

∫ c

b
f =

∫ c

a
f =

∫ c

a
f .

Thus the inequality is an equality and

∫ b

a
f +

∫ c

b
f =

∫ b

a
f +

∫ c

b
f .

As we also know
∫ b

a f ≤
∫ b

a f and
∫ c

b f ≤
∫ c

b f , we conclude

∫ b

a
f =

∫ b

a
f and

∫ c

b
f =

∫ c

b
f .

Thus f is Riemann integrable on [a,b] and [b,c] and the desired formula holds.
Now assume the restrictions of f to [a,b] and to [b,c] are Riemann integrable. We again apply

the lemma to get

∫ c

a
f =

∫ b

a
f +

∫ c

b
f =

∫ b

a
f +

∫ c

b
f =

∫ b

a
f +

∫ c

b
f =

∫ c

a
f .

Therefore f is Riemann integrable on [a,c], and the integral is computed as indicated.

An easy consequence of the additivity is the following corollary. We leave the details to the
reader as an exercise.

Corollary 5.2.3. If f ∈R[a,b] and [c,d]⊂ [a,b], then the restriction f |[c,d] is in R[c,d].
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5.2.2 Linearity and monotonicity
Proposition 5.2.4 (Linearity). Let f and g be in R[a,b] and α ∈ R.

(i) α f is in R[a,b] and ∫ b

a
α f (x) dx = α

∫ b

a
f (x) dx.

(ii) f +g is in R[a,b] and∫ b

a

(
f (x)+g(x)

)
dx =

∫ b

a
f (x) dx+

∫ b

a
g(x) dx.

Proof. Let us prove the first item. First suppose α ≥ 0. Let P be a partition of [a,b]. Let
mi := inf{ f (x) : x ∈ [xi−1,xi]} as usual. Since α is nonnegative, we can move the multiplication by
α past the infimum,

inf{α f (x) : x ∈ [xi−1,xi]}= α inf{ f (x) : x ∈ [xi−1,xi]}= αmi.

Therefore

L(P,α f ) =
n

∑
i=1

αmi∆i = α

n

∑
i=1

mi∆i = αL(P, f ).

Similarly
U(P,α f ) = αU(P, f ).

Again, as α ≥ 0 we may move multiplication by α past the supremum. Hence,∫ b

a
α f (x) dx = sup{L(P,α f ) : P a partition of [a,b]}

= sup{αL(P, f ) : P a partition of [a,b]}
= α sup{L(P, f ) : P a partition of [a,b]}

= α

∫ b

a
f (x) dx.

Similarly we show ∫ b

a
α f (x) dx = α

∫ b

a
f (x) dx.

The conclusion now follows for α ≥ 0.
To finish the proof of the first item, we need to show that − f is Riemann integrable and∫ b

a − f (x) dx =−
∫ b

a f (x) dx. The proof of this fact is left as an exercise.
The proof of the second item in the proposition is also left as an exercise. It is not as trivial as it

may appear at first glance.
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We should note that the second item in the proposition does not hold with equality for the
Darboux integrals. For arbitrary bounded functions f and g we only obtain

∫ b

a
( f +g)≤

∫ b

a
f +

∫ b

a
g, and

∫ b

a
( f +g)≥

∫ b

a
f +

∫ b

a
g.

See Exercise 5.2.16.

Proposition 5.2.5 (Monotonicity). Let f and g be in R[a,b] and let f (x)≤ g(x) for all x ∈ [a,b].
Then ∫ b

a
f ≤

∫ b

a
g.

Proof. Let P = {x0,x1, . . . ,xn} be a partition of [a,b]. Then let

mi := inf{ f (x) : x ∈ [xi−1,xi]} and m̃i := inf{g(x) : x ∈ [xi−1,xi]}.

As f (x)≤ g(x), then mi ≤ m̃i. Therefore,

L(P, f ) =
n

∑
i=1

mi∆xi ≤
n

∑
i=1

m̃i∆xi = L(P,g).

We take the supremum over all P (see Proposition 1.3.7) to obtain∫ b

a
f ≤

∫ b

a
g.

As f and g are Riemann integrable, the conclusion follows.

5.2.3 Continuous functions
Let us show that continuous functions are Riemann integrable. In fact we will show we can even
allow some discontinuities. We start with a function continuous on the whole closed interval [a,b].

Lemma 5.2.6. If f : [a,b]→ R is a continuous function, then f ∈R[a,b].

Proof. As f is continuous on a closed bounded interval, it is uniformly continuous. Let ε > 0 be
given. Find a δ > 0 such that |x− y|< δ implies | f (x)− f (y)|< ε

b−a .
Let P = {x0,x1, . . . ,xn} be a partition of [a,b] such that ∆xi < δ for all i = 1,2, . . . ,n. For

example, take n such that b−a
n < δ and let xi := i

n(b−a)+a. Then for all x,y ∈ [xi−1,xi] we have
|x− y| ≤ ∆xi < δ and so

f (x)− f (y)≤ | f (x)− f (y)|< ε

b−a
.
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As f is continuous on [xi−1,xi], it attains a maximum and a minimum on this interval. Let x be a
point where f attains the maximum and y be a point where f attains the minimum. Then f (x) = Mi
and f (y) = mi in the notation from the definition of the integral. Therefore,

Mi−mi = f (x)− f (y)<
ε

b−a
.

And so ∫ b

a
f −

∫ b

a
f ≤U(P, f )−L(P, f )

=

(
n

∑
i=1

Mi∆xi

)
−

(
n

∑
i=1

mi∆xi

)

=
n

∑
i=1

(Mi−mi)∆xi

<
ε

b−a

n

∑
i=1

∆xi

=
ε

b−a
(b−a) = ε.

As ε > 0 was arbitrary, ∫ b

a
f =

∫ b

a
f ,

and f is Riemann integrable on [a,b].

The second lemma says that we need the function to only be “Riemann integrable inside the
interval,” as long as it is bounded. It also tells us how to compute the integral.

Lemma 5.2.7. Let f : [a,b]→ R be a bounded function that is Riemann integrable on [a′,b′] for
all a′,b′ such that a < a′ < b′ < b. Then f ∈R[a,b]. Furthermore, if a < an < bn < b are such that
lim an = a and lim bn = b, then ∫ b

a
f = lim

n→∞

∫ bn

an

f .

Proof. Let M > 0 be a real number such that | f (x)| ≤M. Pick two sequences of numbers a < an <
bn < b such that lim an = a and lim bn = b. Note M > 0 and (b−a)≥ (bn−an). Thus

−M(b−a)≤−M(bn−an)≤
∫ bn

an

f ≤M(bn−an)≤M(b−a).

Therefore the sequence of numbers {
∫ bn

an
f}∞

n=1 is bounded and by Bolzano-Weierstrass has a

convergent subsequence indexed by nk. Let us call L the limit of the subsequence {
∫ bnk

ank
f}∞

k=1.
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Lemma 5.2.1 says that the lower and upper integral are additive and the hypothesis says that f
is integrable on [ank ,bnk ]. Therefore∫ b

a
f =

∫ ank

a
f +

∫ bnk

ank

f +
∫ b

bnk

f ≥−M(ank−a)+
∫ bnk

ank

f −M(b−bnk).

We take the limit as k goes to ∞ on the right-hand side,∫ b

a
f ≥−M ·0+L−M ·0 = L.

Next we use additivity of the upper integral,

∫ b

a
f =

∫ ank

a
f +

∫ bnk

ank

f +
∫ b

bnk

f ≤M(ank−a)+
∫ bnk

ank

f +M(b−bnk).

We take the same subsequence {
∫ bnk

ank
f}∞

k=1 and take the limit to obtain

∫ b

a
f ≤M ·0+L+M ·0 = L.

Thus
∫ b

a f =
∫ b

a f = L and hence f is Riemann integrable and
∫ b

a f = L. In particular, no matter
what sequences {an} and {bn} we started with and what subsequence we chose, the L is the same
number.

To prove the final statement of the lemma we use Theorem 2.3.7. We have shown that every con-
vergent subsequence {

∫ bnk
ank

f} converges to L =
∫ b

a f . Therefore, the sequence {
∫ bn

an
f} is convergent

and converges to L.

We say a function f : [a,b]→ R has finitely many discontinuities if there exists a finite set
S := {x1,x2, . . . ,xn} ⊂ [a,b], and f is continuous at all points of [a,b]\S.

Theorem 5.2.8. Let f : [a,b]→ R be a bounded function with finitely many discontinuities. Then
f ∈R[a,b].

Proof. We divide the interval into finitely many intervals [ai,bi] so that f is continuous on the
interior (ai,bi). If f is continuous on (ai,bi), then it is continuous and hence integrable on [ci,di]
whenever ai < ci < di < bi. By Lemma 5.2.7 the restriction of f to [ai,bi] is integrable. By additivity
of the integral (and induction) f is integrable on the union of the intervals.

Sometimes it is convenient (or necessary) to change certain values of a function and then
integrate. The next result says that if we change the values only at finitely many points, the integral
does not change.
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Proposition 5.2.9. Let f : [a,b]→ R be Riemann integrable. Let g : [a,b]→ R be a function such
that f (x) = g(x) for all x ∈ [a,b]\S, where S is a finite set. Then g is a Riemann integrable function
and ∫ b

a
g =

∫ b

a
f .

Sketch of proof. Using additivity of the integral, we split up the interval [a,b] into smaller intervals
such that f (x) = g(x) holds for all x except at the endpoints (details are left to the reader).

Therefore, without loss of generality suppose f (x) = g(x) for all x ∈ (a,b). The proof follows
by Lemma 5.2.7, and is left as an exercise.

5.2.4 Exercises
Exercise 5.2.1: Let f be in R[a,b]. Prove that − f is in R[a,b] and∫ b

a
− f (x) dx =−

∫ b

a
f (x) dx.

Exercise 5.2.2: Let f and g be in R[a,b]. Prove that f +g is in R[a,b] and∫ b

a

(
f (x)+g(x)

)
dx =

∫ b

a
f (x) dx+

∫ b

a
g(x) dx.

Hint: Use Proposition 5.1.7 to find a single partition P such that U(P, f )− L(P, f ) < ε/2 and U(P,g)−
L(P,g)< ε/2.

Exercise 5.2.3: Let f : [a,b]→ R be Riemann integrable. Let g : [a,b]→ R be a function such that f (x) =
g(x) for all x ∈ (a,b). Prove that g is Riemann integrable and that∫ b

a
g =

∫ b

a
f .

Exercise 5.2.4: Prove the mean value theorem for integrals. That is, prove that if f : [a,b]→R is continuous,
then there exists a c ∈ [a,b] such that

∫ b
a f = f (c)(b−a).

Exercise 5.2.5: If f : [a,b]→ R is a continuous function such that f (x)≥ 0 for all x ∈ [a,b] and
∫ b

a f = 0.
Prove that f (x) = 0 for all x.

Exercise 5.2.6: If f : [a,b]→ R is a continuous function for all x ∈ [a,b] and
∫ b

a f = 0. Prove that there
exists a c ∈ [a,b] such that f (c) = 0 (Compare with the previous exercise).

Exercise 5.2.7: If f : [a,b]→ R and g : [a,b]→ R are continuous functions such that
∫ b

a f =
∫ b

a g. Then
show that there exists a c ∈ [a,b] such that f (c) = g(c).

Exercise 5.2.8: Let f ∈R[a,b]. Let α,β ,γ be arbitrary numbers in [a,b] (not necessarily ordered in any
way). Prove ∫

γ

α

f =
∫

β

α

f +
∫

γ

β

f .

Recall what
∫ b

a f means if b≤ a.
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Exercise 5.2.9: Prove Corollary 5.2.3.

Exercise 5.2.10: Suppose f : [a,b]→ R is bounded and has finitely many discontinuities. Show that as
a function of x the expression | f (x)| is bounded with finitely many discontinuities and is thus Riemann
integrable. Then show ∣∣∣∣∫ b

a
f (x) dx

∣∣∣∣≤ ∫ b

a
| f (x)| dx.

Exercise 5.2.11 (Hard): Show that the Thomae or popcorn function (see Example 3.2.12) is Riemann
integrable. Therefore, there exists a function discontinuous at all rational numbers (a dense set) that is
Riemann integrable.

In particular, define f : [0,1]→ R by

f (x) :=

{
1/k if x = m/k where m,k ∈ N and m and k have no common divisors,
0 if x is irrational.

Show
∫ 1

0 f = 0.

If I ⊂ R is a bounded interval, then the function

ϕI(x) :=

{
1 if x ∈ I,
0 otherwise,

is called an elementary step function.

Exercise 5.2.12: Let I be an arbitrary bounded interval (you should consider all types of intervals: closed,
open, half-open) and a < b, then using only the definition of the integral show that the elementary step
function ϕI is integrable on [a,b], and find the integral in terms of a, b, and the endpoints of I.

When a function f can be written as

f (x) =
n

∑
k=1

αkϕIk(x)

for some real numbers α1,α2, . . . ,αn and some bounded intervals I1, I2, . . . , In, then f is called a step function.

Exercise 5.2.13: Using the previous exercise, show that a step function is integrable on any interval [a,b].
Furthermore, find the integral in terms of a, b, the endpoints of Ik and the αk.

Exercise 5.2.14: Let f : [a,b]→R be increasing. a) Show that f is Riemann integrable. Hint: Use a uniform
partition; each subinterval of same length. b) Use part a to show that a decreasing function is Riemann
integrable. c) Suppose h = f −g where f and g are increasing functions on [a,b]. Show that h is Riemann
integrable∗.

Exercise 5.2.15 (Challenging): Suppose f ∈R[a,b], then the function that takes x to | f (x)| is also Riemann
integrable on [a,b]. Then show the same inequality as Exercise 5.2.10.

Exercise 5.2.16: Suppose f : [a,b]→ R and g : [a,b]→ R are bounded. a) Show
∫ b

a ( f + g) ≤
∫ b

a f +
∫ b

a g
and

∫ b
a ( f +g)≥

∫ b
a f +

∫ b
a g. b) Find example f and g where the inequality is strict. Hint: f and g should not

be Riemann integrable.

∗Such an h is said to be of bounded variation.
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5.3 Fundamental theorem of calculus
Note: 1.5 lectures

In this chapter we discuss and prove the fundamental theorem of calculus. The entirety of
integral calculus is built upon this theorem, ergo the name. The theorem relates the seemingly
unrelated concepts of integral and derivative. It tells us how to compute the antiderivative of a
function using the integral and vice-versa.

5.3.1 First form of the theorem
Theorem 5.3.1. Let F : [a,b]→R be a continuous function, differentiable on (a,b). Let f ∈R[a,b]
be such that f (x) = F ′(x) for x ∈ (a,b). Then∫ b

a
f = F(b)−F(a).

It is not hard to generalize the theorem to allow a finite number of points in [a,b] where F is not
differentiable, as long as it is continuous. This generalization is left as an exercise.

Proof. Let P = {x0,x1, . . . ,xn} be a partition of [a,b]. For each interval [xi−1,xi], use the mean
value theorem to find a ci ∈ (xi−1,xi) such that

f (ci)∆xi = F ′(ci)(xi− xi−1) = F(xi)−F(xi−1).

Using the notation from the definition of the integral, we have mi ≤ f (ci)≤Mi and so

mi∆xi ≤ F(xi)−F(xi−1)≤Mi∆xi.

We sum over i = 1,2, . . . ,n to get

n

∑
i=1

mi∆xi ≤
n

∑
i=1

(
F(xi)−F(xi−1)

)
≤

n

∑
i=1

Mi∆xi.

In the middle sum, all the terms except the first and last cancel and we end up with F(xn)−F(x0) =
F(b)−F(a). The sums on the left and on the right are the lower and the upper sum respectively. So

L(P, f )≤ F(b)−F(a)≤U(P, f ).

We take the supremum of L(P, f ) over all P and the left inequality yields∫ b

a
f ≤ F(b)−F(a).
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Similarly, taking the infimum of U(P, f ) over all partitions P yields

F(b)−F(a)≤
∫ b

a
f .

As f is Riemann integrable, we have

∫ b

a
f =

∫ b

a
f ≤ F(b)−F(a)≤

∫ b

a
f =

∫ b

a
f .

The inequalities must be equalities and we are done.

The theorem is used to compute integrals. Suppose we know that the function f (x) is a derivative
of some other function F(x), then we can find an explicit expression for

∫ b
a f .

Example 5.3.2: Suppose we are trying to compute∫ 1

0
x2 dx.

We notice x2 is the derivative of x3

3 . We use the fundamental theorem to write

∫ 1

0
x2 dx =

13

3
− 03

3
=

1
3
.

5.3.2 Second form of the theorem
The second form of the fundamental theorem gives us a way to solve the differential equation
F ′(x) = f (x), where f is a known function and we are trying to find an F that satisfies the equation.

Theorem 5.3.3. Let f : [a,b]→ R be a Riemann integrable function. Define

F(x) :=
∫ x

a
f .

First, F is continuous on [a,b]. Second, if f is continuous at c ∈ [a,b], then F is differentiable at c
and F ′(c) = f (c).

Proof. As f is bounded, there is an M > 0 such that | f (x)| ≤M for all x∈ [a,b]. Suppose x,y∈ [a,b]
with x > y. Then

|F(x)−F(y)|=
∣∣∣∣∫ x

a
f −

∫ y

a
f
∣∣∣∣= ∣∣∣∣∫ x

y
f
∣∣∣∣≤M |x− y| .

By symmetry, the same also holds if x < y. So F is Lipschitz continuous and hence continuous.



176 CHAPTER 5. THE RIEMANN INTEGRAL

Now suppose f is continuous at c. Let ε > 0 be given. Let δ > 0 be such that for x ∈ [a,b]
|x− c|< δ implies | f (x)− f (c)|< ε . In particular, for such x we have

f (c)− ε ≤ f (x)≤ f (c)+ ε.

Thus if x > c, then (
f (c)− ε

)
(x− c)≤

∫ x

c
f ≤

(
f (c)+ ε

)
(x− c).

When c > x, then the inequalities are reversed. Therefore, assuming c 6= x we get

f (c)− ε ≤
∫ x

c f
x− c

≤ f (c)+ ε.

As
F(x)−F(c)

x− c
=

∫ x
a f −

∫ c
a f

x− c
=

∫ x
c f

x− c
,

we have ∣∣∣∣F(x)−F(c)
x− c

− f (c)
∣∣∣∣≤ ε.

The result follows. It is left to the reader to see why is it OK that we just have a non-strict
inequality.

Of course, if f is continuous on [a,b], then it is automatically Riemann integrable, F is differen-
tiable on all of [a,b] and F ′(x) = f (x) for all x ∈ [a,b].

Remark 5.3.4. The second form of the fundamental theorem of calculus still holds if we let d ∈ [a,b]
and define

F(x) :=
∫ x

d
f .

That is, we can use any point of [a,b] as our base point. The proof is left as an exercise.

Let us look at what a simple discontinuity can do. Take f (x) :=−1 if x < 0, and f (x) := 1 if
x≥ 0. Let F(x) :=

∫ x
0 f . It is not difficult to see that F(x) = |x|. Notice that f is discontinuous at

0 and F is not differentiable at 0. However, the converse does not hold. Let us do another quick
example. Let g(x) := 0 if x 6= 0, and g(0) = 1. Letting G(x) :=

∫ x
0 g, we find that G(x) = 0 for all x.

So g is discontinuous at 0, but G′(0) exists and is equal to 0.
A common misunderstanding of the integral for calculus students is to think of integrals whose

solution cannot be given in closed-form as somehow deficient. This is not the case. Most integrals
we write down are not computable in closed-form. Even some integrals that we consider in closed-
form are not really such. For example, how does a computer find the value of lnx? One way to do it
is to note that we define the natural log as the antiderivative of 1/x such that ln1 = 0. Therefore,

lnx :=
∫ x

1
1/s ds.
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Then we can numerically approximate the integral. Morally, we did not really “simplify”
∫ x

1 1/s ds
by writing down lnx. We simply gave the integral a name. If we require numerical answers, it is
possible we end up doing the calculation by approximating an integral anyway.

Another common function defined by an integral that cannot be evaluated symbolically is the
erf function, defined as

erf(x) :=
2√
π

∫ x

0
e−s2

ds.

This function comes up often in applied mathematics. It is simply the antiderivative of (2/
√

π)e−x2

that is zero at zero. The second form of the fundamental theorem tells us that we can write the
function as an integral. If we wish to compute any particular value, we numerically approximate the
integral.

5.3.3 Change of variables
A theorem often used in calculus to solve integrals is the change of variables theorem. Let us prove
it now. Recall a function is continuously differentiable if it is differentiable and the derivative is
continuous.

Theorem 5.3.5 (Change of variables). Let g : [a,b]→ R be a continuously differentiable function.
If g([a,b])⊂ [c,d] and f : [c,d]→ R is continuous, then∫ b

a
f
(
g(x)

)
g′(x) dx =

∫ g(b)

g(a)
f (s) ds.

Proof. As g, g′, and f are continuous, we know f
(
g(x)

)
g′(x) is a continuous function on [a,b],

therefore it is Riemann integrable.
Define

F(y) :=
∫ y

g(a)
f (s) ds.

By the second form of the fundamental theorem of calculus (using Exercise 5.3.4 below) F is a
differentiable function and F ′(y) = f (y). We apply the chain rule and write(

F ◦g
)′
(x) = F ′

(
g(x)

)
g′(x) = f

(
g(x)

)
g′(x).

We note that F
(
g(a)

)
= 0 and we use the first form of the fundamental theorem to obtain∫ g(b)

g(a)
f (s) ds = F

(
g(b)

)
= F

(
g(b)

)
−F

(
g(a)

)
=
∫ b

a

(
F ◦g

)′
(x) dx =

∫ b

a
f
(
g(x)

)
g′(x) dx.

The change of variables theorem is often used to solve integrals by changing them to integrals
that we know or that we can solve using the fundamental theorem of calculus.
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Example 5.3.6: From an exercise, we know that the derivative of sin(x) is cos(x). Therefore we
solve ∫ √

π

0
xcos(x2) dx =

∫
π

0

cos(s)
2

ds =
1
2

∫
π

0
cos(s) ds =

sin(π)− sin(0)
2

= 0.

However, beware that we must satisfy the hypotheses of the theorem. The following example
demonstrates why we should not just move symbols around mindlessly. We must be careful that
those symbols really make sense.

Example 5.3.7: Suppose we write down ∫ 1

−1

ln |x|
x

dx.

It may be tempting to take g(x) := ln |x|. Then take g′(x) = 1
x and try to write∫ g(1)

g(−1)
s ds =

∫ 0

0
s ds = 0.

This “solution” is incorrect, and it does not say that we can solve the given integral. First problem is
that ln|x|

x is not continuous on [−1,1]. Second, ln|x|
x is not even Riemann integrable on [−1,1] (it is

unbounded). The integral we wrote down simply does not make sense. Finally, g is not continuous
on [−1,1] either.

5.3.4 Exercises

Exercise 5.3.1: Compute
d
dx

(∫ x

−x
es2

ds
)

.

Exercise 5.3.2: Compute
d
dx

(∫ x2

0
sin(s2) ds

)
.

Exercise 5.3.3: Suppose F : [a,b]→ R is continuous and differentiable on [a,b]\S, where S is a finite set.
Suppose there exists an f ∈R[a,b] such that f (x) = F ′(x) for x ∈ [a,b]\S. Show that

∫ b
a f = F(b)−F(a).

Exercise 5.3.4: Let f : [a,b]→ R be a continuous function. Let c ∈ [a,b] be arbitrary. Define

F(x) :=
∫ x

c
f .

Prove that F is differentiable and that F ′(x) = f (x) for all x ∈ [a,b].

Exercise 5.3.5: Prove integration by parts. That is, suppose F and G are continuously differentiable functions
on [a,b]. Then prove ∫ b

a
F(x)G′(x) dx = F(b)G(b)−F(a)G(a)−

∫ b

a
F ′(x)G(x) dx.
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Exercise 5.3.6: Suppose F and G are continuously∗ differentiable functions defined on [a,b] such that
F ′(x) = G′(x) for all x ∈ [a,b]. Using the fundamental theorem of calculus, show that F and G differ by a
constant. That is, show that there exists a C ∈ R such that F(x)−G(x) =C.

The next exercise shows how we can use the integral to “smooth out” a non-differentiable function.

Exercise 5.3.7: Let f : [a,b]→ R be a continuous function. Let ε > 0 be a constant. For x ∈ [a+ ε,b− ε],
define

g(x) :=
1

2ε

∫ x+ε

x−ε

f .

a) Show that g is differentiable and find the derivative.
b) Let f be differentiable and fix x ∈ (a,b) (let ε be small enough). What happens to g′(x) as ε gets smaller?
c) Find g for f (x) := |x|, ε = 1 (you can assume [a,b] is large enough).

Exercise 5.3.8: Suppose f : [a,b]→ R is continuous and
∫ x

a f =
∫ b

x f for all x ∈ [a,b]. Show that f (x) = 0
for all x ∈ [a,b].

Exercise 5.3.9: Suppose f : [a,b]→ R is continuous and
∫ x

a f = 0 for all rational x in [a,b]. Show that
f (x) = 0 for all x ∈ [a,b].

Exercise 5.3.10: A function f is an odd function if f (x)=− f (−x), and f is an even function if f (x)= f (−x).
Let a > 0. Assume f is continuous. Prove: a) If f is odd, then

∫ a
−a f = 0. b) If f is even, then

∫ a
−a f = 2

∫ a
0 f .

Exercise 5.3.11: a) Show that f (x) := sin(1/x) is integrable on any interval (you can define f (0) to be
anything). b) Compute

∫ 1
−1 sin(1/x)dx. (Mind the discontinuity)

Exercise 5.3.12 (uses §3.6): a) Suppose f : [a,b]→ R is increasing, by Exercise 5.2.14, f is Riemann
integrable. Suppose f has a discontinuity at c ∈ (a,b), show that F(x) :=

∫ x
a f is not differentiable at c.

b) In Exercise 3.6.11, you have constructed an increasing function f : [0,1]→ R that is discontinuous at
every x ∈ [0,1]∩Q. Use this f to construct a function F(x) that is continuous on [0,1], but not differentiable
at every x ∈ [0,1]∩Q.

∗ Compare this hypothesis to Exercise 4.2.8.
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5.4 The logarithm and the exponential
Note: 1 lecture (optional, requires the optional sections §3.5, §3.6, §4.4)

We now have all that is required to finally properly define the exponential and the logarithm that
you know from calculus so well. First recall that we have a good idea of what xn means as long as n
is a positive integer. Simply,

xn := x · x · · · · · x︸ ︷︷ ︸
n times

.

It makes sense to define x0 := 1. For negative integers we define x−n := 1/xn. If x > 0, we mentioned
before that x1/n is defined as the unique positive nth root. Finally for any rational number n/m, we
define

xn/m :=
(
x1/m)n

.

However, what do we mean by
√

2
√

2
? Or xy in general? In particular, what is ex for all x? And how

do we solve y = ex for x? This section answers these questions and more.

5.4.1 The logarithm
It is convenient to start with the logarithm. Let us show that a unique function with the right
properties exists, and only then will we call it the logarithm.

Proposition 5.4.1. There exists a unique function L : (0,∞)→ R such that

(i) L(1) = 0.

(ii) L is differentiable and L′(x) = 1/x.

(iii) L is strictly increasing, bijective, and

lim
x→0

L(x) =−∞, and lim
x→∞

L(x) = ∞.

(iv) L(xy) = L(x)+L(y) for all x,y ∈ (0,∞).

(v) If q is a rational number and x > 0, then L(xq) = qL(x).

Proof. To prove existence, let us define a candidate and show it satisfies all the properties. Define

L(x) :=
∫ x

1

1
t

dt.

Obviously (i) holds. Property (ii) holds via the fundamental theorem of calculus.
To prove property (iv), we change variables u = yt to obtain

L(x) =
∫ x

1

1
t

dt =
∫ xy

y

1
u

du =
∫ xy

1

1
u

du−
∫ y

1

1
u

du = L(xy)−L(y).
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Property (ii) together with the fact that L′(x) = 1/x > 0 for x > 0, implies that L is strictly
increasing and hence one-to-one. Let us show L is onto. As 1/t ≥ 1/2 when t ∈ [1,2],

L(2) =
∫ 2

1

1
t

dt ≥ 1/2.

By induction, (iv) implies that for n ∈ N

L(2n) = L(2)+L(2)+ · · ·+L(2) = nL(2).

Given any y > 0, by the Archimedean property of the real numbers (notice L(2)> 0), there is an
n ∈ N such that L(2n) > y. By the intermediate value theorem there is an x1 ∈ (1,2n) such that
L(x1) = y. We get (0,∞) is in the image of L. As L is increasing, L(x)> y for all x > 2n, and so

lim
x→∞

L(x) = ∞.

Next 0 = L(x/x) = L(x)+L(1/x), and so L(x) =−L(1/x). Using x = 2−n, we obtain as above that L
achieves all negative numbers. And

lim
x→0

L(x) = lim
x→0
−L(1/x) = lim

x→∞
−L(x) =−∞.

In the limits, note that only x > 0 are in the domain of L.
Let us now prove (v). As above, (iv) implies for n ∈ N we have L(xn) = nL(x). We already saw

that L(x) =−L(1/x) so L(x−n) =−L(xn) =−nL(x). Then for m ∈ N

L(x) = L
(
(x1/m)

m)
= mL(x1/m).

Putting everything together for n ∈ Z and m ∈ N we have L(xn/m) = nL(x1/m) = (n/m)L(x).
Finally for uniqueness, let us use properties (i) and (ii). Via the fundamental theorem of calculus

L(x) =
∫ x

1

1
t

dt

is the unique function such that L(1) = 0 and L′(x) = 1/x.

Having proved that there is a unique function with these properties we simply define the
logarithm or sometimes called the natural logarithm:

ln(x) := L(x).

Often mathematicians write log(x) instead of ln(x), which is more familiar to calculus students.
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5.4.2 The exponential
Just as with the logarithm we define the exponential via a list of properties.

Proposition 5.4.2. There exists a unique function E : R→ (0,∞) such that

(i) E(0) = 1.

(ii) E is differentiable and E ′(x) = E(x).

(iii) E is strictly increasing, bijective, and

lim
x→−∞

E(x) = 0, and lim
x→∞

E(x) = ∞.

(iv) E(x+ y) = E(x)E(y) for all x,y ∈ R.

(v) If q ∈Q, then E(qx) = E(x)q.

Proof. Again, let us prove existence of such a function by defining a candidate, and prove that it
satisfies all the properties. The L defined above is invertible. Let E be the inverse function of L.
Property (i) is immediate.

Property (ii) follows via the inverse function theorem, in particular Lemma 4.4.1: L satisfies all
the hypotheses of the lemma, and hence

E ′(x) =
1

L′
(
E(x)

) = E(x).

Let us look at property (iii). The function E is strictly increasing since E(x)> 0 and E ′(x) =
E(x) > 0. As E is the inverse of L, it must also be bijective. To find the limits, we use that E
is strictly increasing and onto (0,∞). For every M > 0, there is an x0 such that E(x0) = M and
E(x)≥M for all x≥ x0. Similarly for every ε > 0, there is an x0 such that E(x0) = ε and E(x)< ε

for all x < x0. Therefore,

lim
n→−∞

E(x) = 0, and lim
n→∞

E(x) = ∞.

To prove property (iv) we use the corresponding property for the logarithm. Take x,y ∈ R. As L
is bijective, find a and b such that x = L(a) and y = L(b). Then

E(x+ y) = E
(
L(a)+L(b)

)
= E

(
L(ab)

)
= ab = E(x)E(y).

Property (v) also follows from the corresponding property of L. Given x ∈ R, let a be such that
x = L(a) and

E(qx) = E
(
qL(a)

)
E
(
L(aq)

)
= aq = E(x)q.

Finally, uniqueness follows from (i) and (ii). Let E and F be two functions satisfying (i) and (ii).

d
dx

(
F(x)E(−x)

)
= F ′(x)E(−x)−E ′(−x)F(x) = F(x)E(−x)−E(−x)F(x) = 0.
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Therefore by Proposition 4.2.5, F(x)E(−x) = F(0)E(−0) = 1 for all x ∈R. Doing the computation
with F = E, we obtain E(x)E(−x) = 1. Then

0 = 1−1 = F(x)E(−x)−E(x)E(−x) =
(
F(x)−E(x)

)
E(−x).

Since E(x)E(−x) = 1, then E(−x) 6= 0 for all x. So F(x)−E(x) = 0 for all x, and we are done.

Having proved E is unique, we define the exponential function as

exp(x) := E(x).

We can now make sense of exponentiation xy for arbitrary numbers when x > 0. First suppose
y ∈Q. Then

xy = exp
(
ln(xy)

)
= exp

(
y ln(x)

)
.

Therefore when x > 0 and y is irrational let us define

xy := exp
(
y ln(x)

)
.

As exp is continuous then xy is a continuous function of y. Therefore, we would obtain the same
result had we taken a sequence of rational numbers {yn} approaching y and defined xy = lim xyn .

Define the number e as
e := exp(1).

The number e is sometimes called Euler’s number or the base of the natural logarithm. We notice

ex = exp
(
x ln(e)

)
= exp(x).

We have justified the notation ex for exp(x).
Finally, let us extend properties of logarithm and exponential to irrational powers. The proof is

immediate.

Proposition 5.4.3. Let x,y ∈ R.

(i) exp(xy) =
(
exp(x)

)y.

(ii) If x > 0 then ln(xy) = y ln(x).

5.4.3 Exercises
Exercise 5.4.1: Let y be any real number and b > 0. Define f : (0,∞)→ R and g : R→ R as, f (x) := xy

and g(x) := bx. Show that f and g are differentiable and find their derivative.

Exercise 5.4.2: Let b > 0 be given.
a) Show that for every y > 0, there exists a unique number x such that y = bx. Define the logarithm base b,
logb : (0,∞)→ R, by logb(y) := x.
b) Show that logb(x) =

ln(x)
ln(b) .

c) Prove that if c > 0, then logb(x) =
logc(x)
logc(b)

.
d) Prove logb(xy) = logb(x)+ logb(y), and logb(x

y) = y logb(x).
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Exercise 5.4.3 (requires §4.3): Use Taylor’s theorem to study the remainder term and show that for all x ∈R

ex =
∞

∑
n=0

xn

n!
.

Hint: Do not differentiate the series term by term (unless you would prove that it works).

Exercise 5.4.4: Use the geometric sum formula to show (for t 6=−1)

1− t + t2−·· ·+(−1)ntn =
1

1+ t
− (−1)n+1tn+1

1+ t
.

Using this fact show

ln(1+ x) =
∞

∑
n=1

(−1)n+1xn

n

for all x ∈ (−1,1] (note that x = 1 is included). Finally, find the limit of the alternating harmonic series

∞

∑
n=1

(−1)n+1

n
= 1− 1/2+ 1/3− 1/4+ · · ·

Exercise 5.4.5: Show
ex = lim

n→∞

(
1+

x
n

)n
.

Hint: Take the logarithm.
Note: The expression

(
1+ x

n

)n arises in compound interest calculations. It is the amount of money in a bank
account after 1 year if 1 dollar was deposited initially at interest x and the interest was compounded n times
during the year. Therefore ex is the result of continuous compounding.

Exercise 5.4.6: a) Prove that for n ∈ N we have

n

∑
k=2

1
k
≤ ln(n)≤

n−1

∑
k=1

1
k
.

b) Prove that the limit

γ := lim
n→∞

(
n

∑
k=1

1
k
− ln(n)

)
exists. This constant is known as the Euler-Mascheroni constant∗. It is not known if this constant is rational
or not, it is approximately γ ≈ 0.5772.

Exercise 5.4.7: Show

lim
x→∞

ln(x)
x

= 0.

∗Named for the Swiss mathematician Leonhard Paul Euler (1707 – 1783) and the Italian mathematician Lorenzo
Mascheroni (1750 – 1800).

http://en.wikipedia.org/wiki/Leonhard_Euler
http://en.wikipedia.org/wiki/Lorenzo_Mascheroni
http://en.wikipedia.org/wiki/Lorenzo_Mascheroni
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Exercise 5.4.8: Show that ex is convex, in other words, show that if a≤ x≤ b then ex ≤ ea b−x
b−a + eb x−a

b−a .

Exercise 5.4.9: Using the logarithm find
lim
n→∞

n1/n.

Exercise 5.4.10: Show that E(x) = ex is the unique continuous function such that E(x+ y) = E(x)E(y) and
E(1) = e. Similarly prove that L(x) = ln(x) is the unique continuous function defined on positive x such that
L(xy) = L(x)+L(y) and L(e) = 1.
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5.5 Improper integrals
Note: 2–3 lectures (optional section, can safely be skipped, requires the optional §3.5)

Often it is necessary to integrate over the entire real line, or a infinite interval of the form [a,∞)
or (∞,b]. Also, we may wish to integrate functions defined on a finite interval (a,b) but not bounded.
Such functions are not Riemann integrable, but we may want to write down the integral anyway in
the spirit of Lemma 5.2.7. These integrals are called improper integrals, and are limits of integrals
rather than integrals themselves.

Definition 5.5.1. Suppose f : [a,b)→ R is a function (not necessarily bounded) that is Riemann
integrable on [a,c] for all c < b. We define∫ b

a
f := lim

c→b−

∫ c

a
f ,

if the limit exists.
Suppose f : [a,∞)→ R is a function such that f is Riemann integrable on [a,c] for all c < ∞.

We define ∫
∞

a
f := lim

c→∞

∫ c

a
f ,

if the limit exists.
If the limit exists, we say the improper integral converges. If the limit does not exist, we say the

improper integral diverges.
We similarly define improper integrals for the left hand endpoint, we leave this to the reader.

For a finite endpoint b, using Lemma 5.2.7 we see that if f is bounded, then we have defined
nothing new. What is new is that we can apply this definition to unbounded functions. The following
set of examples is so useful that we state it as a proposition.

Proposition 5.5.2 (p-test for integrals). The improper integral∫
∞

1

1
xp dx

converges to 1
p−1 if p > 1 and diverges if 0 < p≤ 1.

The improper integral ∫ 1

0

1
xp dx

converges to 1
1−p if 0 < p < 1 and diverges if p≥ 1.

Proof. The proof follows by application of the fundamental theorem of calculus. Let us do the
proof for p > 1 for the infinite right endpoint, and we leave the rest to the reader. Hint: You should
handle p = 1 separately.
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Suppose p > 1. Then∫ b

1

1
xp dx =

∫ b

1
x−p dx =

b−p+1

−p+1
− 1−p+1

−p+1
=− 1

(p−1)bp−1 +
1

p−1
.

As p > 1, then p−1 > 0. Taking the limit as b→ ∞ we obtain that 1
bp−1 goes to 0, and the result

follows.

We state the following proposition for just one type of improper integral, though the proof is
straight forward and the same for other types of improper integrals.

Proposition 5.5.3. Let f : [a,∞)→R be a function that is Riemann integrable on [a,b] for all b > a.
Given any b > a,

∫
∞

b f converges if and only if
∫

∞

a f converges, in which case∫
∞

a
f =

∫ b

a
f +

∫
∞

b
f .

Proof. Let c > b. Then ∫ c

a
f =

∫ b

a
f +

∫ c

b
f .

Taking the limit c→ ∞ finishes the proof.

Nonnegative functions are easier to work with as the following proposition demonstrates. The
exercises will show that this proposition holds only for nonnegative functions. Analogues of this
proposition exist for all the other types of improper limits are left to the student.

Proposition 5.5.4. Suppose f : [a,∞)→ R is nonnegative ( f (x) ≥ 0 for all x) and such that f is
Riemann integrable on [a,b] for all b > a.

(i) ∫
∞

a
f = sup

{∫ x

a
f : x≥ a

}
.

(ii) Suppose {xn} is a sequence with lim xn = ∞. Then
∫

∞

a f converges if and only if lim
∫ xn

a f
exists, in which case ∫

∞

a
f = lim

n→∞

∫ xn

a
f .

In the first item we allow for the value of ∞ in the supremum indicating that the integral diverges
to infinity.

Proof. Let us start with the first item. Notice that as f is nonnegative, then
∫ x

a f is increasing as a
function of x. If the supremum is infinite, then for every M ∈ R we find N such that

∫ N
a f ≥M. As∫ x

a f is increasing then
∫ x

a f ≥M for all x≥ N. So
∫

∞

a f diverges to infinity.
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Next suppose the supremum is finite, say A = sup{
∫ x

a f : x≥ a}. For every ε > 0, we find an
N such that A−

∫ N
a f < ε . As

∫ x
a f is increasing, then A−

∫ x
a f < ε for all x ≥ N and hence

∫
∞

a f
converges to A.

Let us look at the second item. If
∫

∞

a f converges then every sequence {xn} going to infinity
works. The trick is proving the other direction. Suppose {xn} is such that lim xn = ∞ and

lim
n→∞

∫ xn

a
f = A

converges. Given ε > 0, pick N such that for all n≥ N we have A− ε <
∫ xn

a f < A+ ε . Because∫ x
a f is increasing as a function of x, we have that for all x≥ xN

A− ε <
∫ xN

a
≤
∫ x

a
f .

As {xn} goes to ∞, then for any given x, there is an xm such that m≥ N and x≤ xm. Then∫ x

a
f ≤

∫ xm

a
f < A+ ε.

In particular, for all x≥ xN we have |
∫ x

a f −A|< ε .

Proposition 5.5.5 (Comparison test for improper integrals). Let f : [a,∞)→ R and g : [a,∞)→ R
be functions that are Riemann integrable on [a,b] for all b > a. Suppose that for all x≥ a we have

| f (x)| ≤ g(x).

(i) If
∫

∞

a g converges, then
∫

∞

a f converges, and in this case |
∫

∞

a f | ≤
∫

∞

a g.

(ii) If
∫

∞

a f diverges, then
∫

∞

a g diverges.

Proof. Let us start with the first item. For any b and c, such that a ≤ b ≤ c, we have −g(x) ≤
f (x)≤ g(x), and so ∫ c

b
−g≤

∫ c

b
f ≤

∫ c

b
g.

In other words, |
∫ c

b f | ≤
∫ c

b g.
Let ε > 0 be given. Because of Proposition 5.5.3 we have∫

∞

a
g =

∫ b

a
g+

∫
∞

b
g.

As
∫ b

a g goes to
∫

∞

a g as b goes to infinity, then
∫

∞

b g goes to 0 as b goes to infinity. Choose B such
that ∫

∞

B
g < ε.
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As g is nonnegative, then if B ≤ b < c, then
∫ c

b g < ε as well. Let {xn} be a sequence going to
infinity. Let M be such that xn ≥ B for all n≥M. Take n,m≥M, with xn ≤ xm,∣∣∣∣∫ xm

a
f −

∫ xn

a
f
∣∣∣∣= ∣∣∣∣∫ xm

xn

f
∣∣∣∣≤ ∫ xm

xn

g < ε.

Therefore the sequence {
∫ xn

a f}∞
n=1 is Cauchy and hence converges.

We need to show that the limit is unique. Suppose {xn} is a sequence converging to infinity
such that {

∫ xn
a f} converges to L1, and {yn} is a sequence converging to infinity is such that {

∫ yn
a f}

converges to L2. Then there must be some n such that |
∫ xn

a f −L1|< ε and |
∫ yn

a f −L2|< ε . We can
also suppose xn ≥ B and yn ≥ B. Then

|L1−L2| ≤
∣∣∣∣L1−

∫ xn

a
f
∣∣∣∣+ ∣∣∣∣∫ xn

a
f −

∫ yn

a
f
∣∣∣∣+ ∣∣∣∣∫ yn

a
f −L2

∣∣∣∣< ε +

∣∣∣∣∫ yn

xn

f
∣∣∣∣+ ε < 3ε.

As ε > 0 was arbitrary, L1 = L2, and hence
∫

∞

a f converges. Above we have shown that |
∫ c

a f | ≤
∫ c

a g
for all c > a. By taking the limit c→ ∞, the first item is proved.

The second item is simply a contrapositive of the first item.

Example 5.5.6: The improper integral∫
∞

0

sin(x2)(x+2)
x3 +1

dx

converges.
Proof: First observe we simply need to show that the integral converges when going from 1 to

infinity. For x≥ 1 we obtain∣∣∣∣sin(x2)(x+2)
x3 +1

∣∣∣∣≤ x+2
x3 +1

≤ x+2
x3 ≤ x+2x

x3 ≤ 3
x2 .

Then
3
∫

∞

1

1
x2 dx = lim

c→∞

∫ c

1

3
x2 dx.

So the integral converges.

Example 5.5.7: You should be careful when doing formal manipulations with improper integrals.
For example, ∫

∞

2

2
x2−1

dx

converges via the comparison test again using 1
x2 . However, if you succumb to the temptation to

write
2

x2−1
=

1
x−1

− 1
x+1
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and try to integrate each part separately, you will not succeed. It is not true that you can split the
improper integral in two; you cannot split the limit.

∫
∞

2

2
x2−1

dx = lim
b→∞

∫ b

2

2
x2−1

dx

= lim
b→∞

(∫ b

2

1
x−1

dx−
∫ b

2

1
x+1

dx
)

6=
∫

∞

2

1
x−1

dx−
∫

∞

2

1
x+1

dx.

The last line in the computation does not even make sense. Both of the integrals there diverge to
infinity since we can apply the comparison test appropriately with 1/x. We get ∞−∞.

Now let us suppose that we need to take limits at both endpoints.

Definition 5.5.8. Suppose f : (a,b)→ R is a function that is Riemann integrable on [c,d] for all c,
d such that a < c < d < b, then we define∫ b

a
f := lim

c→a+
lim

d→b−

∫ d

c
f ,

if the limits exist.
Suppose f : R→ R is a function such that f is Riemann integrable on all finite intervals [a,b].

Then we define ∫
∞

−∞

f := lim
c→−∞

lim
d→∞

∫ d

c
f ,

if the limits exist.
We similarly define improper integrals with one infinite and one finite improper endpoint, we

leave this to the reader.

One ought to always be careful about double limits. The definition given above says that we
first take the limit as d goes to b or ∞ for a fixed c, and then we take the limit in c. We will have to
prove that in this case it does not matter which limit we compute first.

Example 5.5.9: Let us see an example:

∫
∞

−∞

1
1+ x2 dx = lim

a→−∞
lim
b→∞

∫ b

a

1
1+ x2 dx = lim

a→−∞
lim
b→∞

(
arctan(b)− arctan(a)

)
= π.

In the definition the order of the limits can always be switched if they exist. Let us prove this
fact only for the infinite limits.
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Proposition 5.5.10. If f : R→ R is a function integrable on every interval. Then

lim
a→−∞

lim
b→∞

∫ b

a
f converges if and only if lim

b→∞
lim

a→−∞

∫ b

a
f converges,

in which case the two expressions are equal. If either of the expressions converges then the improper
integral converges and

lim
a→∞

∫ a

−a
f =

∫
∞

−∞

f .

Proof. Without loss of generality assume a < 0 and b > 0. Suppose the first expression converges.
Then

lim
a→−∞

lim
b→∞

∫ b

a
f = lim

a→−∞
lim
b→∞

(∫ 0

a
f +

∫ b

0
f
)
=

(
lim

a→−∞

∫ 0

a
f
)
+

(
lim
b→∞

∫ b

0
f
)

= lim
b→∞

((
lim

a→−∞

∫ 0

a
f
)
+
∫ b

0
f
)
= lim

b→∞
lim

a→−∞

(∫ 0

a
f +

∫ b

0
f
)
.

Similar computation shows the other direction. Therefore, if either expression converges then the
improper integral converges and∫

∞

−∞

f = lim
a→−∞

lim
b→∞

∫ b

a
f =

(
lim

a→−∞

∫ 0

a
f
)
+

(
lim
b→∞

∫ b

0
f
)

=

(
lim
a→∞

∫ 0

−a
f
)
+

(
lim
a→∞

∫ a

0
f
)
= lim

a→∞

(∫ 0

−a
f +

∫ a

0
f
)
= lim

a→∞

∫ a

−a
f .

Example 5.5.11: On the other hand, you must be careful to take the limits independently before
you know convergence. Let f (x) = x

|x| for x 6= 0 and f (0) = 0. If a < 0 and b > 0, then

∫ b

a
f =

∫ 0

a
f +

∫ b

0
f = a+b.

For any fixed a < 0 the limit as b→ ∞ is infinite, so even the first limit does not exist, and hence
the improper integral

∫
∞

−∞
f does not converge. On the other hand if a > 0, then∫ a

−a
f = (−a)+a = 0.

Therefore,

lim
a→∞

∫ a

−a
f = 0.
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Example 5.5.12: An example to keep in mind for improper integrals is the so-called sinc function∗.
This function comes up quite often in both pure and applied mathematics. Define

sinc(x) =

{
sin(x)

x if x 6= 0,
0 if x = 0.

−4π −2π 2π 4π

1
2

1

1
2

1

−1
4−
1
4

Figure 5.2: The sinc function.

It is not difficult to show that the sinc function is continuous at zero, but that is not important
right now. What is important is that∫

∞

−∞

sinc(x) dx = π, while
∫

∞

−∞

|sinc(x)| dx = ∞.

The integral of the sinc function is a continuous analogue of the alternating harmonic series ∑ (−1)n/n,
while the absolute value is like the regular harmonic series ∑ 1/n. In particular, the fact that the
integral converges must be done directly rather than using comparison test.

We will not prove the first statement exactly. Let us simply prove that the integral of the sinc
function converges, but we will not worry about the exact limit. Because sin(−x)

−x = sin(x)
x , it is enough

to show that ∫
∞

2π

sin(x)
x

dx

converges. We also avoid x = 0 this way to make our life simpler.
For any n ∈ N, we have that for x ∈ [π2n,π(2n+1)]

sin(x)
π(2n+1)

≤ sin(x)
x
≤ sin(x)

π2n
,

∗Shortened from Latin: sinus cardinalis
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as sin(x)≥ 0. On x ∈ [π(2n+1),π(2n+2)]

sin(x)
π(2n+1)

≤ sin(x)
x
≤ sin(x)

π(2n+2)
,

as sin(x)≤ 0.
Via the fundamental theorem of calculus,

2
π(2n+1)

=
∫

π(2n+1)

π2n

sin(x)
π(2n+1)

dx≤
∫

π(2n+1)

π2n

sin(x)
x

dx≤
∫

π(2n+1)

π2n

sin(x)
π2n

dx =
1

πn
.

Similarly
−2

π(2n+1)
≤
∫

π(2n+2)

π(2n+1)

sin(x)
x

dx≤ −1
π(n+1)

.

Putting the two together we have

0 =
2

π(2n+1)
− 2

π(2n+1)
+≤

∫ 2π(n+1)

2πn

sin(x)
x

dx≤ 1
πn
− 1

π(n+1)
=

1
πn(n+1)

.

Let M > 2π be arbitrary, and let k ∈ N be the largest integer such that 2kπ ≤M. Then∫ M

2π

sin(x)
x

dx =
∫ 2kπ

2π

sin(x)
x

dx+
∫ M

2kπ

sin(x)
x

dx.

For x ∈ [2kπ,M] we have −1
2kπ
≤ sin(x)

x ≤ 1
2kπ

, and so∣∣∣∣∫ M

2kπ

sin(x)
x

dx
∣∣∣∣≤ M−2kπ

2kπ
≤ 1

k
.

As k is the largest k such that 2kπ ≤M, this term goes to zero as M goes to infinity.
Next

0≤
∫ 2kπ

2π

sin(x)
x
≤

k−1

∑
n=1

1
πn(n+1)

,

and this series converges as k→ ∞.
Putting the two statements together we obtain∫

∞

2π

sin(x)
x

dx≤
∞

∑
n=1

1
πn(n+1)

< ∞.

The double sided integral of sinc also exists as noted above. We leave the other statement—that
the integral of the absolute value of the sinc function diverges—as an exercise.
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5.5.1 Integral test for series
It can be very useful to apply the fundamental theorem of calculus in proving a series is summable
and to estimate its sum.

Proposition 5.5.13. Suppose f : [k,∞)→ R is a decreasing nonnegative function where k ∈ Z.
Then

∞

∑
n=k

f (n) converges if and only if
∫

∞

k
f converges.

In this case ∫
∞

k
f ≤

∞

∑
n=k

f (n)≤ f (k)+
∫

∞

k
f .

By Exercise 5.2.14, f is integrable on every interval [k,b] for all b > k, so the statement of the
theorem makes sense without additional hypotheses of integrability.

Proof. Let ε > 0 be given. And suppose
∫

∞

k f converges. Let `,m ∈ Z be such that m > ` ≥ k.
Because f is decreasing we have

∫ n+1
n f ≤ f (n)≤

∫ n
n−1 f . Therefore

∫ m

`
f =

m−1

∑
n=`

∫ n+1

n
f ≤

m−1

∑
n=`

f (n)≤ f (`)+
m−1

∑
n=`+1

∫ n

n−1
f ≤ f (`)+

∫ m−1

`
f . (5.3)

As before, since f is positive then there exists an L ∈ N such that if `≥ L, then
∫ m
` f < ε/2 for all

m ≥ `. We note f must decrease to zero (why?). So let us also suppose that for ` ≥ L we have
f (`)< ε/2. For such ` and m we have via (5.3)

m

∑
n=`

f (n)≤ f (`)+
∫ m

`
f < ε/2+ ε/2 = ε.

The series is therefore Cauchy and thus converges. The estimate in the proposition is obtained by
letting m go to infinity in (5.3) with `= k.

Conversely suppose
∫

∞

k f diverges. As f is positive then by Proposition 5.5.4, the sequence
{
∫ m

k f}∞
m=k diverges to infinity. Using (5.3) with `= k we find

∫ m

k
f ≤

m−1

∑
n=k

f (n).

As the left hand side goes to infinity as m→ ∞, so does the right hand side.

Example 5.5.14: Let us show ∑
∞
n=1

1
n2 exists and let us estimate its sum to within 0.01. As this

series is the p-series for p = 2, we already know it converges, but we have only very roughly
estimated its sum.



5.5. IMPROPER INTEGRALS 195

Using fundamental theorem of calculus we find that for k ∈ N we have∫
∞

k

1
x2 dx =

1
k
.

In particular, the series must converge. But we also have that

1
k
=
∫

∞

k

1
x2 dx≤

∞

∑
n=k

1
n2 ≤

1
k2 +

∫
∞

k

1
x2 dx =

1
k2 +

1
k
.

Adding the partial sum up to k−1 we get

1
k
+

k−1

∑
n=1

1
n2 ≤

∞

∑
n=1

1
n2 ≤

1
k2 +

1
k
+

k−1

∑
n=1

1
n2 .

In other words, 1/k+∑
k−1
n=1

1/n2 is an estimate for the sum to within 1/k2. Therefore, if we wish to
find the sum to within 0.01, we note 1/102 = 0.01. We obtain

1.6397 . . .≈ 1
10

+
9

∑
n=1

1
n2 ≤

∞

∑
n=1

1
n2 ≤

1
100

+
1
10

+
9

∑
n=1

1
n2 ≈ 1.6497 . . . .

The actual sum is π2/6≈ 1.6449 . . ..

5.5.2 Exercises
Exercise 5.5.1: Finish the proof of Proposition 5.5.2.

Exercise 5.5.2: Find out for which a ∈ R does
∞

∑
n=1

ean converge. When the series converges, find an upper

bound for the sum.

Exercise 5.5.3: a) Estimate
∞

∑
n=1

1
n(n+1) correct to within 0.01 using the integral test. b) Compute the limit of

the series exactly and compare. Hint: the sum telescopes.

Exercise 5.5.4: Prove ∫
∞

−∞

|sinc(x)| dx = ∞.

Hint: again, it is enough to show this on just one side.

Exercise 5.5.5: Can you interpret ∫ 1

−1

1√
|x|

dx

as an improper integral? If so, compute its value.
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Exercise 5.5.6: Take f : [0,∞)→ R, Riemann integrable on every interval [0,b], and such that there exist M,
a, and T , such that | f (t)| ≤Meat for all t ≥ T . Show that the Laplace transform of f exists. That is, for every
s > a the following integral converges:

F(s) :=
∫

∞

0
f (t)e−st dt.

Exercise 5.5.7: Let f : R→ R be a Riemann integrable function on every interval [a,b], and such that∫
∞

−∞
| f (x)| dx < ∞. Show that the Fourier sine and cosine transforms exist. That is, for every ω ≥ 0 the

following integrals converge

Fs(ω) :=
1
π

∫
∞

−∞

f (t)sin(ωt) dt, Fc(ω) :=
1
π

∫
∞

−∞

f (t)cos(ωt) dt.

Furthermore, show that Fs and Fc are bounded functions.

Exercise 5.5.8: Suppose f : [0,∞)→ R is Riemann integrable on every interval [0,b]. Show that
∫

∞

0 f

converges if and only if for every ε > 0 there exists an M such that if M ≤ a < b then
∣∣∣∫ b

a f
∣∣∣< ε .

Exercise 5.5.9: Suppose f : [0,∞)→ R is nonnegative and decreasing. a) Show that if
∫

∞

0 f < ∞, then
lim
x→∞

f (x) = 0. b) Show that the converse does not hold.

Exercise 5.5.10: Find an example of an unbounded continuous function f : [0,∞)→ R that is nonnegative
and such that

∫
∞

0 f < ∞. Note that this means that limx→∞ f (x) does not exist; compare previous exercise.
Hint: on each interval [k,k+1], k ∈N, define a function whose integral over this interval is less than say 2−k.

Exercise 5.5.11 (More challenging): Find an example of a function f : [0,∞)→R integrable on all intervals
such that limn→∞

∫ n
0 f converges as a limit of a sequence, but such that

∫
∞

0 f does not exist. Hint: for all
n ∈N, divide [n,n+1] into two halves. In one half make the function negative, on the other make the function
positive.

Exercise 5.5.12: Show that if f : [1,∞)→ R is such that g(x) := x2 f (x) is a bounded function, then
∫

∞

1 f
converges.

It is sometimes desirable to assign a value to integrals that normally cannot be interpreted as even
improper integrals, e.g.

∫ 1
−1

1/x dx. Suppose f : [a,b]→ R is a function and a < c < b, where f is Riemann
integrable on all intervals [a,c− ε] and [c+ ε,b] for all ε > 0. Define the Cauchy principal value of

∫ b
a f as

p.v.
∫ b

a
f := lim

ε→0+

(∫ c−ε

a
f +

∫ b

c+ε

f
)
,

if the limit exists.

Exercise 5.5.13: a) Compute p.v.
∫ 1
−1

1/x dx.
b) Compute limε→0+(

∫ −ε

−1
1/x dx+

∫ 1
2ε

1/x dx) and show it is not equal to the principal value.
c) Show that if f is integrable on [a,b], then p.v.

∫ b
a f =

∫ b
a f .

d) Find an example of an f with a singularity at c as above such that p.v.
∫ b

a f exists, but the improper
integrals

∫ c
a f and

∫ b
c f diverge.

e) Suppose f : [−1,1]→ R is continuous. Show that p.v.
∫ 1
−1

f (x)
x dx exists.
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Exercise 5.5.14: Let f : R→ R and g : R→ R be continuous functions, where g(x) = 0 for all x /∈ [a,b] for
some interval [a,b].
a) Show that the convolution

(g∗ f )(x) :=
∫

∞

−∞

f (t)g(x− t) dt

is well-defined for all x ∈ R.
b) Suppose

∫
∞

−∞
| f (x)| dx < ∞. Prove that

lim
x→−∞

(g∗ f )(x) = 0, and lim
x→∞

(g∗ f )(x) = 0.
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Chapter 6

Sequences of Functions

6.1 Pointwise and uniform convergence
Note: 1–1.5 lecture

Up till now when we talked about sequences we always talked about sequences of numbers.
However, a very useful concept in analysis is to use a sequence of functions. For example, a solution
to some differential equation might be found by finding only approximate solutions. Then the real
solution is some sort of limit of those approximate solutions.

When talking about sequences of functions, the tricky part is that there are multiple notions of a
limit. Let us describe two common notions of a limit of a sequence of functions.

6.1.1 Pointwise convergence
Definition 6.1.1. For every n ∈ N let fn : S→ R be a function. We say the sequence { fn}∞

n=1
converges pointwise to f : S→ R, if for every x ∈ S we have

f (x) = lim
n→∞

fn(x).

It is common to say that fn : S→ R converges to f on T ⊂ R for some f : T → R. In that case
we, of course, mean f (x) = lim fn(x) for every x ∈ T . We simply mean that the restrictions of fn to
T converge pointwise to f .

Example 6.1.2: The sequence of functions defined by fn(x) := x2n converges to f : [−1,1]→ R
on [−1,1], where

f (x) =

{
1 if x =−1 or x = 1,
0 otherwise.

See Figure 6.1.

199
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x2 x4 x6 x16

Figure 6.1: Graphs of f1, f2, f3, and f8 for fn(x) := x2n.

To see this is so, first take x ∈ (−1,1). Then 0≤ x2 < 1. We have seen before that∣∣x2n−0
∣∣= (x2)

n→ 0 as n→ ∞.

Therefore lim fn(x) = 0.
When x = 1 or x =−1, then x2n = 1 for all n and hence lim fn(x) = 1. We also note that { fn(x)}

does not converge for all other x.

Often, functions are given as a series. In this case, we use the notion of pointwise convergence
to find the values of the function.

Example 6.1.3: We write
∞

∑
k=0

xk

to denote the limit of the functions

fn(x) :=
n

∑
k=0

xk.

When studying series, we have seen that on x ∈ (−1,1) the fn converge pointwise to

1
1− x

.

The subtle point here is that while 1
1−x is defined for all x 6= 1, and fn are defined for all x (even

at x = 1), convergence only happens on (−1,1).
Therefore, when we write

f (x) :=
∞

∑
k=0

xk

we mean that f is defined on (−1,1) and is the pointwise limit of the partial sums.



6.1. POINTWISE AND UNIFORM CONVERGENCE 201

Example 6.1.4: Let fn(x) := sin(xn). Then fn does not converge pointwise to any function on any
interval. It may converge at certain points, such as when x = 0 or x = π . It is left as an exercise that
in any interval [a,b], there exists an x such that sin(xn) does not have a limit as n goes to infinity.

Before we move to uniform convergence, let us reformulate pointwise convergence in a different
way. We leave the proof to the reader, it is a simple application of the definition of convergence of a
sequence of real numbers.

Proposition 6.1.5. Let fn : S→ R and f : S→ R be functions. Then { fn} converges pointwise to f
if and only if for every x ∈ S, and every ε > 0, there exists an N ∈ N such that

| fn(x)− f (x)|< ε

for all n≥ N.

The key point here is that N can depend on x, not just on ε . That is, for each x we can pick a
different N. If we can pick one N for all x, we have what is called uniform convergence.

6.1.2 Uniform convergence
Definition 6.1.6. Let fn : S→ R be functions. We say the sequence { fn} converges uniformly to
f : S→ R, if for every ε > 0 there exists an N ∈ N such that for all n≥ N we have

| fn(x)− f (x)|< ε for all x ∈ S.

Note that N now cannot depend on x. Given ε > 0 we must find an N that works for all x ∈ S.
Because of Proposition 6.1.5, we see that uniform convergence implies pointwise convergence.

Proposition 6.1.7. Let { fn} be a sequence of functions fn : S→ R. If { fn} converges uniformly to
f : S→ R, then { fn} converges pointwise to f .

The converse does not hold.

Example 6.1.8: The functions fn(x) := x2n do not converge uniformly on [−1,1], even though
they converge pointwise. To see this, suppose for contradiction that the convergence is uniform.
For ε := 1/2, there would have to exist an N such that x2N =

∣∣x2N−0
∣∣< 1/2 for all x ∈ (−1,1) (as

fn(x) converges to 0 on (−1,1)). But that means that for any sequence {xk} in (−1,1) such that
lim xk = 1 we have x2N

k < 1/2 for all k. On the other hand x2N is a continuous function of x (it is a
polynomial), therefore we obtain a contradiction

1 = 12N = lim
k→∞

x2N
k ≤ 1/2.

However, if we restrict our domain to [−a,a] where 0 < a < 1, then { fn} converges uniformly
to 0 on [−a,a]. First note that a2n→ 0 as n→ ∞. Thus given ε > 0, pick N ∈ N such that a2n < ε

for all n≥ N. Then for any x ∈ [−a,a] we have |x| ≤ a. Therefore, for n≥ N∣∣x2N∣∣= |x|2N ≤ a2N < ε.
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6.1.3 Convergence in uniform norm
For bounded functions there is another more abstract way to think of uniform convergence. To every
bounded function we assign a certain nonnegative number (called the uniform norm). This number
measures the “distance” of the function from 0. We can then “measure” how far two functions are
from each other. We simply translate a statement about uniform convergence into a statement about
a certain sequence of real numbers converging to zero.

Definition 6.1.9. Let f : S→ R be a bounded function. Define

‖ f‖u := sup
{
| f (x)| : x ∈ S

}
.

‖·‖u is called the uniform norm.

To use this notation∗ and this concept, the domain S must be fixed. Some authors use the
notation ‖ f‖S to emphasize the dependence on S.

Proposition 6.1.10. A sequence of bounded functions fn : S→R converges uniformly to f : S→R,
if and only if

lim
n→∞
‖ fn− f‖u = 0.

Proof. First suppose lim‖ fn− f‖u = 0. Let ε > 0 be given. Then there exists an N such that for
n≥ N we have ‖ fn− f‖u < ε . As ‖ fn− f‖u is the supremum of | fn(x)− f (x)|, we see that for all
x we have | fn(x)− f (x)|< ε .

On the other hand, suppose { fn} converges uniformly to f . Let ε > 0 be given. Then find N
such that | fn(x)− f (x)|< ε for all x ∈ S. Taking the supremum we see that ‖ fn− f‖u < ε . Hence
lim‖ fn− f‖u = 0.

Sometimes it is said that { fn} converges to f in uniform norm instead of converges uniformly.
The proposition says that the two notions are the same thing.

Example 6.1.11: Let fn : [0,1] → R be defined by fn(x) := nx+sin(nx2)
n . Then we claim { fn}

converges uniformly to f (x) := x. Let us compute:

‖ fn− f‖u = sup
{∣∣∣∣nx+ sin(nx2)

n
− x
∣∣∣∣ : x ∈ [0,1]

}
= sup

{∣∣sin(nx2)
∣∣

n
: x ∈ [0,1]

}
≤ sup{1/n : x ∈ [0,1]}
= 1/n.

∗The notation nor terminology is not completely standardized. The norm is also called the sup norm or infinity
norm, and in addition to ‖ f‖u and ‖ f‖S it is sometimes written as ‖ f‖

∞
or ‖ f‖

∞,S.
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Using uniform norm, we define Cauchy sequences in a similar way as we define Cauchy
sequences of real numbers.

Definition 6.1.12. Let fn : S→ R be bounded functions. The sequence is Cauchy in the uniform
norm or uniformly Cauchy if for every ε > 0, there exists an N ∈ N such that for m,k ≥ N we have

‖ fm− fk‖u < ε.

Proposition 6.1.13. Let fn : S→ R be bounded functions. Then { fn} is Cauchy in the uniform
norm if and only if there exists an f : S→ R and { fn} converges uniformly to f .

Proof. Let us first suppose { fn} is Cauchy in the uniform norm. Let us define f . Fix x, then the
sequence { fn(x)} is Cauchy because

| fm(x)− fk(x)| ≤ ‖ fm− fk‖u .

Thus { fn(x)} converges to some real number. Define f : S→ R by

f (x) := lim
n→∞

fn(x).

The sequence { fn} converges pointwise to f . To show that the convergence is uniform, let ε > 0
be given. Find an N such that for m,k ≥ N we have ‖ fm− fk‖u < ε/2. In other words for all x we
have | fm(x)− fk(x)| < ε/2. We take the limit as k goes to infinity. Then | fm(x)− fk(x)| goes to
| fm(x)− f (x)|. Consequently for all x we get

| fm(x)− f (x)| ≤ ε/2 < ε.

And hence { fn} converges uniformly.
For the other direction, suppose { fn} converges uniformly to f . Given ε > 0, find N such that

for all n≥ N we have | fn(x)− f (x)|< ε/4 for all x ∈ S. Therefore for all m,k ≥ N we have

| fm(x)− fk(x)|= | fm(x)− f (x)+ f (x)− fk(x)| ≤ | fm(x)− f (x)|+ | f (x)− fk(x)|< ε/4+ ε/4.

Take supremum over all x to obtain

‖ fm− fk‖u ≤ ε/2 < ε.

6.1.4 Exercises
Exercise 6.1.1: Let f and g be bounded functions on [a,b]. Prove

‖ f +g‖u ≤ ‖ f‖u +‖g‖u .
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Exercise 6.1.2: a) Find the pointwise limit
ex/n

n
for x ∈ R.

b) Is the limit uniform on R?
c) Is the limit uniform on [0,1]?

Exercise 6.1.3: Suppose fn : S→ R are functions that converge uniformly to f : S→ R. Suppose A ⊂ S.
Show that the sequence of restrictions { fn|A} converges uniformly to f |A.

Exercise 6.1.4: Suppose { fn} and {gn} defined on some set A converge to f and g respectively pointwise.
Show that { fn +gn} converges pointwise to f +g.

Exercise 6.1.5: Suppose { fn} and {gn} defined on some set A converge to f and g respectively uniformly on
A. Show that { fn +gn} converges uniformly to f +g on A.

Exercise 6.1.6: Find an example of a sequence of functions { fn} and {gn} that converge uniformly to some
f and g on some set A, but such that { fngn} (the multiple) does not converge uniformly to f g on A. Hint: Let
A := R, let f (x) := g(x) := x. You can even pick fn = gn.

Exercise 6.1.7: Suppose there exists a sequence of functions {gn} uniformly converging to 0 on A. Now
suppose we have a sequence of functions { fn} and a function f on A such that

| fn(x)− f (x)| ≤ gn(x)

for all x ∈ A. Show that { fn} converges uniformly to f on A.

Exercise 6.1.8: Let { fn}, {gn} and {hn} be sequences of functions on [a,b]. Suppose { fn} and {hn} converge
uniformly to some function f : [a,b]→ R and suppose fn(x) ≤ gn(x) ≤ hn(x) for all x ∈ [a,b]. Show that
{gn} converges uniformly to f .

Exercise 6.1.9: Let fn : [0,1]→ R be a sequence of increasing functions (that is, fn(x) ≥ fn(y) whenever
x≥ y). Suppose fn(0) = 0 and lim

n→∞
fn(1) = 0. Show that { fn} converges uniformly to 0.

Exercise 6.1.10: Let { fn} be a sequence of functions defined on [0,1]. Suppose there exists a sequence of
distinct numbers xn ∈ [0,1] such that

fn(xn) = 1.

Prove or disprove the following statements:
a) True or false: There exists { fn} as above that converges to 0 pointwise.
b) True or false: There exists { fn} as above that converges to 0 uniformly on [0,1].

Exercise 6.1.11: Fix a continuous h : [a,b]→ R. Let f (x) := h(x) for x ∈ [a,b], f (x) := h(a) for x < a and
f (x) := h(b) for all x > b. First show that f : R→ R is continuous. Now let fn be the function g from
Exercise 5.3.7 with ε = 1/n, defined on the interval [a,b]. Show that { fn} converges uniformly to h on [a,b].
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6.2 Interchange of limits
Note: 1–1.5 lectures

Large parts of modern analysis deal mainly with the question of the interchange of two limiting
operations. When we have a chain of two limits, we cannot always just swap the limits. For
example,

0 = lim
n→∞

(
lim
k→∞

n/k

n/k+1

)
6= lim

k→∞

(
lim
n→∞

n/k

n/k+1

)
= 1.

When talking about sequences of functions, interchange of limits comes up quite often. We treat
two cases. First we look at continuity of the limit, and second we look at the integral of the limit.

6.2.1 Continuity of the limit
If we have a sequence { fn} of continuous functions, is the limit continuous? Suppose f is the
(pointwise) limit of { fn}. If lim xk = x we are interested in the following interchange of limits. The
equality we have to prove (it is not always true) is marked with a question mark. In fact the limits to
the left of the question mark might not even exist.

lim
k→∞

f (xk) = lim
k→∞

(
lim
n→∞

fn(xk)
)

?
= lim

n→∞

(
lim
k→∞

fn(xk)
)
= lim

n→∞
fn(x) = f (x).

In particular, we wish to find conditions on the sequence { fn} so that the above equation holds. It
turns out that if we only require pointwise convergence, then the limit of a sequence of functions
need not be continuous, and the above equation need not hold.

Example 6.2.1: Let fn : [0,1]→ R be defined as

fn(x) :=

{
1−nx if x < 1/n,
0 if x≥ 1/n.

See Figure 6.2.
Each function fn is continuous. Fix an x ∈ (0,1]. If n≥ 1/x, then x≥ 1/n. Therefore for n≥ 1/x

we have fn(x) = 0, and so
lim
n→∞

fn(x) = 0.

On the other hand if x = 0, then
lim
n→∞

fn(0) = lim
n→∞

1 = 1.

Thus the pointwise limit of fn is the function f : [0,1]→ R defined by

f (x) :=

{
1 if x = 0,
0 if x > 0.

The function f is not continuous at 0.
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1

1/n

Figure 6.2: Graph of fn(x).

If we, however, require the convergence to be uniform, the limits can be interchanged.

Theorem 6.2.2. Let { fn} be a sequence of continuous functions fn : S→ R converging uniformly
to f : S→ R. Then f is continuous.

Proof. Let x ∈ S be fixed. Let {xn} be a sequence in S converging to x.
Let ε > 0 be given. As { fk} converges uniformly to f , we find a k ∈ N such that

| fk(y)− f (y)|< ε/3

for all y ∈ S. As fk is continuous at x, we find an N ∈ N such that for m≥ N we have

| fk(xm)− fk(x)|< ε/3.

Thus for m≥ N we have

| f (xm)− f (x)|= | f (xm)− fk(xm)+ fk(xm)− fk(x)+ fk(x)− f (x)|
≤ | f (xm)− fk(xm)|+ | fk(xm)− fk(x)|+ | fk(x)− f (x)|
< ε/3+ ε/3+ ε/3 = ε.

Therefore { f (xm)} converges to f (x) and hence f is continuous at x. As x was arbitrary, f is
continuous everywhere.

6.2.2 Integral of the limit
Again, if we simply require pointwise convergence, then the integral of a limit of a sequence of
functions need not be equal to the limit of the integrals.
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Example 6.2.3: Let fn : [0,1]→ R be defined as

fn(x) :=


0 if x = 0,
n−n2x if 0 < x < 1/n,
0 if x≥ 1/n.

See Figure 6.3.

n

1/n

Figure 6.3: Graph of fn(x).

Each fn is Riemann integrable (it is continuous on (0,1] and bounded), and it is easy to see∫ 1

0
fn =

∫ 1/n

0
(n−n2x) dx = 1/2.

Let us compute the pointwise limit of { fn}. Fix an x ∈ (0,1]. For n≥ 1/x we have x≥ 1/n and so
fn(x) = 0. Therefore

lim
n→∞

fn(x) = 0.

We also have fn(0) = 0 for all n. Therefore the pointwise limit of { fn} is the zero function. Thus

1/2 = lim
n→∞

∫ 1

0
fn(x) dx 6=

∫ 1

0

(
lim
n→∞

fn(x)
)

dx =
∫ 1

0
0 dx = 0.

But if we again require the convergence to be uniform, the limits can be interchanged.

Theorem 6.2.4. Let { fn} be a sequence of Riemann integrable functions fn : [a,b]→ R converging
uniformly to f : [a,b]→ R. Then f is Riemann integrable and∫ b

a
f = lim

n→∞

∫ b

a
fn.
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Proof. Let ε > 0 be given. As fn goes to f uniformly, we find an M ∈ N such that for all n≥M
we have | fn(x)− f (x)| < ε

2(b−a) for all x ∈ [a,b]. In particular, by reverse triangle inequality
| f (x)|< ε

2(b−a) + | fn(x)| for all x, hence f is bounded as fn is bounded. Note that fn is integrable
and compute∫ b

a
f −

∫ b

a
f =

∫ b

a

(
f (x)− fn(x)+ fn(x)

)
dx−

∫ b

a

(
f (x)− fn(x)+ fn(x)

)
dx

≤
∫ b

a

(
f (x)− fn(x)

)
dx+

∫ b

a
fn(x) dx−

∫ b

a

(
f (x)− fn(x)

)
dx−

∫ b

a
fn(x) dx

=
∫ b

a

(
f (x)− fn(x)

)
dx+

∫ b

a
fn(x) dx−

∫ b

a

(
f (x)− fn(x)

)
dx−

∫ b

a
fn(x) dx

=
∫ b

a

(
f (x)− fn(x)

)
dx−

∫ b

a

(
f (x)− fn(x)

)
dx

≤ ε

2(b−a)
(b−a)+

ε

2(b−a)
(b−a) = ε.

The first inequality is Exercise 5.2.16 (it follows as supremum of a sum is less than or equal to
the sum of suprema and similarly for infima, see Exercise 1.3.7). The second inequality follows
from Proposition 5.1.8 and the fact that for all x ∈ [a,b] we have −ε

2(b−a) < f (x)− fn(x) < ε

2(b−a) .
As ε > 0 was arbitrary, f is Riemann integrable.

Finally we compute
∫ b

a f . We apply Proposition 5.1.10 in the calculation. Again, for n ≥M
(where M is the same as above) we have∣∣∣∣∫ b

a
f −

∫ b

a
fn

∣∣∣∣= ∣∣∣∣∫ b

a

(
f (x)− fn(x)

)
dx
∣∣∣∣

≤ ε

2(b−a)
(b−a) =

ε

2
< ε.

Therefore {
∫ b

a fn} converges to
∫ b

a f .

Example 6.2.5: Suppose we wish to compute

lim
n→∞

∫ 1

0

nx+ sin(nx2)

n
dx.

It is impossible to compute the integrals for any particular n using calculus as sin(nx2) has no closed-
form antiderivative. However, we can compute the limit. We have shown before that nx+sin(nx2)

n
converges uniformly on [0,1] to x. By Theorem 6.2.4, the limit exists and

lim
n→∞

∫ 1

0

nx+ sin(nx2)

n
dx =

∫ 1

0
x dx = 1/2.
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Example 6.2.6: If convergence is only pointwise, the limit need not even be Riemann integrable.
On [0,1] define

fn(x) :=

{
1 if x = p/q in lowest terms and q≤ n,
0 otherwise.

The function fn differs from the zero function at finitely many points; there are only finitely many
fractions in [0,1] with denominator less than or equal to n. So fn is integrable and

∫ 1
0 fn =

∫ 1
0 0 = 0.

It is an easy exercise to show that { fn} converges pointwise to the Dirichlet function

f (x) :=

{
1 if x ∈Q,
0 otherwise,

which is not Riemann integrable.

Example 6.2.7: In fact, if the convergence is only pointwise, the limit of bounded functions is not
even necessarily bounded. Define fn : [0,1]→ R by

fn(x) :=

{
0 if x < 1/n,
1/x else.

For every n we get that | fn(x)| ≤ n for all x ∈ [0,1] so the functions are bounded. However fn
converge pointwise to

f (x) :=

{
0 if x = 0,
1/x else,

which is unbounded.

Let us remark that while uniform convergence is enough to swap limits with integrals, it is not,
however, enough to swap limits with derivatives, unless you also have uniform convergence of the
derivatives themselves. See the exercises below.

6.2.3 Exercises
Exercise 6.2.1: While uniform convergence preserves continuity, it does not preserve differentiability. Find
an explicit example of a sequence of differentiable functions on [−1,1] that converge uniformly to a function
f such that f is not differentiable. Hint: Consider |x|1+1/n, show that these functions are differentiable,
converge uniformly, and then show that the limit is not differentiable.

Exercise 6.2.2: Let fn(x) = xn

n . Show that { fn} converges uniformly to a differentiable function f on [0,1]
(find f ). However, show that f ′(1) 6= lim

n→∞
f ′n(1).

Note: The previous two exercises show that we cannot simply swap limits with derivatives, even if the
convergence is uniform. See also Exercise 6.2.7 below.
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Exercise 6.2.3: Let f : [0,1]→ R be a Riemann integrable (hence bounded) function. Find lim
n→∞

∫ 1

0

f (x)
n

dx.

Exercise 6.2.4: Show lim
n→∞

∫ 2

1
e−nx2

dx = 0. Feel free to use what you know about the exponential function

from calculus.

Exercise 6.2.5: Find an example of a sequence of continuous functions on (0,1) that converges pointwise to
a continuous function on (0,1), but the convergence is not uniform.

Note: In the previous exercise, (0,1) was picked for simplicity. For a more challenging exercise, replace
(0,1) with [0,1].

Exercise 6.2.6: True/False; prove or find a counterexample to the following statement: If { fn} is a sequence
of everywhere discontinuous functions on [0,1] that converge uniformly to a function f , then f is everywhere
discontinuous.

Exercise 6.2.7: For a continuously differentiable function f : [a,b]→ R, define

‖ f‖C1 := ‖ f‖u +
∥∥ f ′
∥∥

u .

Suppose { fn} is a sequence of continuously differentiable functions such that for every ε > 0, there exists an
M such that for all n,k ≥M we have

‖ fn− fk‖C1 < ε.

Show that { fn} converges uniformly to some continuously differentiable function f : [a,b]→ R.

For the following two exercises let us define for a Riemann integrable function f : [0,1]→R the following
number

‖ f‖L1 :=
∫ 1

0
| f (x)| dx.

It is true that | f | is integrable whenever f is, see Exercise 5.2.15. This norm defines another very common
type of convergence called the L1-convergence, that is however a bit more subtle.

Exercise 6.2.8: Suppose { fn} is a sequence of Riemann integrable functions on [0,1] that converges uniformly
to 0. Show that

lim
n→∞
‖ fn‖L1 = 0.

Exercise 6.2.9: Find a sequence of Riemann integrable functions { fn} on [0,1] that converges pointwise to
0, but

lim
n→∞
‖ fn‖L1 does not exist (is ∞).

Exercise 6.2.10 (Hard): Prove Dini’s theorem: Let fn : [a,b]→ R be a sequence of continuous functions
such that

0≤ fn+1(x)≤ fn(x)≤ ·· · ≤ f1(x) for all n ∈ N.

Suppose { fn} converges pointwise to 0. Show that { fn} converges to zero uniformly.
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Exercise 6.2.11: Suppose fn : [a,b]→ R is a sequence of continuous functions that converges pointwise to a
continuous f : [a,b]→ R. Suppose that for any x ∈ [a,b] the sequence {| fn(x)− f (x)|} is monotone. Show
that the sequence { fn} converges uniformly.

Exercise 6.2.12: Find a sequence of Riemann integrable functions fn : [0,1]→ R such that { fn} converges
to zero pointwise, and such that a)

{∫ 1
0 fn
}∞

n=1 increases without bound, b)
{∫ 1

0 fn
}∞

n=1 is the sequence
−1,1,−1,1,−1,1, . . ..

It is possible to define a joint limit of a double sequence {xn,m} of real numbers (that is a function from
N×N to R). We say L is the joint limit of {xn,m} and write

lim
n→∞
m→∞

xn,m = L, or lim
(n,m)→∞

xn,m = L,

if for every ε > 0, there exists an M such that if n≥M and m≥M, then |xn,m−L|< ε .

Exercise 6.2.13: Suppose the joint limit of {xn,m} is L, and suppose that for all n, lim
m→∞

xn,m exists, and for all
m, lim

n→∞
xn,m exists. Then show lim

n→∞
lim

m→∞
xn,m = lim

m→∞
lim
n→∞

xn,m = L.

Exercise 6.2.14: A joint limit does not mean the iterated limits even exist. Consider xn,m := (−1)n+m

min{n,m} .
a) Show that for no n does lim

m→∞
xn,m exist, and for no m does lim

n→∞
xn,m exist. So neither lim

n→∞
lim

m→∞
xn,m nor

lim
m→∞

lim
n→∞

xn,m makes any sense at all.

b) Show that the joint limit of {xn,m} exists and is 0.
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6.3 Picard’s theorem
Note: 1–2 lectures (can be safely skipped)

A first semester course in analysis should have a pièce de résistance caliber theorem. We
pick a theorem whose proof combines everything we have learned. It is more sophisticated than
the fundamental theorem of calculus, the first highlight theorem of this course. The theorem we
are talking about is Picard’s theorem∗ on existence and uniqueness of a solution to an ordinary
differential equation. Both the statement and the proof are beautiful examples of what one can
do with all we have learned. It is also a good example of how analysis is applied as differential
equations are indispensable in science.

6.3.1 First order ordinary differential equation
Modern science is described in the language of differential equations. That is, equations involving
not only the unknown, but also its derivatives. The simplest nontrivial form of a differential equation
is the so-called first order ordinary differential equation

y′ = F(x,y).

Generally we also specify y(x0) = y0. The solution of the equation is a function y(x) such that
y(x0) = y0 and y′(x) = F

(
x,y(x)

)
.

When F involves only the x variable, the solution is given by the fundamental theorem of
calculus. On the other hand, when F depends on both x and y we need far more firepower. It is not
always true that a solution exists, and if it does, that it is the unique solution. Picard’s theorem gives
us certain sufficient conditions for existence and uniqueness.

6.3.2 The theorem
We need a definition of continuity in two variables. First, a point in the plane R2 =R×R is denoted
by an ordered pair (x,y). To make matters simple, let us give the following sequential definition of
continuity.

Definition 6.3.1. Let U ⊂ R2 be a set and F : U → R be a function. Let (x,y) ∈U be a point.
The function F is continuous at (x,y) if for every sequence {(xn,yn)}∞

n=1 of points in U such that
lim xn = x and lim yn = y, we have

lim
n→∞

F(xn,yn) = F(x,y).

We say F is continuous if it is continuous at all points in U .
∗Named for the French mathematician Charles Émile Picard (1856–1941).

http://en.wikipedia.org/wiki/%C3%89mile_Picard
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Theorem 6.3.2 (Picard’s theorem on existence and uniqueness). Let I,J ⊂ R be closed bounded
intervals, let I0 and J0 be their interiors, and let (x0,y0) ∈ I0× J0. Suppose F : I× J → R is
continuous and Lipschitz in the second variable, that is, there exists a number L such that

|F(x,y)−F(x,z)| ≤ L |y− z| for all y,z ∈ J, x ∈ I.

Then there exists an h > 0 and a unique differentiable function f : [x0−h,x0 +h]→ J ⊂ R, such
that

f ′(x) = F
(
x, f (x)

)
and f (x0) = y0. (6.1)

Proof. Suppose we could find a solution f . Using the fundamental theorem of calculus we integrate
the equation f ′(x) = F

(
x, f (x)

)
, f (x0) = y0, and write (6.1) as the integral equation

f (x) = y0 +
∫ x

x0

F
(
t, f (t)

)
dt. (6.2)

The idea of our proof is that we try to plug in approximations to a solution to the right-hand side
of (6.2) to get better approximations on the left hand side of (6.2). We hope that in the end the
sequence converges and solves (6.2) and hence (6.1). The technique below is called Picard iteration,
and the individual functions fk are called the Picard iterates.

Without loss of generality, suppose x0 = 0 (exercise below). Another exercise tells us that F is
bounded as it is continuous. Therefore pick some M > 0 so that |F(x,y)| ≤M for all (x,y) ∈ I× J.
Pick α > 0 such that [−α,α]⊂ I and [y0−α,y0 +α]⊂ J. Define

h := min
{

α,
α

M+Lα

}
.

Observe [−h,h]⊂ I.
Set f0(x) := y0. We define fk inductively. Assuming fk−1([−h,h])⊂ [y0−α,y0 +α], we see

F
(
t, fk−1(t)

)
is a well defined function of t for t ∈ [−h,h]. Further if fk−1 is continuous on [−h,h],

then F
(
t, fk−1(t)

)
is continuous as a function of t on [−h,h] (left as an exercise). Define

fk(x) := y0 +
∫ x

0
F
(
t, fk−1(t)

)
dt,

and fk is continuous on [−h,h] by the fundamental theorem of calculus. To see that fk maps [−h,h]
to [y0−α,y0 +α], we compute for x ∈ [−h,h]

| fk(x)− y0|=
∣∣∣∣∫ x

0
F
(
t, fk−1(t)

)
dt
∣∣∣∣≤M |x| ≤Mh≤M

α

M+Lα
≤ α.

We now define fk+1 and so on, and we have defined a sequence { fk} of functions. We need to show
that it converges to a function f that solves the equation (6.2) and therefore (6.1).
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We wish to show that the sequence { fk} converges uniformly to some function on [−h,h]. First,
for t ∈ [−h,h] we have the following useful bound∣∣F(t, fn(t)

)
−F

(
t, fk(t)

)∣∣≤ L | fn(t)− fk(t)| ≤ L‖ fn− fk‖u ,

where ‖ fn− fk‖u is the uniform norm, that is the supremum of | fn(t)− fk(t)| for t ∈ [−h,h]. Now
note that |x| ≤ h≤ α

M+Lα
. Therefore

| fn(x)− fk(x)|=
∣∣∣∣∫ x

0
F
(
t, fn−1(t)

)
dt−

∫ x

0
F
(
t, fk−1(t)

)
dt
∣∣∣∣

=

∣∣∣∣∫ x

0
F
(
t, fn−1(t)

)
−F

(
t, fk−1(t)

)
dt
∣∣∣∣

≤ L‖ fn−1− fk−1‖u |x|

≤ Lα

M+Lα
‖ fn−1− fk−1‖u .

Let C := Lα

M+Lα
and note that C < 1. Taking supremum on the left-hand side we get

‖ fn− fk‖u ≤C‖ fn−1− fk−1‖u .

Without loss of generality, suppose n≥ k. Then by induction we can show

‖ fn− fk‖u ≤Ck ‖ fn−k− f0‖u .

For x ∈ [−h,h] we have

| fn−k(x)− f0(x)|= | fn−k(x)− y0| ≤ α.

Therefore,

‖ fn− fk‖u ≤Ck ‖ fn−k− f0‖u ≤Ck
α.

As C < 1, { fn} is uniformly Cauchy and by Proposition 6.1.13 we obtain that { fn} converges
uniformly on [−h,h] to some function f : [−h,h]→ R. The function f is the uniform limit of
continuous functions and therefore continuous. Furthremore since all the fn([−h,h])⊂ [y0−α,y0+
α], then f ([−h,h])⊂ [y0−α,y0 +α] (why?).

We now need to show that f solves (6.2). First, as before we notice∣∣F(t, fn(t)
)
−F

(
t, f (t)

)∣∣≤ L | fn(t)− f (t)| ≤ L‖ fn− f‖u .

As ‖ fn− f‖u converges to 0, then F
(
t, fn(t)

)
converges uniformly to F

(
t, f (t)

)
for t ∈ [−h,h].
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Hence, for x ∈ [−h,h] the convergence is uniform for t ∈ [0,x] (or [x,0] if x < 0). Therefore,

y0 +
∫ x

0
F(t, f (t)

)
dt = y0 +

∫ x

0
F
(
t, lim

n→∞
fn(t)

)
dt

= y0 +
∫ x

0
lim
n→∞

F
(
t, fn(t)

)
dt (by continuity of F)

= lim
n→∞

(
y0 +

∫ x

0
F
(
t, fn(t)

)
dt
)

(by uniform convergence)

= lim
n→∞

fn+1(x) = f (x).

We apply the fundamental theorem of calculus to show that f is differentiable and its derivative is
F
(
x, f (x)

)
. It is obvious that f (0) = y0.

Finally, what is left to do is to show uniqueness. Suppose g : [−h,h]→ J ⊂R is another solution.
As before we use the fact that

∣∣F(t, f (t)
)
−F

(
t,g(t)

)∣∣≤ L‖ f −g‖u. Then

| f (x)−g(x)|=
∣∣∣∣y0 +

∫ x

0
F
(
t, f (t)

)
dt−

(
y0 +

∫ x

0
F
(
t,g(t)

)
dt
)∣∣∣∣

=

∣∣∣∣∫ x

0
F
(
t, f (t)

)
−F

(
t,g(t)

)
dt
∣∣∣∣

≤ L‖ f −g‖u |x| ≤ Lh‖ f −g‖u ≤
Lα

M+Lα
‖ f −g‖u .

As before, C = Lα

M+Lα
< 1. By taking supremum over x ∈ [−h,h] on the left hand side we obtain

‖ f −g‖u ≤C‖ f −g‖u .

This is only possible if ‖ f −g‖u = 0. Therefore, f = g, and the solution is unique.

6.3.3 Examples
Let us look at some examples. The proof of the theorem gives us an explicit way to find an h that
works. It does not, however, give us the best h. It is often possible to find a much larger h for which
the conclusion of the theorem holds.

The proof also gives us the Picard iterates as approximations to the solution. So the proof
actually tells us how to obtain the solution, not just that the solution exists.

Example 6.3.3: Consider
f ′(x) = f (x), f (0) = 1.

That is, we let F(x,y) = y, and we are looking for a function f such that f ′(x) = f (x). We pick any
I that contains 0 in the interior. We pick an arbitrary J that contains 1 in its interior. We can use
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L = 1. The theorem guarantees an h > 0 such that there exists a unique solution f : [−h,h]→ R.
This solution is usually denoted by

ex := f (x).

We leave it to the reader to verify that by picking I and J large enough the proof of the theorem
guarantees that we are able to pick α such that we get any h we want as long as h < 1/2. We omit
the calculation.

Of course, we know this function exists as a function for all x, so an arbitrary h ought to work.
By same reasoning as above, no matter what x0 and y0 are, the proof guarantees an arbitrary h as
long as h < 1/2. Fix such an h. We get a unique function defined on [x0−h,x0 +h]. After defining
the function on [−h,h] we find a solution on the interval [0,2h] and notice that the two functions
must coincide on [0,h] by uniqueness. We thus iteratively construct the exponential for all x ∈ R.
Therefore Picard’s theorem could be used to prove the existence and uniqueness of the exponential.

Let us compute the Picard iterates. We start with the constant function f0(x) := 1. Then

f1(x) = 1+
∫ x

0
f0(s) ds = 1+ x,

f2(x) = 1+
∫ x

0
f1(s) ds = 1+

∫ x

0
(1+ s) ds = 1+ x+

x2

2
,

f3(x) = 1+
∫ x

0
f2(s) ds = 1+

∫ x

0

(
1+ s+

s2

2

)
ds = 1+ x+

x2

2
+

x3

6
.

We recognize the beginning of the Taylor series for the exponential.

Example 6.3.4: Suppose we have the equation

f ′(x) =
(

f (x)
)2 and f (0) = 1.

From elementary differential equations we know

f (x) =
1

1− x

is the solution. The solution is only defined on (−∞,1). That is, we are able to use h < 1, but never
a larger h. The function that takes y to y2 is not Lipschitz as a function on all of R. As we approach
x = 1 from the left, the solution becomes larger and larger. The derivative of the solution grows as
y2, and therefore the L required will have to be larger and larger as y0 grows. Thus if we apply the
theorem with x0 close to 1 and y0 =

1
1−x0

we find that the h that the proof guarantees will be smaller
and smaller as x0 approaches 1.

By picking α correctly, the proof of the theorem guarantees h = 1−
√

3/2≈ 0.134 (we omit the
calculation) for x0 = 0 and y0 = 1, even though we saw above that any h < 1 should work.
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Example 6.3.5: Consider the equation

f ′(x) = 2
√
| f (x)|, f (0) = 0.

The function F(x,y) = 2
√
|y| is continuous, but not Lipschitz in y (why?). The equation does not

satisfy the hypotheses of the theorem. The function

f (x) =

{
x2 if x≥ 0,
−x2 if x < 0,

is a solution, but f (x) = 0 is also a solution. A solution exists, but is not unique.

Example 6.3.6: Consider y′ = ϕ(x) where ϕ(x) := 0 if x ∈Q and ϕ(x) := 1 if x 6∈Q. The equation
has no solution regardless of the initial conditions. A solution would have derivative ϕ , but ϕ does
not have the intermediate value property at any point (why?). No solution exists by Darboux’s
theorem. Therefore to obtain existence of a solution, some continuity hypothesis on F is necessary.

6.3.4 Exercises
Exercise 6.3.1: Let I,J ⊂ R be intervals. Let F : I× J→ R be a continuous function of two variables and
suppose f : I→ J be a continuous function. Show that F

(
x, f (x)

)
is a continuous function on I.

Exercise 6.3.2: Let I,J ⊂R be closed bounded intervals. Show that if F : I×J→R is continuous, then F is
bounded.

Exercise 6.3.3: We proved Picard’s theorem under the assumption that x0 = 0. Prove the full statement of
Picard’s theorem for an arbitrary x0.

Exercise 6.3.4: Let f ′(x) = x f (x) be our equation. Start with the initial condition f (0) = 2 and find the
Picard iterates f0, f1, f2, f3, f4.

Exercise 6.3.5: Suppose F : I× J→ R is a function that is continuous in the first variable, that is, for any
fixed y the function that takes x to F(x,y) is continuous. Further, suppose F is Lipschitz in the second variable,
that is, there exists a number L such that

|F(x,y)−F(x,z)| ≤ L |y− z| for all y,z ∈ J, x ∈ I.

Show that F is continuous as a function of two variables. Therefore, the hypotheses in the theorem could be
made even weaker.

Exercise 6.3.6: A common type of equation one encounters are linear first order differential equations, that
is equations of the form

y′+ p(x)y = q(x), y(x0) = y0.

Prove Picard’s theorem for linear equations. Suppose I is an interval, x0 ∈ I, and p : I→R and q : I→R are
continuous. Show that there exists a unique differentiable f : I→ R, such that y = f (x) satisfies the equation
and the initial condition. Hint: Assume existence of the exponential function and use the integrating factor
formula for existence of f (prove that it works):

f (x) := e−
∫ x

x0
p(s)ds

(∫ x

x0

e
∫ t

x0
p(s)dsq(t) dt + y0

)
.
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Chapter 7

Metric Spaces

7.1 Metric spaces

Note: 1.5 lectures

As mentioned in the introduction, the main idea in analysis is to take limits. In chapter 2 we
learned to take limits of sequences of real numbers. And in chapter 3 we learned to take limits of
functions as a real number approached some other real number.

We want to take limits in more complicated contexts. For example, we want to have sequences
of points in 3-dimensional space. We wish to define continuous functions of several variables. We
even want to define functions on spaces that are a little harder to describe, such as the surface of the
earth. We still want to talk about limits there.

Finally, we have seen the limit of a sequence of functions in chapter 6. We wish to unify all these
notions so that we do not have to reprove theorems over and over again in each context. The concept
of a metric space is an elementary yet powerful tool in analysis. And while it is not sufficient to
describe every type of limit we find in modern analysis, it gets us very far indeed.

Definition 7.1.1. Let X be a set, and let d : X×X → R be a function such that

(i) d(x,y)≥ 0 for all x,y in X ,

(ii) d(x,y) = 0 if and only if x = y,

(iii) d(x,y) = d(y,x),

(iv) d(x,z)≤ d(x,y)+d(y,z) (triangle inequality).

Then the pair (X ,d) is called a metric space. The function d is called the metric or sometimes the
distance function. Sometimes we just say X is a metric space if the metric is clear from context.

The geometric idea is that d is the distance between two points. Items (i)–(iii) have obvious
geometric interpretation: distance is always nonnegative, the only point that is distance 0 away from

219
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x
y

z

d(x,y)

d(y,z)d(x,z)

Figure 7.1: Diagram of the triangle inequality in metric spaces.

x is x itself, and finally that the distance from x to y is the same as the distance from y to x. The
triangle inequality (iv) has the interpretation given in Figure 7.1.

For the purposes of drawing, it is convenient to draw figures and diagrams in the plane and have
the metric be the standard distance. However, that is only one particular metric space. Just because
a certain fact seems to be clear from drawing a picture does not mean it is true. You might be getting
sidetracked by intuition from euclidean geometry, whereas the concept of a metric space is a lot
more general.

Let us give some examples of metric spaces.

Example 7.1.2: The set of real numbers R is a metric space with the metric

d(x,y) := |x− y| .

Items (i)–(iii) of the definition are easy to verify. The triangle inequality (iv) follows immediately
from the standard triangle inequality for real numbers:

d(x,z) = |x− z|= |x− y+ y− z| ≤ |x− y|+ |y− z|= d(x,y)+d(y,z).

This metric is the standard metric on R. If we talk about R as a metric space without mentioning a
specific metric, we mean this particular metric.

Example 7.1.3: We can also put a different metric on the set of real numbers. For example, take
the set of real numbers R together with the metric

d(x,y) :=
|x− y|
|x− y|+1

.

Items (i)–(iii) are again easy to verify. The triangle inequality (iv) is a little bit more difficult. Note
that d(x,y) = ϕ(|x− y|) where ϕ(t) = t

t+1 and ϕ is an increasing function (positive derivative).
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Hence

d(x,z) = ϕ(|x− z|) = ϕ(|x− y+ y− z|)≤ ϕ(|x− y|+ |y− z|)

=
|x− y|+ |y− z|
|x− y|+ |y− z|+1

=
|x− y|

|x− y|+ |y− z|+1
+

|y− z|
|x− y|+ |y− z|+1

≤ |x− y|
|x− y|+1

+
|y− z|
|y− z|+1

= d(x,y)+d(y,z).

Here we have an example of a nonstandard metric on R. With this metric we see for example that
d(x,y)< 1 for all x,y ∈ R. That is, any two points are less than 1 unit apart.

An important metric space is the n-dimensional euclidean space Rn = R×R×·· ·×R. We use
the following notation for points: x = (x1,x2, . . . ,xn) ∈ Rn. We also simply write 0 ∈ Rn to mean
the vector (0,0, . . . ,0). Before making Rn a metric space, let us prove an important inequality, the
so-called Cauchy-Schwarz inequality.

Lemma 7.1.4 (Cauchy-Schwarz inequality). Take x= (x1,x2, . . . ,xn)∈Rn and y= (y1,y2, . . . ,yn)∈
Rn. Then ( n

∑
j=1

x jy j

)2

≤
( n

∑
j=1

x2
j

)( n

∑
j=1

y2
j

)
.

Proof. Any square of a real number is nonnegative. Hence any sum of squares is nonnegative:

0≤
n

∑
j=1

n

∑
k=1

(x jyk− xky j)
2

=
n

∑
j=1

n

∑
k=1

(
x2

jy
2
k + x2

ky2
j −2x jxky jyk

)
=

( n

∑
j=1

x2
j

)( n

∑
k=1

y2
k

)
+

( n

∑
j=1

y2
j

)( n

∑
k=1

x2
k

)
−2
( n

∑
j=1

x jy j

)( n

∑
k=1

xkyk

)
We relabel and divide by 2 to obtain

0≤
( n

∑
j=1

x2
j

)( n

∑
j=1

y2
j

)
−
( n

∑
j=1

x jy j

)2

,

which is precisely what we wanted.

Example 7.1.5: Let us construct the standard metric for Rn. Define

d(x,y) :=
√
(x1− y1)

2 +(x2− y2)
2 + · · ·+(xn− yn)

2 =

√
n

∑
j=1

(x j− y j)
2.
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For n = 1, the real line, this metric agrees with what we did above. Again, the only tricky part of the
definition to check is the triangle inequality. It is less messy to work with the square of the metric.
In the following, note the use of the Cauchy-Schwarz inequality.(

d(x,z)
)2

=
n

∑
j=1

(x j− z j)
2

=
n

∑
j=1

(x j− y j + y j− z j)
2

=
n

∑
j=1

(
(x j− y j)

2 +(y j− z j)
2 +2(x j− y j)(y j− z j)

)
=

n

∑
j=1

(x j− y j)
2 +

n

∑
j=1

(y j− z j)
2 +

n

∑
j=1

2(x j− y j)(y j− z j)

≤
n

∑
j=1

(x j− y j)
2 +

n

∑
j=1

(y j− z j)
2 +2

√
n

∑
j=1

(x j− y j)
2

n

∑
j=1

(y j− z j)
2

=

(√
n

∑
j=1

(x j− y j)
2 +

√
n

∑
j=1

(y j− z j)
2

)2

=
(
d(x,y)+d(y,z)

)2
.

Taking the square root of both sides we obtain the correct inequality, because the square root is an
increasing function.

Example 7.1.6: An example to keep in mind is the so-called discrete metric. Let X be any set and
define

d(x,y) :=

{
1 if x 6= y,
0 if x = y.

That is, all points are equally distant from each other. When X is a finite set, we can draw a diagram,
see for example Figure 7.2. Things become subtle when X is an infinite set such as the real numbers.

While this particular example seldom comes up in practice, it gives a useful “smell test.” If you
make a statement about metric spaces, try it with the discrete metric. To show that (X ,d) is indeed
a metric space is left as an exercise.

Example 7.1.7: Let C([a,b],R) be the set of continuous real-valued functions on the interval [a,b].
Define the metric on C([a,b],R) as

d( f ,g) := sup
x∈[a,b]

| f (x)−g(x)| .

Let us check the properties. First, d( f ,g) is finite as | f (x)−g(x)| is a continuous function on a
closed bounded interval [a,b], and so is bounded. It is clear that d( f ,g)≥ 0, it is the supremum of
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1

11
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1

Figure 7.2: Sample discrete metric space {a,b,c,d,e}, the distance between any two points is 1.

nonnegative numbers. If f = g then | f (x)−g(x)|= 0 for all x and hence d( f ,g) = 0. Conversely if
d( f ,g) = 0, then for any x we have | f (x)−g(x)| ≤ d( f ,g) = 0 and hence f (x) = g(x) for all x and
f = g. That d( f ,g) = d(g, f ) is equally trivial. To show the triangle inequality we use the standard
triangle inequality.

d( f ,g) = sup
x∈[a,b]

| f (x)−g(x)|= sup
x∈[a,b]

| f (x)−h(x)+h(x)−g(x)|

≤ sup
x∈[a,b]

(| f (x)−h(x)|+ |h(x)−g(x)|)

≤ sup
x∈[a,b]

| f (x)−h(x)|+ sup
x∈[a,b]

|h(x)−g(x)|= d( f ,h)+d(h,g).

When treating C([a,b],R) as a metric space without mentioning a metric, we mean this particular
metric. Notice that d( f ,g) = ‖ f −g‖u, the uniform norm of Definition 6.1.9.

This example may seem esoteric at first, but it turns out that working with spaces such as
C([a,b],R) is really the meat of a large part of modern analysis. Treating sets of functions as metric
spaces allows us to abstract away a lot of the grubby detail and prove powerful results such as
Picard’s theorem with less work.

Oftentimes it is useful to consider a subset of a larger metric space as a metric space itself. We
obtain the following proposition, which has a trivial proof.

Proposition 7.1.8. Let (X ,d) be a metric space and Y ⊂ X, then the restriction d|Y×Y is a metric
on Y .

Definition 7.1.9. If (X ,d) is a metric space, Y ⊂ X , and d′ := d|Y×Y , then (Y,d′) is said to be a
subspace of (X ,d).

It is common to simply write d for the metric on Y , as it is the restriction of the metric on X .
Sometimes we say d′ is the subspace metric and Y has the subspace topology.

A subset of the real numbers is bounded whenever all its elements are at most some fixed
distance from 0. We also define bounded sets in a metric space. When dealing with an arbitrary
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metric space there may not be some natural fixed point 0. For the purposes of boundedness it does
not matter.

Definition 7.1.10. Let (X ,d) be a metric space. A subset S⊂ X is said to be bounded if there exists
a p ∈ X and a B ∈ R such that

d(p,x)≤ B for all x ∈ S.

We say (X ,d) is bounded if X itself is a bounded subset.

For example, the set of real numbers with the standard metric is not a bounded metric space. It
is not hard to see that a subset of the real numbers is bounded in the sense of chapter 1 if and only if
it is bounded as a subset of the metric space of real numbers with the standard metric.

On the other hand, if we take the real numbers with the discrete metric, then we obtain a bounded
metric space. In fact, any set with the discrete metric is bounded.

7.1.1 Exercises
Exercise 7.1.1: Show that for any set X, the discrete metric (d(x,y) = 1 if x 6= y and d(x,x) = 0) does give a
metric space (X ,d).

Exercise 7.1.2: Let X := {0} be a set. Can you make it into a metric space?

Exercise 7.1.3: Let X := {a,b} be a set. Can you make it into two distinct metric spaces? (define two distinct
metrics on it)

Exercise 7.1.4: Let the set X := {A,B,C} represent 3 buildings on campus. Suppose we wish our distance to
be the time it takes to walk from one building to the other. It takes 5 minutes either way between buildings A
and B. However, building C is on a hill and it takes 10 minutes from A and 15 minutes from B to get to C. On
the other hand it takes 5 minutes to go from C to A and 7 minutes to go from C to B, as we are going downhill.
Do these distances define a metric? If so, prove it, if not, say why not.

Exercise 7.1.5: Suppose (X ,d) is a metric space and ϕ : [0,∞)→ R is a function such that ϕ(t)≥ 0 for all
t and ϕ(t) = 0 if and only if t = 0. Also suppose ϕ is subadditive, that is, ϕ(s+ t)≤ ϕ(s)+ϕ(t). Show that
with d′(x,y) := ϕ

(
d(x,y)

)
, we obtain a new metric space (X ,d′).

Exercise 7.1.6: Let (X ,dX) and (Y,dY ) be metric spaces.
a) Show that (X×Y,d) with d

(
(x1,y1),(x2,y2)

)
:= dX(x1,x2)+dY (y1,y2) is a metric space.

b) Show that (X×Y,d) with d
(
(x1,y1),(x2,y2)

)
:= max{dX(x1,x2),dY (y1,y2)} is a metric space.

Exercise 7.1.7: Let X be the set of continuous functions on [0,1]. Let ϕ : [0,1]→ (0,∞) be continuous.
Define

d( f ,g) :=
∫ 1

0
| f (x)−g(x)|ϕ(x) dx.

Show that (X ,d) is a metric space.
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Exercise 7.1.8: Let (X ,d) be a metric space. For nonempty bounded subsets A and B let

d(x,B) := inf{d(x,b) : b ∈ B} and d(A,B) := sup{d(a,B) : a ∈ A}.

Now define the Hausdorff metric as

dH(A,B) := max{d(A,B),d(B,A)}.

Note: dH can be defined for arbitrary nonempty subsets if we allow the extended reals.
a) Let Y ⊂P(X) be the set of bounded nonempty subsets. Prove that (Y,dH) is a so-called pseudometric
space: dH satisfies the metric properties (i), (iii), (iv), and further dH(A,A) = 0 for all A ∈ Y .
b) Show by example that d itself is not symmetric, that is d(A,B) 6= d(B,A).
c) Find a metric space X and two different nonempty bounded subsets A and B such that dH(A,B) = 0.
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7.2 Open and closed sets
Note: 2 lectures

7.2.1 Topology
It is useful to define a so-called topology. That is we define closed and open sets in a metric space.
Before doing so, let us define two special sets.

Definition 7.2.1. Let (X ,d) be a metric space, x∈ X and δ > 0. Then define the open ball or simply
ball of radius δ around x as

B(x,δ ) := {y ∈ X : d(x,y)< δ}.

Similarly we define the closed ball as

C(x,δ ) := {y ∈ X : d(x,y)≤ δ}.

When we are dealing with different metric spaces, it is sometimes convenient to emphasize
which metric space the ball is in. We do this by writing BX(x,δ ) := B(x,δ ) or CX(x,δ ) :=C(x,δ ).

Example 7.2.2: Take the metric space R with the standard metric. For x ∈ R, and δ > 0 we get

B(x,δ ) = (x−δ ,x+δ ) and C(x,δ ) = [x−δ ,x+δ ].

Example 7.2.3: Be careful when working on a subspace. Suppose we take the metric space [0,1]
as a subspace of R. Then in [0,1] we get

B(0,1/2) = B[0,1](0,1/2) = [0,1/2).

This is different from BR(0,1/2) = (−1/2,1/2). The important thing to keep in mind is which metric
space we are working in.

Definition 7.2.4. Let (X ,d) be a metric space. A set V ⊂ X is open if for every x ∈V , there exists
a δ > 0 such that B(x,δ )⊂V . See Figure 7.3. A set E ⊂ X is closed if the complement Ec = X \E
is open. When the ambient space X is not clear from context we say V is open in X and E is closed
in X .

If x ∈ V and V is open, then we say V is an open neighborhood of x (or sometimes just
neighborhood).

Intuitively, an open set is a set that does not include its “boundary,” wherever we are at in the
set, we are allowed to “wiggle” a little bit and stay in the set. Note that not every set is either open
or closed, in fact generally most subsets are neither.
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x

δ

V

B(x,δ )

Figure 7.3: Open set in a metric space. Note that δ depends on x.

Example 7.2.5: The set [0,1) ⊂ R is neither open nor closed. First, every ball in R around 0,
(−δ ,δ ), contains negative numbers and hence is not contained in [0,1) and so [0,1) is not open.
Second, every ball in R around 1, (1−δ ,1+δ ) contains numbers strictly less than 1 and greater
than 0 (e.g. 1− δ/2 as long as δ < 2). Thus R\ [0,1) is not open, and so [0,1) is not closed.

Proposition 7.2.6. Let (X ,d) be a metric space.

(i) /0 and X are open in X.

(ii) If V1,V2, . . . ,Vk are open then
k⋂

j=1

Vj

is also open. That is, finite intersection of open sets is open.

(iii) If {Vλ}λ∈I is an arbitrary collection of open sets, then⋃
λ∈I

Vλ

is also open. That is, union of open sets is open.

Note that the index set in (iii) is arbitrarily large. By
⋃

λ∈I Vλ we simply mean the set of all x
such that x ∈Vλ for at least one λ ∈ I.

Proof. The sets X and /0 are obviously open in X .
Let us prove (ii). If x ∈

⋂k
j=1Vj, then x ∈ Vj for all j. As Vj are all open, for every j there

exists a δ j > 0 such that B(x,δ j)⊂Vj. Take δ := min{δ1,δ2, . . . ,δk} and notice δ > 0. We have
B(x,δ )⊂ B(x,δ j)⊂Vj for every j and so B(x,δ )⊂

⋂k
j=1Vj. Consequently the intersection is open.

Let us prove (iii). If x ∈
⋃

λ∈I Vλ , then x ∈ Vλ for some λ ∈ I. As Vλ is open, there exists a
δ > 0 such that B(x,δ )⊂Vλ . But then B(x,δ )⊂

⋃
λ∈I Vλ and so the union is open.
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Example 7.2.7: The main thing to notice is the difference between items (ii) and (iii). Item (ii) is
not true for an arbitrary intersection, for example

⋂
∞
n=1(−1/n,1/n) = {0}, which is not open.

The proof of the following analogous proposition for closed sets is left as an exercise.

Proposition 7.2.8. Let (X ,d) be a metric space.

(i) /0 and X are closed in X.

(ii) If {Eλ}λ∈I is an arbitrary collection of closed sets, then⋂
λ∈I

Eλ

is also closed. That is, intersection of closed sets is closed.

(iii) If E1,E2, . . . ,Ek are closed then
k⋃

j=1

E j

is also closed. That is, finite union of closed sets is closed.

We have not yet shown that the open ball is open and the closed ball is closed. Let us show this
fact now to justify the terminology.

Proposition 7.2.9. Let (X ,d) be a metric space, x ∈ X, and δ > 0. Then B(x,δ ) is open and C(x,δ )
is closed.

Proof. Let y ∈ B(x,δ ). Let α := δ −d(x,y). Of course α > 0. Now let z ∈ B(y,α). Then

d(x,z)≤ d(x,y)+d(y,z)< d(x,y)+α = d(x,y)+δ −d(x,y) = δ .

Therefore z ∈ B(x,δ ) for every z ∈ B(y,α). So B(y,α)⊂ B(x,δ ) and B(x,δ ) is open.
The proof that C(x,δ ) is closed is left as an exercise.

Again be careful about what is the ambient metric space. As [0,1/2) is an open ball in [0,1], this
means that [0,1/2) is an open set in [0,1]. On the other hand [0,1/2) is neither open nor closed in R.

A useful way to think about an open set is as a union of open balls. If U is open, then for each
x ∈U , there is a δx > 0 (depending on x) such that B(x,δx)⊂U . Then U =

⋃
x∈U B(x,δx).

The proof of the following proposition is left as an exercise. Note that there are many other
open and closed sets in R.

Proposition 7.2.10. Let a < b be two real numbers. Then (a,b), (a,∞), and (−∞,b) are open in R.
Also [a,b], [a,∞), and (−∞,b] are closed in R.
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7.2.2 Connected sets
Definition 7.2.11. A nonempty metric space (X ,d) is connected if the only subsets of X that are
both open and closed are /0 and X itself. If (X ,d) is not connected we say it is disconnected.

When we apply the term connected to a nonempty subset A⊂ X , we simply mean that A with
the subspace topology is connected.

In other words, a nonempty X is connected if whenever we write X = X1∪X2 where X1∩X2 = /0
and X1 and X2 are open, then either X1 = /0 or X2 = /0. So to show X is disconnected, we need to
find nonempty disjoint open sets X1 and X2 whose union is X . For subsets, we state this idea as a
proposition.

Proposition 7.2.12. Let (X ,d) be a metric space. A nonempty set S ⊂ X is not connected if and
only if there exist open sets U1 and U2 in X, such that U1∩U2∩S = /0, U1∩S 6= /0, U2∩S 6= /0, and

S =
(
U1∩S

)
∪
(
U2∩S

)
.

Proof. If U j is open in X , then U j∩S is open in S in the subspace topology (with subspace metric).
To see this, note that if BX(x,δ )⊂U j, then as BS(x,δ ) = S∩BX(x,δ ), we have BS(x,δ )⊂U j∩S.
So if U1 and U2 as above exist, then X is disconnected based on the discussion above.

The proof of the other direction follows by using Exercise 7.2.12 to find U1 and U2 from two
open disjoint subsets of S.

Example 7.2.13: Let S⊂R be such that x< z< y with x,y∈ S and z /∈ S. Claim: S is not connected.
Proof: Notice (

(−∞,z)∩S
)
∪
(
(z,∞)∩S

)
= S.

Proposition 7.2.14. A nonempty set S⊂ R is connected if and only if it is an interval or a single
point.

Proof. Suppose S is connected. If S is a single point then we are done. So suppose x < y and
x,y ∈ S. If z is such that x < z < y, then (−∞,z)∩S is nonempty and (z,∞)∩S is nonempty. The
two sets are disjoint. As S is connected, we must have they their union is not S, so z ∈ S.

Suppose S is bounded, connected, but not a single point. Let α := inf S and β := sup S and note
that α < β . Suppose α < z < β . As α is the infimum, then there is an x ∈ S such that α ≤ x < z.
Similarly there is a y ∈ S such that β ≥ y > z. We have shown above that z ∈ S, so (α,β ) ⊂ S.
If w < α , then w /∈ S as α was the infimum, similarly if w > β then w /∈ S. Therefore the only
possibilities for S are (α,β ), [α,β ), (α,β ], [α,β ].

The proof that an unbounded connected S is an interval is left as an exercise.
On the other hand suppose S is an interval. Suppose U1 and U2 are open subsets of R, U1∩S

and U2 ∩ S are nonempty, and S =
(
U1 ∩ S

)
∪
(
U2 ∩ S

)
. We will show that U1 ∩ S and U2 ∩ S

contain a common point, so they are not disjoint, and hence S must be connected. Suppose there is
x∈U1∩S and y∈U2∩S. Without loss of generality, assume x < y. As S is an interval [x,y]⊂ S. Let
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z := inf(U2∩ [x,y]). If z = x, then z∈U1. If z > x, then for any δ > 0 the ball B(z,δ ) = (z−δ ,z+δ )
contains points of S that are not in U2, and so z /∈U2 as U2 is open. Therefore, z ∈U1. As U1 is open,
B(z,δ ) ⊂U1 for a small enough δ > 0. As z is the infimum of U2∩ [x,y], there must exist some
w ∈U2∩ [x,y] such that w ∈ [z,z+δ )⊂ B(z,δ )⊂U1. Therefore w ∈U1∩U2∩ [x,y]. So U1∩S and
U2∩S are not disjoint and hence S is connected.

Example 7.2.15: In many cases a ball B(x,δ ) is connected. But this is not necessarily true in every
metric space. For a simplest example, take a two point space {a,b} with the discrete metric. Then
B(a,2) = {a,b}, which is not connected as B(a,1) = {a} and B(b,1) = {b} are open and disjoint.

7.2.3 Closure and boundary
Sometimes we wish to take a set and throw in everything that we can approach from the set. This
concept is called the closure.

Definition 7.2.16. Let (X ,d) be a metric space and A⊂ X . Then the closure of A is the set

A :=
⋂
{E ⊂ X : E is closed and A⊂ E}.

That is, A is the intersection of all closed sets that contain A.

Proposition 7.2.17. Let (X ,d) be a metric space and A⊂ X. The closure A is closed. Furthermore
if A is closed then A = A.

Proof. First, the closure is the intersection of closed sets, so it is closed. Second, if A is closed, then
take E = A, hence the intersection of all closed sets E containing A must be equal to A.

Example 7.2.18: The closure of (0,1) in R is [0,1]. Proof: Simply notice that if E is closed and
contains (0,1), then E must contain 0 and 1 (why?). Thus [0,1] ⊂ E. But [0,1] is also closed.
Therefore the closure (0,1) = [0,1].

Example 7.2.19: Be careful to notice what ambient metric space you are working with. If X =
(0,∞), then the closure of (0,1) in (0,∞) is (0,1]. Proof: Similarly as above (0,1] is closed in (0,∞)
(why?). Any closed set E that contains (0,1) must contain 1 (why?). Therefore (0,1] ⊂ E, and
hence (0,1) = (0,1] when working in (0,∞).

Let us justify the statement that the closure is everything that we can “approach” from the set.

Proposition 7.2.20. Let (X ,d) be a metric space and A ⊂ X. Then x ∈ A if and only if for every
δ > 0, B(x,δ )∩A 6= /0.

Proof. Let us prove the two contrapositives. Let us show that x /∈ A if and only if there exists a
δ > 0 such that B(x,δ )∩A = /0.



7.2. OPEN AND CLOSED SETS 231

First suppose x /∈ A. We know A is closed. Thus there is a δ > 0 such that B(x,δ ) ⊂ Ac. As
A⊂ A we see that B(x,δ )⊂ Ac and hence B(x,δ )∩A = /0.

On the other hand suppose there is a δ > 0 such that B(x,δ )∩A = /0. Then B(x,δ )c is a closed
set and we have that A ⊂ B(x,δ )c, but x /∈ B(x,δ )c. Thus as A is the intersection of closed sets
containing A, we have x /∈ A.

We can also talk about what is in the interior of a set and what is on the boundary.

Definition 7.2.21. Let (X ,d) be a metric space and A⊂ X , then the interior of A is the set

A◦ := {x ∈ A : there exists a δ > 0 such that B(x,δ )⊂ A}.

The boundary of A is the set
∂A := A\A◦.

Example 7.2.22: Suppose A = (0,1] and X = R. Then it is not hard to see that A = [0,1], A◦ =
(0,1), and ∂A = {0,1}.

Example 7.2.23: Suppose X = {a,b} with the discrete metric. Let A = {a}, then A = A◦ = A and
∂A = /0.

Proposition 7.2.24. Let (X ,d) be a metric space and A⊂ X. Then A◦ is open and ∂A is closed.

Proof. Given x ∈ A◦ we have δ > 0 such that B(x,δ ) ⊂ A. If z ∈ B(x,δ ), then as open balls are
open, there is an ε > 0 such that B(z,ε)⊂ B(x,δ )⊂ A, so z is in A◦. Therefore B(x,δ )⊂ A◦ and so
A◦ is open.

As A◦ is open, then ∂A = A\A◦ = A∩ (A◦)c is closed.

The boundary is the set of points that are close to both the set and its complement.

Proposition 7.2.25. Let (X ,d) be a metric space and A⊂ X. Then x ∈ ∂A if and only if for every
δ > 0, B(x,δ )∩A and B(x,δ )∩Ac are both nonempty.

Proof. Suppose x ∈ ∂A = A\A◦ and let δ > 0 be arbitrary. By Proposition 7.2.20, B(x,δ ) contains
a point from A. If B(x,δ ) contained no points of Ac, then x would be in A◦. Hence B(x,δ ) contains
a point of Ac as well.

Let us prove the other direction by contrapositive. If x /∈ A, then there is some δ > 0 such that
B(x,δ )⊂ Ac as A is closed. So B(x,δ ) contains no points of A, because Ac ⊂ Ac.

Now suppose x ∈ A◦, then there exists a δ > 0 such that B(x,δ ) ⊂ A, but that means B(x,δ )
contains no points of Ac.

We obtain the following immediate corollary about closures of A and Ac. We simply apply
Proposition 7.2.20.

Corollary 7.2.26. Let (X ,d) be a metric space and A⊂ X. Then ∂A = A∩Ac.
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7.2.4 Exercises
Exercise 7.2.1: Prove Proposition 7.2.8. Hint: consider the complements of the sets and apply Proposi-
tion 7.2.6.

Exercise 7.2.2: Finish the proof of Proposition 7.2.9 by proving that C(x,δ ) is closed.

Exercise 7.2.3: Prove Proposition 7.2.10.

Exercise 7.2.4: Suppose (X ,d) is a nonempty metric space with the discrete topology. Show that X is
connected if and only if it contains exactly one element.

Exercise 7.2.5: Show that if S⊂ R is a connected unbounded set, then it is an (unbounded) interval.

Exercise 7.2.6: Show that every open set can be written as a union of closed sets.

Exercise 7.2.7: a) Show that E is closed if and only if ∂E ⊂ E. b) Show that U is open if and only if
∂U ∩U = /0.

Exercise 7.2.8: a) Show that A is open if and only if A◦ = A. b) Suppose that U is an open set and U ⊂ A.
Show that U ⊂ A◦.

Exercise 7.2.9: Let X be a set and d, d′ be two metrics on X. Suppose there exists an α > 0 and β > 0 such
that αd(x,y)≤ d′(x,y)≤ βd(x,y) for all x,y ∈ X. Show that U is open in (X ,d) if and only if U is open in
(X ,d′). That is, the topologies of (X ,d) and (X ,d′) are the same.

Exercise 7.2.10: Suppose {Si}, i ∈ N is a collection of connected subsets of a metric space (X ,d). Suppose
there exists an x ∈ X such that x ∈ Si for all i ∈ N. Show that

⋃
∞
i=1 Si is connected.

Exercise 7.2.11: Let A be a connected set. a) Is A connected? Prove or find a counterexample. b) Is A◦

connected? Prove or find a counterexample. Hint: Think of sets in R2.

The definition of open sets in the following exercise is usually called the subspace topology. You are
asked to show that we obtain the same topology by considering the subspace metric.

Exercise 7.2.12: Suppose (X ,d) is a metric space and Y ⊂ X. Show that with the subspace metric on Y , a
set U ⊂ Y is open (in Y ) whenever there exists an open set V ⊂ X such that U =V ∩Y .

Exercise 7.2.13: Let (X ,d) be a metric space. a) For any x ∈ X and δ > 0, show B(x,δ )⊂C(x,δ ). b) Is it
always true that B(x,δ ) =C(x,δ )? Prove or find a counterexample.

Exercise 7.2.14: Let (X ,d) be a metric space and A⊂ X. Show that A◦ =
⋃
{V : V ⊂ A is open}.
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7.3 Sequences and convergence

Note: 1 lecture

7.3.1 Sequences

The notion of a sequence in a metric space is very similar to a sequence of real numbers. The
definitions are essentially the same as those for real numbers in the sense of chapter 2 where R with
the standard metric d(x,y) = |x− y| is replaced by an arbitrary metric space (X ,d).

Definition 7.3.1. A sequence in a metric space (X ,d) is a function x : N→ X . As before we write
xn for the nth element in the sequence and use the notation {xn}, or more precisely

{xn}∞
n=1.

A sequence {xn} is bounded if there exists a point p ∈ X and B ∈ R such that

d(p,xn)≤ B for all n ∈ N.

In other words, the sequence {xn} is bounded whenever the set {xn : n ∈ N} is bounded.
If {n j}∞

j=1 is a sequence of natural numbers such that n j+1 > n j for all j, then the sequence
{xn j}∞

j=1 is said to be a subsequence of {xn}.

Similarly we also define convergence. Again, we will be cheating a little bit and we will use the
definite article in front of the word limit before we prove that the limit is unique.

Definition 7.3.2. A sequence {xn} in a metric space (X ,d) is said to converge to a point p ∈ X , if
for every ε > 0, there exists an M ∈ N such that d(xn, p)< ε for all n≥M. The point p is said to
be the limit of {xn}. We write

lim
n→∞

xn := p.

A sequence that converges is said to be convergent. Otherwise, the sequence is said to be
divergent.

Let us prove that the limit is unique. Note that the proof is almost identical to the proof of the
same fact for sequences of real numbers. Many results we know for sequences of real numbers can
be proved in the more general settings of metric spaces. We must replace |x− y| with d(x,y) in the
proofs and apply the triangle inequality correctly.

Proposition 7.3.3. A convergent sequence in a metric space has a unique limit.
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Proof. Suppose the sequence {xn} has the limit x and the limit y. Take an arbitrary ε > 0. From the
definition find an M1 such that for all n≥M1, d(xn,x)< ε/2. Similarly find an M2 such that for all
n≥M2 we have d(xn,y)< ε/2. Now take an n such that n≥M1 and also n≥M2

d(y,x)≤ d(y,xn)+d(xn,x)

<
ε

2
+

ε

2
= ε.

As d(y,x)< ε for all ε > 0, then d(x,y) = 0 and y = x. Hence the limit (if it exists) is unique.

The proofs of the following propositions are left as exercises.

Proposition 7.3.4. A convergent sequence in a metric space is bounded.

Proposition 7.3.5. A sequence {xn} in a metric space (X ,d) converges to p ∈ X if and only if there
exists a sequence {an} of real numbers such that

d(xn, p)≤ an for all n ∈ N,

and
lim
n→∞

an = 0.

Proposition 7.3.6. Let {xn} be a sequence in a metric space (X ,d).

(i) If {xn} converges to p ∈ X, then every subsequence {xnk} converges to p.

(ii) If for some K ∈ N the K-tail {xn}∞
n=K+1 converges to p ∈ X, then {xn} converges to p.

7.3.2 Convergence in euclidean space
It is useful to note what convergence means in the euclidean space Rn.

Proposition 7.3.7. Let {x j}∞
j=1 be a sequence in Rn, where we write x j =

(
x j,1,x j,2, . . . ,x j,n

)
∈ Rn.

Then {x j}∞
j=1 converges if and only if {x j,k}∞

j=1 converges for every k, in which case

lim
j→∞

x j =
(

lim
j→∞

x j,1, lim
j→∞

x j,2, . . . , lim
j→∞

x j,n

)
.

Proof. Let {x j}∞
j=1 be a convergent sequence in Rn, where we write x j =

(
x j,1,x j,2, . . . ,x j,n

)
∈ Rn.

Let y = (y1,y2, . . . ,yn) ∈ Rn be the limit. Given ε > 0, there exists an M such that for all j ≥M we
have

d(y,x j)< ε.

Fix some k = 1,2, . . . ,n. For j ≥M we have

∣∣yk− x j,k
∣∣=√(yk− x j,k

)2 ≤

√
n

∑
`=1

(
y`− x j,`

)2
= d(y,x j)< ε.
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Hence the sequence {x j,k}∞
j=1 converges to yk.

For the other direction suppose {x j,k}∞
j=1 converges to yk for every k = 1,2, . . . ,n. Hence, given

ε > 0, pick an M, such that if j ≥M then
∣∣yk− x j,k

∣∣< ε/
√

n for all k = 1,2, . . . ,n. Then

d(y,x j) =

√
n

∑
k=1

(
yk− x j,k

)2
<

√√√√ n

∑
k=1

(
ε√
n

)2

=

√
n

∑
k=1

ε2

n
= ε.

The sequence {x j} converges to y ∈ Rn and we are done.

7.3.3 Convergence and topology
The topology, that is, the set of open sets of a space encodes which sequences converge.

Proposition 7.3.8. Let (X ,d) be a metric space and {xn} a sequence in X. Then {xn} converges
to x ∈ X if and only if for every open neighborhood U of x, there exists an M ∈ N such that for all
n≥M we have xn ∈U.

Proof. First suppose {xn} converges. Let U be an open neighborhood of x, then there exists an
ε > 0 such that B(x,ε)⊂U . As the sequence converges, find an M ∈ N such that for all n≥M we
have d(x,xn)< ε or in other words xn ∈ B(x,ε)⊂U .

Let us prove the other direction. Given ε > 0 let U := B(x,ε) be the neighborhood of x. Then
there is an M ∈N such that for n≥M we have xn ∈U = B(x,ε) or in other words, d(x,xn)< ε .

A set is closed when it contains the limits of its convergent sequences.

Proposition 7.3.9. Let (X ,d) be a metric space, E ⊂ X a closed set and {xn} a sequence in E that
converges to some x ∈ X. Then x ∈ E.

Proof. Let us prove the contrapositive. Suppose {xn} is a sequence in X that converges to x ∈ Ec.
As Ec is open, Proposition 7.3.8 says there is an M such that for all n≥M, xn ∈ Ec. So {xn} is not
a sequence in E.

When we take a closure of a set A, we really throw in precisely those points that are limits of
sequences in A.

Proposition 7.3.10. Let (X ,d) be a metric space and A⊂ X. Then x ∈ A if and only if there exists
a sequence {xn} of elements in A such that lim xn = x.

Proof. Let x∈A. We know by Proposition 7.2.20 that given 1/n, there exists a point xn ∈B(x,1/n)∩A.
As d(x,xn)< 1/n, we have lim xn = x.

For the other direction, see Exercise 7.3.1.
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7.3.4 Exercises
Exercise 7.3.1: Let (X ,d) be a metric space and let A ⊂ X. Let E be the set of all x ∈ X such that there
exists a sequence {xn} in A that converges to x. Show E = A.

Exercise 7.3.2: a) Show that d(x,y) := min{1, |x− y|} defines a metric on R. b) Show that a sequence
converges in (R,d) if and only if it converges in the standard metric. c) Find a bounded sequence in (R,d)
that contains no convergent subsequence.

Exercise 7.3.3: Prove Proposition 7.3.4.

Exercise 7.3.4: Prove Proposition 7.3.5.

Exercise 7.3.5: Suppose {xn}∞
n=1 converges to x. Suppose f : N→ N is a one-to-one function. Show that

{x f (n)}∞
n=1 converges to x.

Exercise 7.3.6: If (X ,d) is a metric space where d is the discrete metric. Suppose {xn} is a convergent
sequence in X. Show that there exists a K ∈ N such that for all n≥ K we have xn = xK .

Exercise 7.3.7: A set S⊂ X is said to be dense in X if for every x ∈ X, there exists a sequence {xn} in S that
converges to x. Prove that Rn contains a countable dense subset.

Exercise 7.3.8 (Tricky): Suppose {Un}∞
n=1 be a decreasing (Un+1 ⊂Un for all n) sequence of open sets in

a metric space (X ,d) such that
⋂

∞
n=1Un = {p} for some p ∈ X. Suppose {xn} is a sequence of points in X

such that xn ∈Un. Does {xn} necessarily converge to p? Prove or construct a counterexample.

Exercise 7.3.9: Let E ⊂ X be closed and let {xn} be a sequence in X converging to p ∈ X. Suppose xn ∈ E
for infinitely many n ∈ N. Show p ∈ E.

Exercise 7.3.10: Take R∗ = {−∞} ∪R∪ {∞} be the extended reals. Define d(x,y) :=
∣∣ x

1+|x| −
y

1+|y|
∣∣ if

x,y ∈ R, define d(∞,x) :=
∣∣1− x

1+|x|
∣∣, d(−∞,x) :=

∣∣1+ x
1+|x|

∣∣ for all x ∈ R, and let d(∞,−∞) := 2. a) Show
that (R∗,d) is a metric space. b) Suppose {xn} is a sequence of real numbers such that for every M ∈ R,
there exists an N such that xn ≥M for all n≥ N. Show that lim xn = ∞ in (R∗,d). c) Show that a sequence of
real numbers converges to a real number in (R∗,d) if and only if it converges in R with the standard metric.

Exercise 7.3.11: Suppose {Vn}∞
n=1 is a collection of open sets in (X ,d) such that Vn+1 ⊃ Vn. Let {xn}

be a sequence such that xn ∈ Vn+1 \Vn and suppose {xn} converges to p ∈ X. Show that p ∈ ∂V where
V =

⋃
∞
n=1Vn.

Exercise 7.3.12: Prove Proposition 7.3.6.



7.4. COMPLETENESS AND COMPACTNESS 237

7.4 Completeness and compactness
Note: 2 lectures

7.4.1 Cauchy sequences and completeness
Just like with sequences of real numbers we define Cauchy sequences.

Definition 7.4.1. Let (X ,d) be a metric space. A sequence {xn} in X is a Cauchy sequence if for
every ε > 0 there exists an M ∈ N such that for all n≥M and all k ≥M we have

d(xn,xk)< ε.

The definition is again simply a translation of the concept from the real numbers to metric
spaces. So a sequence of real numbers is Cauchy in the sense of chapter 2 if and only if it is Cauchy
in the sense above, provided we equip the real numbers with the standard metric d(x,y) = |x− y|.
Proposition 7.4.2. A convergent sequence in a metric space is Cauchy.

Proof. Suppose {xn} converges to x. Given ε > 0 there is an M such that for n ≥ M we have
d(x,xn)< ε/2. Hence for all n,k ≥M we have d(xn,xk)≤ d(xn,x)+d(x,xk)< ε/2+ ε/2 = ε .

Definition 7.4.3. Let (X ,d) be a metric space. We say X is complete or Cauchy-complete if every
Cauchy sequence {xn} in X converges to an x ∈ X .

Proposition 7.4.4. The space Rn with the standard metric is a complete metric space.

For R = R1 completeness was proved in chapter 2. The proof of the above proposition is a
reduction to the one dimensional case.

Proof. Let {x j}∞
j=1 be a Cauchy sequence in Rn, where we write x j =

(
x j,1,x j,2, . . . ,x j,n

)
∈Rn. As

the sequence is Cauchy, given ε > 0, there exists an M such that for all i, j ≥M we have

d(xi,x j)< ε.

Fix some k = 1,2, . . . ,n, for i, j ≥M we have∣∣xi,k− x j,k
∣∣=√(xi,k− x j,k

)2 ≤

√
n

∑
`=1

(
xi,`− x j,`

)2
= d(xi,x j)< ε.

Hence the sequence {x j,k}∞
j=1 is Cauchy. As R is complete the sequence converges; there exists an

yk ∈ R such that yk = lim j→∞ x j,k.
Write y = (y1,y2, . . . ,yn) ∈Rn. By Proposition 7.3.7 we have that {x j} converges to y ∈Rn and

hence Rn is complete.

Note that a subset of Rn with the subspace metric need not be complete. For example, (0,1]
with the subspace metric is not complete as {1/n} is a Cauchy sequence in (0,1] with no limit in
(0,1]. But see also Exercise 7.4.16.



238 CHAPTER 7. METRIC SPACES

7.4.2 Compactness
Definition 7.4.5. Let (X ,d) be a metric space and K ⊂ X . The set K is said to be compact if for
any collection of open sets {Uλ}λ∈I such that

K ⊂
⋃
λ∈I

Uλ ,

there exists a finite subset {λ1,λ2, . . . ,λk} ⊂ I such that

K ⊂
k⋃

j=1

Uλ j .

A collection of open sets {Uλ}λ∈I as above is said to be a open cover of K. So a way to say that
K is compact is to say that every open cover of K has a finite subcover.

Proposition 7.4.6. Let (X ,d) be a metric space. A compact set K ⊂ X is closed and bounded.

Proof. First, we prove that a compact set is bounded. Fix p ∈ X . We have the open cover

K ⊂
∞⋃

n=1

B(p,n) = X .

If K is compact, then there exists some set of indices n1 < n2 < .. . < nk such that

K ⊂
k⋃

j=1

B(p,n j) = B(p,nk).

As K is contained in a ball, K is bounded.
Next, we show a set that is not closed is not compact. Suppose K 6= K, that is, there is a point

x ∈ K \K. If y 6= x, then for n with 1/n < d(x,y) we have y /∈C(x,1/n). Furthermore x /∈ K, so

K ⊂
∞⋃

n=1

C(x,1/n)c.

As a closed ball is closed, C(x,1/n)c is open, and so we have an open cover. If we take any finite
collection of indices n1 < n2 < .. . < nk, then

k⋃
j=1

C(x,1/n j)
c =C(x,1/nk)

c

As x is in the closure, C(x,1/nk)∩K 6= /0. So there is no finite subcover and K is not compact.
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We prove below that in finite dimensional euclidean space every closed bounded set is compact.
So closed bounded sets of Rn are examples of compact sets. It is not true that in every metric
space, closed and bounded is equivalent to compact. A simple example would be an incomplete
metric space such as (0,1) with the subspace metric. But there are many complete and very useful
metric spaces where closed and bounded is not enough to give compactness, see Exercise 7.4.8:
C([a,b],R) is a complete metric space, but the closed unit ball C(0,1) is not compact. However,
see Exercise 7.4.12.

A useful property of compact sets in a metric space is that every sequence has a convergent
subsequence. Such sets are sometimes called sequentially compact. Let us prove that in the context
of metric spaces, a set is compact if and only if it is sequentially compact. First we prove a lemma.

Lemma 7.4.7 (Lebesgue covering lemma∗). Let (X ,d) be a metric space and K ⊂ X. Suppose
every sequence in K has a subsequence convergent in K. Given an open cover {Uλ}λ∈I of K, there
exists a δ > 0 such that for every x ∈ K, there exists a λ ∈ I with B(x,δ )⊂Uλ .

It is important to recognize what the lemma says. It says that given any cover there is a single
δ > 0. The δ can depend on the cover, but of course it does not depend on x.

Proof. Let us prove the lemma by contrapositive. If the conclusion is not true, then there is an open
cover {Uλ}λ∈I of K with the following property. For every n ∈ N there exists an xn ∈ K such that
B(xn,1/n) is not a subset of any Uλ . Given any x ∈ K, there is a λ ∈ I such that x ∈Uλ . Hence there
is an ε > 0 such that B(x,ε)⊂Uλ . Take M such that 1/M < ε/2. If y ∈ B(x, ε/2) and n≥M, then by
triangle inequality

B(y,1/n)⊂ B(y,1/M)⊂ B(y, ε/2)⊂ B(x,ε)⊂Uλ .

In other words, for all n ≥ M, xn /∈ B(x, ε/2). Hence the sequence cannot have a subsequence
converging to x. As x ∈ K was arbitrary we are done.

Theorem 7.4.8. Let (X ,d) be a metric space. Then K ⊂ X is a compact set if and only if every
sequence in K has a subsequence converging to a point in K.

Proof. Let K ⊂ X be a set and {xn} a sequence in K. Suppose that for each x ∈ K, there is a ball
B(x,αx) for some αx > 0 such that xn ∈ B(x,αx) for only finitely many n ∈ N. Then

K ⊂
⋃

x∈K

B(x,αx).

Any finite collection of these balls is going to contain only finitely many xn. Thus for any finite
collection of such balls there is an xn ∈ K that is not in the union. Therefore, K is not compact.

So if K is compact, then there exists an x ∈ K such that for any δ > 0, B(x,δ ) contains xk for
infinitely many k ∈ N. The ball B(x,1) contains some xk so let n1 := k. If n j−1 is defined, then

∗Named after the French mathematician Henri Léon Lebesgue (1875 – 1941). The number δ is sometimes called
the Lebesgue number of the cover.

http://en.wikipedia.org/wiki/Lebesgue
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there must exist a k > n j−1 such that xk ∈ B(x,1/j), so define n j := k. Notice that d(x,xn j)< 1/j. By
Proposition 7.3.5, lim xn j = x.

For the other direction, suppose every sequence in K has a subsequence converging in K. Take
an open cover {Uλ}λ∈I of K. Using the Lebesgue covering lemma above, we find a δ > 0 such that
for every x, there is a λ ∈ I with B(x,δ )⊂Uλ .

Pick x1 ∈ K and find λ1 ∈ I such that B(x1,δ ) ⊂Uλ1 . If K ⊂Uλ1 , we stop as we have found
a finite subcover. Otherwise, there must be a point x2 ∈ K \Uλ1 . Note that d(x2,x1) ≥ δ . There
must exist some λ2 ∈ I such that B(x2,δ )⊂Uλ2 . We work inductively. Suppose λn−1 is defined.
Either Uλ1 ∪Uλ2 ∪·· ·∪Uλn−1 is a finite cover of K, in which case we stop, or there must be a point
xn ∈ K \

(
Uλ1 ∪Uλ2 ∪ ·· · ∪Uλn−1

)
. Note that d(xn,x j) ≥ δ for all j = 1,2, . . . ,n− 1. Next, there

must be some λn ∈ I such that B(xn,δ )⊂Uλn .
Either at some point we obtain a finite subcover of K or we obtain an infinite sequence {xn} as

above. For contradiction suppose that there is no finite subcover and we have the sequence {xn}.
For all n and k, n 6= k, we have d(xn,xk)≥ δ , so no subsequence of {xn} can be Cauchy. Hence no
subsequence of {xn} can be convergent, which is a contradiction.

Example 7.4.9: The Bolzano-Weierstrass theorem for sequences of real numbers (Theorem 2.3.8)
says that any bounded sequence in R has a convergent subsequence. Therefore any sequence in a
closed interval [a,b]⊂ R has a convergent subsequence. The limit must also be in [a,b] as limits
preserve non-strict inequalities. Hence a closed bounded interval [a,b]⊂ R is compact.

Proposition 7.4.10. Let (X ,d) be a metric space and let K ⊂ X be compact. If E ⊂ K is a closed
set, then E is compact.

Proof. Let {xn} be a sequence in E. It is also a sequence in K. Therefore it has a convergent
subsequence {xn j} that converges to some x ∈ K. As E is closed the limit of a sequence in E is also
in E and so x ∈ E. Thus E must be compact.

Theorem 7.4.11 (Heine-Borel∗). A closed bounded subset K ⊂ Rn is compact.

So subsets of Rn are compact if and only if they are closed and bounded, a condition that is
much easier to check. Let us reiterate that the Heine-Borel theorem only holds for Rn and not for
metric spaces in general. In general, compact implies closed and bounded, but not vice versa.

Proof. For R= R1 if K ⊂ R is closed and bounded, then any sequence {xk} in K is bounded, so it
has a convergent subsequence by Bolzano-Weierstrass theorem (Theorem 2.3.8). As K is closed,
the limit of the subsequence must be an element of K. So K is compact.

Let us carry out the proof for n = 2 and leave arbitrary n as an exercise. As K ⊂ R2 is bounded,
there exists a set B = [a,b]× [c,d]⊂ R2 such that K ⊂ B. We will show that B is compact. Then K,
being a closed subset of a compact B, is also compact.

∗Named after the German mathematician Heinrich Eduard Heine (1821–1881), and the French mathematician Félix
Édouard Justin Émile Borel (1871–1956).

http://en.wikipedia.org/wiki/Eduard_Heine
http://en.wikipedia.org/wiki/%C3%89mile_Borel
http://en.wikipedia.org/wiki/%C3%89mile_Borel
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Let {(xk,yk)}∞
k=1 be a sequence in B. That is, a≤ xk ≤ b and c≤ yk ≤ d for all k. A bounded

sequence of real numbers has a convergent subsequence so there is a subsequence {xk j}∞
j=1 that is

convergent. The subsequence {yk j}∞
j=1 is also a bounded sequence so there exists a subsequence

{yk ji
}∞

i=1 that is convergent. A subsequence of a convergent sequence is still convergent, so {xk ji
}∞

i=1
is convergent. Let

x := lim
i→∞

xk ji
and y := lim

i→∞
yk ji

.

By Proposition 7.3.7,
{
(xk ji

,yk ji
)
}∞

i=1 converges to (x,y). Furthermore, as a≤ xk ≤ b and c≤ yk ≤ d
for all k, we know that (x,y) ∈ B.

Example 7.4.12: The discrete metric provides interesting counterexamples again. Let (X ,d) be a
metric space with the discrete metric, that is d(x,y) = 1 if x 6= y. Suppose X is an infinite set. Then:

(i) (X ,d) is a complete metric space.

(ii) Any subset K ⊂ X is closed and bounded.

(iii) A subset K ⊂ X is compact if and only if it is a finite set.

(iv) The conclusion of the Lebesgue covering lemma is always satisfied with e.g. δ = 1/2, even
for noncompact K ⊂ X .

The proofs of these statements are either trivial or are relegated to the exercises below.

7.4.3 Exercises
Exercise 7.4.1: Let (X ,d) be a metric space and A a finite subset of X. Show that A is compact.

Exercise 7.4.2: Let A = {1/n : n ∈ N} ⊂ R. a) Show that A is not compact directly using the definition.
b) Show that A∪{0} is compact directly using the definition.

Exercise 7.4.3: Let (X ,d) be a metric space with the discrete metric. a) Prove that X is complete. b) Prove
that X is compact if and only if X is a finite set.

Exercise 7.4.4: a) Show that the union of finitely many compact sets is a compact set. b) Find an example
where the union of infinitely many compact sets is not compact.

Exercise 7.4.5: Prove Theorem 7.4.11 for arbitrary dimension. Hint: The trick is to use the correct notation.

Exercise 7.4.6: Show that a compact set K is a complete metric space (using the subspace metric).

Exercise 7.4.7: Let C([a,b],R) be the metric space as in Example 7.1.7. Show that C([a,b],R) is a complete
metric space.

Exercise 7.4.8 (Challenging): Let C([0,1],R) be the metric space of Example 7.1.7. Let 0 denote the zero
function. Then show that the closed ball C(0,1) is not compact (even though it is closed and bounded). Hints:
Construct a sequence of distinct continuous functions { fn} such that d( fn,0) = 1 and d( fn, fk) = 1 for all
n 6= k. Show that the set { fn : n ∈ N} ⊂C(0,1) is closed but not compact. See chapter 6 for inspiration.
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Exercise 7.4.9 (Challenging): Show that there exists a metric on R that makes R into a compact set.

Exercise 7.4.10: Suppose (X ,d) is complete and suppose we have a countably infinite collection of nonempty
compact sets E1 ⊃ E2 ⊃ E3 ⊃ ·· · then prove

⋂
∞
j=1 E j 6= /0.

Exercise 7.4.11 (Challenging): Let C([0,1],R) be the metric space of Example 7.1.7. Let K be the set
of f ∈C([0,1],R) such that f is equal to a quadratic polynomial, i.e. f (x) = a+ bx+ cx2, and such that
| f (x)| ≤ 1 for all x ∈ [0,1], that is f ∈C(0,1). Show that K is compact.

Exercise 7.4.12 (Challenging): Let (X ,d) be a complete metric space. Show that K ⊂ X is compact if
and only if K is closed and such that for every ε > 0 there exists a finite set of points x1,x2, . . . ,xn with
K ⊂

⋃n
j=1 B(x j,ε). Note: Such a set K is said to be totally bounded, so in a complete metric space a set is

compact if and only if it is closed and totally bounded.

Exercise 7.4.13: Take N⊂R using the standard metric. Find an open cover of N such that the conclusion of
the Lebesgue covering lemma does not hold.

Exercise 7.4.14: Prove the general Bolzano-Weierstrass theorem: Any bounded sequence {xk} in Rn has a
convergent subsequence.

Exercise 7.4.15: Let X be a metric space and C ⊂P(X) the set of nonempty compact subsets of X. Using
the Hausdorff metric from Exercise 7.1.8, show that (C,dH) is a metric space. That is, show that if L and K
are nonempty compact subsets then dH(L,K) = 0 if and only if L = K.

Exercise 7.4.16: Let (X ,d) be a complete metric space and E ⊂ X a closed set. Show that E with the
subspace metric is a complete metric space.
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7.5 Continuous functions

Note: 1 lecture

7.5.1 Continuity

Definition 7.5.1. Let (X ,dX) and (Y,dY ) be metric spaces and c ∈ X . Then f : X → Y is contin-
uous at c if for every ε > 0 there is a δ > 0 such that whenever x ∈ X and dX(x,c) < δ , then
dY
(

f (x), f (c)
)
< ε .

When f : X → Y is continuous at all c ∈ X , then we simply say that f is a continuous function.

The definition agrees with the definition from chapter 3 when f is a real-valued function on the
real line, if we take the standard metric on R.

Proposition 7.5.2. Let (X ,dX) and (Y,dY ) be metric spaces. Then f : X→Y is continuous at c∈ X
if and only if for every sequence {xn} in X converging to c, the sequence { f (xn)} converges to f (c).

Proof. Suppose f is continuous at c. Let {xn} be a sequence in X converging to c. Given ε > 0,
there is a δ > 0 such that dX(x,c) < δ implies dY

(
f (x), f (c)

)
< ε . So take M such that for all

n≥M, we have dX(xn,c)< δ , then dY
(

f (xn), f (c)
)
< ε . Hence { f (xn)} converges to f (c).

On the other hand suppose f is not continuous at c. Then there exists an ε > 0, such that for
every n ∈ N there exists an xn ∈ X , with dX(xn,c)< 1/n such that dY

(
f (xn), f (c)

)
≥ ε . Then {xn}

converges to c, but { f (xn)} does not converge to f (c).

Example 7.5.3: Suppose f : R2→ R is a polynomial. That is,

f (x,y) =
d

∑
j=0

d− j

∑
k=0

a jk x jyk = a00 +a10 x+a01 y+a20 x2 +a11 xy+a02 y2 + · · ·+a0d yd,

for some d ∈ N (the degree) and a jk ∈ R. Then we claim f is continuous. Let {(xn,yn)}∞
n=1 be a

sequence in R2 that converges to (x,y) ∈ R2. We have proved that this means that lim xn = x and
lim yn = y. So by Proposition 2.2.5 we have

lim
n→∞

f (xn,yn) = lim
n→∞

d

∑
j=0

d− j

∑
k=0

a jk x j
nyk

n =
d

∑
j=0

d− j

∑
k=0

a jk x jyk = f (x,y).

So f is continuous at (x,y), and as (x,y) was arbitrary f is continuous everywhere. Similarly, a
polynomial in n variables is continuous.



244 CHAPTER 7. METRIC SPACES

7.5.2 Compactness and continuity

Continuous maps do not map closed sets to closed sets. For example, f : (0,1)→ R defined by
f (x) := x takes the set (0,1), which is closed in (0,1), to the set (0,1), which is not closed in R.
On the other hand continuous maps do preserve compact sets.

Lemma 7.5.4. Let (X ,dX) and (Y,dY ) be metric spaces and f : X → Y a continuous function. If
K ⊂ X is a compact set, then f (K) is a compact set.

Proof. A sequence in f (K) can be written as { f (xn)}∞
n=1, where {xn}∞

n=1 is a sequence in K. The
set K is compact and therefore there is a subsequence {xni}∞

i=1 that converges to some x ∈ K. By
continuity,

lim
i→∞

f (xni) = f (x) ∈ f (K).

So every sequence in f (K) has a subsequence convergent to a point in f (K), and f (K) is compact
by Theorem 7.4.8.

As before, f : X → R achieves an absolute minimum at c ∈ X if

f (x)≥ f (c) for all x ∈ X .

On the other hand, f achieves an absolute maximum at c ∈ X if

f (x)≤ f (c) for all x ∈ X .

Theorem 7.5.5. Let (X ,d) be a compact metric space and f : X → R a continuous function. Then
f is bounded and in fact f achieves an absolute minimum and an absolute maximum on X.

Proof. As X is compact and f is continuous, we have that f (X)⊂ R is compact. Hence f (X) is
closed and bounded. In particular, sup f (X) ∈ f (X) and inf f (X) ∈ f (X), because both the sup and
inf can be achieved by sequences in f (X) and f (X) is closed. Therefore there is some x ∈ X such
that f (x) = sup f (X) and some y ∈ X such that f (y) = inf f (X).

7.5.3 Continuity and topology

Let us see how to define continuity in terms of the topology, that is, the open sets. We have already
seen that topology determines which sequences converge, and so it is no wonder that the topology
also determines continuity of functions.

Lemma 7.5.6. Let (X ,dX) and (Y,dY ) be metric spaces. A function f : X → Y is continuous at
c ∈ X if and only if for every open neighborhood U of f (c) in Y , the set f−1(U) contains an open
neighborhood of c in X.
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Proof. First suppose that f is continuous at c. Let U be an open neighborhood of f (c) in Y , then
BY
(

f (c),ε
)
⊂U for some ε > 0. By continuity of f , there exists a δ > 0 such that whenever x is

such that dX(x,c)< δ , then dY
(

f (x), f (c)
)
< ε . In other words,

BX(c,δ )⊂ f−1(BY
(

f (c),ε
))
⊂ f−1(U),

and BX(c,δ ) is an open neighborhood of c.
For the other direction, let ε > 0 be given. If f−1(BY

(
f (c),ε

))
contains an open neighborhood

W of c, it contains a ball. That is, there is some δ > 0 such that

BX(c,δ )⊂W ⊂ f−1(BY
(

f (c),ε
))
.

That means precisely that if dX(x,c)< δ then dY
(

f (x), f (c)
)
< ε , and so f is continuous at c.

Theorem 7.5.7. Let (X ,dX) and (Y,dY ) be metric spaces. A function f : X → Y is continuous if
and only if for every open U ⊂ Y , f−1(U) is open in X.

The proof follows from Lemma 7.5.6 and is left as an exercise.

Example 7.5.8: Let f : X → Y be a continuous function. Theorem 7.5.7 tells us that if E ⊂ Y is
closed, then f−1(E) = X \ f−1(Ec) is also closed. Therefore if we have a continuous function
f : X → R, then the zero set of f , that is, f−1(0) = {x ∈ X : f (x) = 0}, is closed. We have just
proved the most basic result in algebraic geometry, the study of zero sets of polynomials.

Similarly the set where f is nonnegative, that is, f−1([0,∞)
)
= {x ∈ X : f (x) ≥ 0} is closed.

On the other hand the set where f is positive, f−1((0,∞)
)
= {x ∈ X : f (x)> 0} is open.

7.5.4 Uniform continuity
As for continuous functions on the real line, in the definition of continuity it is sometimes convenient
to be able to pick one δ for all points.

Definition 7.5.9. Let (X ,dX) and (Y,dY ) be metric spaces. Then f : X → Y is uniformly con-
tinuous if for every ε > 0 there is a δ > 0 such that whenever x,c ∈ X and dX(x,c) < δ , then
dY
(

f (x), f (c)
)
< ε .

A uniformly continuous function is continuous, but not necessarily vice-versa as we have seen.

Theorem 7.5.10. Let (X ,dX) and (Y,dY ) be metric spaces. Suppose f : X → Y is continuous and
X compact. Then f is uniformly continuous.

Proof. Let ε > 0 be given. For each c ∈ X , pick δc > 0 such that dY
(

f (x), f (c)
)
< ε/2 whenever

dX(x,c)< δc. The balls B(c,δc) cover X , and the space X is compact. Apply the Lebesgue covering
lemma to obtain a δ > 0 such that for every x ∈ X , there is a c ∈ X for which B(x,δ )⊂ B(c,δc).

If x1,x2 ∈ X where dX(x1,x2)< δ , find a c∈ X such that B(x1,δ )⊂ B(c,δc). Then x2 ∈ B(c,δc).
By the triangle inequality and the definition of δc we have

dY
(

f (x1), f (x2)
)
≤ dY

(
f (x1), f (c)

)
+dY

(
f (c), f (x2)

)
< ε/2+ ε/2 = ε.
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Example 7.5.11: Useful examples of uniformly continuous functions are again the so-called
Lipschitz continuous functions. That is if (X ,dX) and (Y,dY ) are metric spaces, then f : X → Y is
called Lipschitz or K-Lipschitz if there exists a K ∈ R such that

dY
(

f (x), f (c)
)
≤ KdX(x,c) for all x,c ∈ X .

It is not difficult to prove that Lipschitz implies uniformly continuous, just take δ = ε/K. And we
already saw in the case of functions on the real line, a function can be uniformly continuous but not
Lipschitz.

It is worth mentioning that, if a function is Lipschitz, it tends to be easiest to simply show it is
Lipschitz even if we are only interested in knowing continuity.

7.5.5 Exercises
Exercise 7.5.1: Consider N ⊂ R with the standard metric. Let (X ,d) be a metric space and f : X → N a
continuous function. a) Prove that if X is connected, then f is constant (the range of f is a single value).
b) Find an example where X is disconnected and f is not constant.

Exercise 7.5.2: Let f : R2→ R be defined by f (0,0) := 0, and f (x,y) := xy
x2+y2 if (x,y) 6= (0,0). a) Show

that for any fixed x, the function that takes y to f (x,y) is continuous. Similarly for any fixed y, the function
that takes x to f (x,y) is continuous. b) Show that f is not continuous.

Exercise 7.5.3: Suppose that f : X → Y is continuous for metric spaces (X ,dX) and (Y,dY ). Let A ⊂ X.
a) Show that f (A)⊂ f (A). b) Show that the subset can be proper.

Exercise 7.5.4: Prove Theorem 7.5.7. Hint: Use Lemma 7.5.6.

Exercise 7.5.5: Suppose f : X → Y is continuous for metric spaces (X ,dX) and (Y,dY ). Show that if X is
connected, then f (X) is connected.

Exercise 7.5.6: Prove the following version of the intermediate value theorem. Let (X ,d) be a connected
metric space and f : X → R a continuous function. Suppose that there exist x0,x1 ∈ X and y ∈ R such that
f (x0)< y < f (x1). Then prove that there exists a z ∈ X such that f (z) = y. Hint: See Exercise 7.5.5.

Exercise 7.5.7: A continuous function f : X → Y for metric spaces (X ,dX) and (Y,dY ) is said to be proper if
for every compact set K ⊂ Y , the set f−1(K) is compact. Suppose a continuous f : (0,1)→ (0,1) is proper
and {xn} is a sequence in (0,1) that converges to 0. Show that { f (xn)} has no subsequence that converges in
(0,1).

Exercise 7.5.8: Let (X ,dX) and (Y,dY ) be metric space and f : X → Y be a one-to-one and onto continuous
function. Suppose X is compact. Prove that the inverse f−1 : Y → X is continuous.

Exercise 7.5.9: Take the metric space of continuous functions C([0,1],R). Let k : [0,1]× [0,1]→ R be a
continuous function. Given f ∈C([0,1],R) define

ϕ f (x) :=
∫ 1

0
k(x,y) f (y) dy.

a) Show that T ( f ) := ϕ f defines a function T : C([0,1],R)→C([0,1],R).
b) Show that T is continuous.



7.5. CONTINUOUS FUNCTIONS 247

Exercise 7.5.10: Let (X ,d) be a metric space.
a) If p ∈ X, show that f : X → R defined by f (x) := d(x, p) is continuous.
b) Define a metric on X×X as in Exercise 7.1.6 part b, and show that g : X×X → R defined by g(x,y) :=
d(x,y) is continuous.
c) Show that if K1 and K2 are compact subsets of X, then there exists a p ∈ K1 and q ∈ K2 such that d(p,q) is
minimal, that is, d(p,q) = inf{(x,y) : x ∈ K1,y ∈ K2}.
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7.6 Fixed point theorem and Picard’s theorem again
Note: 1 lecture (optional, does not require §6.3)

In this section we prove the fixed point theorem for contraction mappings. As an application we
prove Picard’s theorem, which we proved without metric spaces in §6.3. The proof we present here
is similar, but the proof goes a lot smoother with metric spaces and the fixed point theorem.

7.6.1 Fixed point theorem
Definition 7.6.1. Let (X ,d) and (X ′,d′) be metric spaces. f : X → X ′ is said to be a contraction
(or a contractive map) if it is a k-Lipschitz map for some k < 1, i.e. if there exists a k < 1 such that

d′
(

f (x), f (y)
)
≤ kd(x,y) for all x,y ∈ X .

If f : X → X is a map, x ∈ X is called a fixed point if f (x) = x.

Theorem 7.6.2 (Contraction mapping principle or Fixed point theorem). Let (X ,d) be a nonempty
complete metric space and f : X → X a contraction. Then f has a unique fixed point.

The words complete and contraction are necessary. See Exercise 7.6.6.

Proof. Pick any x0 ∈ X . Define a sequence {xn} by xn+1 := f (xn).

d(xn+1,xn) = d
(

f (xn), f (xn−1)
)
≤ kd(xn,xn−1)≤ ·· · ≤ knd(x1,x0).

Suppose m > n, then

d(xm,xn)≤
m−1

∑
i=n

d(xi+1,xi)

≤
m−1

∑
i=n

kid(x1,x0)

= knd(x1,x0)
m−n−1

∑
i=0

ki

≤ knd(x1,x0)
∞

∑
i=0

ki = knd(x1,x0)
1

1− k
.

In particular the sequence is Cauchy (why?). Since X is complete we let x := lim xn, and we claim
that x is our unique fixed point.

Fixed point? The function f is continuous as it is a contraction, so Lipschitz continuous. Hence

f (x) = f (lim xn) = lim f (xn) = lim xn+1 = x.
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Unique? Let x and y both be fixed points.

d(x,y) = d
(

f (x), f (y)
)
≤ kd(x,y).

As k < 1 this means that d(x,y) = 0 and hence x = y. The theorem is proved.

The proof is constructive. Not only do we know a unique fixed point exists. We also know how
to find it. We start with any point x0 ∈ X and simply iterate f (x0), f ( f (x0)), f ( f ( f (x0))), etc. . . In
fact, you can even find how far away from the fixed point you are, see the exercises. The idea of the
proof is therefore used in real world applications.

7.6.2 Picard’s theorem

Before we get to Picard, let us mention what metric space we will be applying the fixed point
theorem to. We will use the metric space C([a,b],R) of Example 7.1.7. That is, C([a,b],R) is the
space of continuous functions f : [a,b]→ R with the metric

d( f ,g) = sup
x∈[a,b]

| f (x)−g(x)| .

Convergence in this metric is convergence in uniform norm, or in other words, uniform convergence.
Therefore, see Exercise 7.4.7, C([a,b],R) is a complete metric space.

Let us use the fixed point theorem to prove the classical Picard theorem on the existence and
uniqueness of ordinary differential equations. Consider the equation

dy
dx

= F(x,y).

Given some x0,y0 we are looking for a function y = f (x) such that f (x0) = y0 and such that

f ′(x) = F
(
x, f (x)

)
.

To avoid having to come up with many names we often simply write y′ = F(x,y) and y(x) for the
solution.

The simplest example is for example the equation y′ = y, y(0) = 1. The solution is the exponen-
tial y(x) = ex. A somewhat more complicated example is y′ =−2xy, y(0) = 1, whose solution is
the Gaussian y(x) = e−x2

.
There are some subtle issues, for example how long does the solution exist. Look at the equation

y′ = y2, y(0) = 1. Then y(x) = 1
1−x is a solution. While F is a reasonably “nice” function and in

particular exists for all x and y, the solution “blows up” at x = 1. For more examples related to
Picard’s theorem see §6.3.
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Theorem 7.6.3 (Picard’s theorem on existence and uniqueness). Let I,J ⊂ R be compact intervals,
let I0 and J0 be their interiors, and let (x0,y0) ∈ I0× J0. Suppose F : I× J→ R is continuous and
Lipschitz in the second variable, that is, there exists an L ∈ R such that

|F(x,y)−F(x,z)| ≤ L |y− z| for all y,z ∈ J, x ∈ I.

Then there exists an h > 0 and a unique differentiable function f : [x0−h,x0 +h]→ J ⊂ R, such
that

f ′(x) = F
(
x, f (x)

)
and f (x0) = y0.

Proof. Without loss of generality assume x0 = 0. As I× J is compact and F(x,y) is continuous, it
is bounded. So find an M > 0, such that |F(x,y)| ≤M for all (x,y) ∈ I× J. Pick α > 0 such that
[−α,α]⊂ I and [y0−α,y0 +α]⊂ J. Let

h := min
{

α,
α

M+Lα

}
.

Note [−h,h]⊂ I. Define the set

Y := { f ∈C([−h,h],R) : f ([−h,h])⊂ J}.

That is, Y is the space of continuous functions on [−h,h] with values in J, in other words, exactly
those functions where F

(
x, f (x)

)
makes sense. The metric used is the standard metric given above.

Exercise 7.6.1: Show that Y ⊂C([−h,h],R) is closed. Hint: J is closed.

The space C([−h,h],R) is complete, and a closed subset of a complete metric space is a
complete metric space with the subspace metric, see Exercise 7.4.16. So Y with the subspace metric
is complete.

Define a mapping T : Y →C([−h,h],R) by

T ( f )(x) := y0 +
∫ x

0
F
(
t, f (t)

)
dt.

Exercise 7.6.2: Show that if f : [−h,h]→ J is continuous then F
(
t, f (t)

)
is continuous on [−h,h] as a

function of t. Use this to show that T is well defined and that T ( f ) ∈C([−h,h],R).

Let f ∈ Y and |x| ≤ h. As F is bounded by M we have

|T ( f )(x)− y0|=
∣∣∣∣∫ x

0
F
(
t, f (t)

)
dt
∣∣∣∣

≤ |x|M ≤ hM ≤ αM
M+Lα

≤ α.

So T ( f )([−h,h])⊂ [y0−α,y0+α]⊂ J, and T ( f )∈Y . In other words, T (Y )⊂Y . We thus consider
T as a mapping of Y to Y .
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We claim T : Y → Y is a contraction. First, for x ∈ [−h,h] and f ,g ∈ Y we have∣∣F(x, f (x)
)
−F

(
x,g(x)

)∣∣≤ L | f (x)−g(x)| ≤ Ld( f ,g).

Therefore,

|T ( f )(x)−T (g)(x)|=
∣∣∣∣∫ x

0
F
(
t, f (t)

)
−F

(
t,g(t)

)
dt
∣∣∣∣

≤ |x|Ld( f ,g)≤ hLd( f ,g)≤ Lα

M+Lα
d( f ,g).

We chose M > 0 and so Lα

M+Lα
< 1. The claim is proved by taking supremum over x ∈ [−h,h] of

the left hand side above to obtain d
(
T ( f ),T (g)

)
≤ Lα

M+Lα
d( f ,g).

We apply the fixed point theorem (Theorem 7.6.2) to find a unique f ∈ Y such that T ( f ) = f ,
that is,

f (x) = y0 +
∫ x

0
F
(
t, f (t)

)
dt.

By the fundamental theorem of calculus, T ( f ) is the unique differentiable function whose derivative
is F

(
x, f (x)

)
and T ( f )(0) = y0. Therefore f is the unique solution of f ′(x) = F

(
x, f (x)

)
and

f (0) = y0.

Exercise 7.6.3: Prove that the statement “Without loss of generality assume x0 = 0” is justified. That is,
prove that if we know the theorem with x0 = 0, the theorem is true as stated.

7.6.3 Exercises

For more exercises related to Picard’s theorem see §6.3.

Exercise 7.6.4: Let F : R→ R be defined by F(x) := kx+b where 0 < k < 1, b ∈ R.
a) Show that F is a contraction.
b) Find the fixed point and show directly that it is unique.

Exercise 7.6.5: Let f : [0, 1/4]→ [0, 1/4] be defined by f (x) := x2 is a contraction.
a) Show that f is a contraction, and find the best (smallest) k from the definition that works.
b) Find the fixed point and show directly that it is unique.

Exercise 7.6.6: a) Find an example of a contraction f : X → X of non-complete metric space X with no fixed
point. b) Find a 1-Lipschitz map f : X → X of a complete metric space X with no fixed point.

Exercise 7.6.7: Consider y′ = y2, y(0) = 1. Use the iteration scheme from the proof of the contraction
mapping principle. Start with f0(x) = 1. Find a few iterates (at least up to f2). Prove that the pointwise limit
of fn is 1

1−x , that is for every x with |x|< h for some h > 0, prove that lim
n→∞

fn(x) = 1
1−x .
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Exercise 7.6.8: Suppose f : X → X is a contraction for k < 1. Suppose you use the iteration procedure with
xn+1 := f (xn) as in the proof of the fixed point theorem. Suppose x is the fixed point of f .
a) Show that d(x,xn)≤ knd(x1,x0)

1
1−k for all n ∈ N.

b) Suppose d(y1,y2)≤ 16 for all y1,y2 ∈ X, and k = 1/2. Find an N such that starting at any point x0 ∈ X,
d(x,xn)≤ 2−16 for all n≥ N.

Exercise 7.6.9: Let f (x) := x− x2−2
2x . (You may recognize Newton’s method for

√
2)

a) Prove f
(
[1,∞)

)
⊂ [1,∞).

b) Prove that f : [1,∞)→ [1,∞) is a contraction.
c) Apply the fixed point theorem to find an x≥ 1 such that f (x) = x, and show that x =

√
2.

Exercise 7.6.10: Suppose f : X → X is a contraction, and (X ,d) is a metric space with the discrete metric,
that is d(x,y) = 1 whenever x 6= y. Show that f is constant, that is, there exists a c ∈ X such that f (x) = c for
all x ∈ X.
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absolute convergence, 80
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additive property of the integral, 166
algebraic geometry, 245
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Archimedean property, 28
arithmetic-geometric mean inequality, 31

ball, 226
base of the natural logarithm, 183
Bernoulli’s inequality, 31
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bijective, 15
bisection method, 117
Bolzano’s intermediate value theorem, 117
Bolzano’s theorem, 117
Bolzano-Weierstrass theorem, 68, 242
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bounded above, 21
bounded below, 22
bounded function, 34, 114
bounded interval, 36
bounded sequence, 43, 233
bounded set, 22, 224
bounded variation, 173

Cantor diagonalization, 41
Cantor’s theorem, 17, 36
cardinality, 15
Cartesian product, 13
Cauchy in the uniform norm, 203
Cauchy principal value, 196

Cauchy product, 91
Cauchy sequence, 72, 237
Cauchy series, 78
Cauchy-complete, 74, 237
Cauchy-Schwarz inequality, 221
Cesàro summability, 97
chain rule, 140
change of variables theorem, 177
closed ball, 226
closed interval, 36
closed set, 226
closure, 230
cluster point, 71, 99
compact, 238
Comparison test for improper integrals, 188
comparison test for series, 81
complement, 9
complement relative to, 9
complete, 74, 237
completeness property, 22
complex numbers, 24
composition of functions, 15
conditionally convergent, 80
connected, 229
constant sequence, 43
continuous at c, 107, 243
continuous function, 107, 243
continuous function of two variables, 212
continuously differentiable, 148
Contraction mapping principle, 248
converge, 44, 233
convergent improper integral, 186
convergent power series, 93
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convergent sequence, 44, 233
convergent series, 76
converges, 100, 127, 186
converges absolutely, 80
converges in uniform norm, 202
converges pointwise, 199
converges to infinity, 129
converges uniformly, 201
convex, 185
convolution, 197
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countably infinite, 16
critical point, 144

Darboux sum, 158
Darboux’s theorem, 147
decimal digit, 39
decimal representation, 39
decreasing, 131, 146
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DeMorgan’s theorem, 10
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derivative, 137
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differentiable, 137
differential equation, 212
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Dini’s theorem, 210
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discontinuous, 110
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first order ordinary differential equation, 212
Fixed point theorem, 248
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Mertens’ theorem, 91
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monic polynomial, 130
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monotone function, 131
monotone increasing sequence, 47
monotone sequence, 47
monotonic sequence, 47
monotonicity of the integral, 169

n times differentiable, 150
naïve set theory, 8
natural logarithm, 181
natural numbers, 9
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nondecreasing, 131
nonincreasing, 131
nonnegative, 23
nonpositive, 23
nth derivative, 150
nth Taylor polynomial for f, 150

odd function, 179
one-sided limits, 105
one-to-one, 15
onto, 15
open ball, 226
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open interval, 36
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open set, 226
ordered field, 23
ordered set, 21

p-series, 82
p-test, 82
p-test for integrals, 186
partial sums, 76
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Picard iterate, 213
Picard iteration, 213
Picard’s theorem, 213, 250
pointwise convergence, 199
polynomial, 108
popcorn function, 111, 173
positive, 23
power series, 92
power set, 16
principle of induction, 12
principle of strong induction, 13
product rule, 140
proper, 246
proper subset, 9
pseudometric space, 225

quotient rule, 140

radius of convergence, 94
range, 14
range of a sequence, 43
ratio test for sequences, 61
ratio test for series, 84
rational functions, 95
rational numbers, 9
real numbers, 21
rearrangement of a series, 89
refinement of a partition, 159
relative maximum, 143

relative minimum, 143
remainder term in Taylor’s formula, 151
removable discontinuity, 112
restriction, 104
reverse triangle inequality, 33
Riemann integrable, 161
Riemann integral, 161
Rolle’s theorem, 144
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secant line, 124, 137
second derivative, 150
sequence, 43, 233
sequentially compact, 239
series, 76
set, 8
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set theory, 8
set-theoretic difference, 9
set-theoretic function, 13
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standard metric on Rn, 221
standard metric on R, 220
step function, 173
strictly decreasing, 131, 146
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strictly monotone function, 131
subadditive, 224
subcover, 238
subsequence, 50, 233
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subspace, 223
subspace metric, 223
subspace topology, 223, 232
sup norm, 202
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surjection, 15
surjective, 15
symmetric difference, 18
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Taylor polynomial, 150
Taylor’s theorem, 150
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totally bounded, 242
triangle inequality, 32, 219

unbounded interval, 36
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uniform convergence, 201
uniform norm, 202
uniform norm convergence, 202
uniformly Cauchy, 203
uniformly continuous, 121
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upper bound, 21
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