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1. Introduction

Let G = Sp2g be the symplectic group (Chevalley group scheme over Z). Let K be a maximal
compact subgroup of G = G(R). The symmetric space G(R)/K is commonly referred to as the
Siegel upper half plane, we denote it by hg. It is common to realise hg = {A ∈ Mat g(C) | tA =
A,=(A) > 0}. Thus it is a complex analytic space.

Let Γ = G(Z) (respectively a congruence subgroup of). Then it is well known (what is the best
reference?) that Γ\hg parametrises principally polarised abelian varieties over C (respectively with
level structure). If one wants to consider abelian varieties with a non-principal polarisation, then
one works with a different Z-form of Sp2g.

Our aim is to construct a compactification XB of X = Γ\hg and show that it is a projective
complex variety. This is the content of the paper of Baily and Borel. Let us make a few remarks
about the generality of this work. Baily and Borel work with an arbitrary arithmetic quotient of
a Hermitian symmetric domain. In this document, we will only work with quotients of the Siegel
upper half space by a torsion-free Γ (and one can always make Γ torsion-free if one is willing to
adopt the cost of passing to a finite index subgroup). This makes the exposition technically simpler,
and should not obscure any of the key ideas in the proof. Unfortunately there is still a swathe of
notation to wade through.

Theorem 1.1. XB is projective.

Proof. Let L be some power of the canonical line bundle on X which extends to XB via Theorem
6.3. We use a power of L to embed XB into projective space. By Theorems 8.2 and 4.1, we can
find sections of a sufficiently high power of L to separate points and tangent vectors (at least the
latter for points of X).

Now consider some sections E0, . . . , En of Lk and the corresponding rational map from XB to
PN . The map is a closed immersion away from a closed analytic set. Pick a point p in the closed
analytic set. Then by our results on separating points and tangent vectors, we can find a section
E of Lkl such that E together with all degree l monomials of the Ei give a rational map from XB

to PN ′
which is a closed immersion in a neighbourhood of p. Taking all monomials is the Segre

embedding, so this latter map is well-behaved whenever the former map is, hence this new map is
a closed immersion away from a strictly smaller analytic set.

Any decreasing chain of analytic sets in a compact space stabilises. �

Corollary 1.2. The Baily-Borel compactification XB is algebraic over C.

Proof. GAGA. �

2. The symplectic group and its subgroups

Let G = Sp2g, defined as invertible matrices X with tXJX = J for J =
(

0 Jg

−Jg 0

)
, with Jg

the matrix with ones along the anti-diagonal and zeroes elsewhere. This means that the subgroup
of upper-triangular elements of G constitutes a Borel subgroup. Let S be the torus, and A = S(R)0.
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For each b, we let Pb be the standard maximal parabolic subgroup with Levi factor GLb×Sp2g−2b.
Let Lb = Sp2g−2b, Zb be the kernel of the map from Pb to Lb and Ub be the unipotent radical of Pb.

The Cayley transform is given by conjugation by the matrix
(

Ig iJg

iJg Ig

)
. Now consider the

alternative inclusion of G in GL2g by applying the Cayley transform. In this realisation, let KC be
the Levi of the Siegel parabolic, P+ be the unipotent radical of the Siegel parabolic and P− be the
opposite unipotent subgroup. The notation for the Levi is chosen because it is the complexification
of a maximal compact subgroup K of G(R). Let p+ be the (complex) Lie algebra of P+. and use
exp and log to denote the exponential map from p+ to P+ and its inverse.

For g ∈ P+KCP−, we denote by g+ the part belonging to P+ and g0 the part belonging to KC.
The partial Cayley transform is conjugation by the matrix

cb =

 Ib 0 iJb

0 I2g−2b 0
iJg 0 Ig

 .

3. The bounded realisation

Since KCP− ∩G = K, there is an injection hg → GC/(KCP−) (the Lagrangian Grassmannian).
There is also an open embedding p+ → GC/(KCP−) given by the exponential map p+ → P+.

Lemma 3.1. The image of hg is a bounded domain in p+.

Proof. Use the Cartan decomposition G = KAK. Note that K acts on p+ in a linear fashion. Thus
it suffices to check that the A-orbit of 0 ∈ p+ is bounded. This is a simple (essentially rank one)
calculation. �

We call this the canonical bounded realisation of hg.
The space Γ\hg has a canonical line bundle L given by taking the top exterior power of the

tangent bundle. Let first for motivational purposes ignore the issue of compactification and discuss
the construction of the necessary sections of a power of L.

Alt: the line bundle on hg is Γ-equivariant, so descends to the quotient.
If we pullback L to hg, then any realisation of hg as a domain in CN induces a trivialisation of

π∗(L). Sections of L⊗l can now be identified with holomorphic functions on hg satisfying f(γz) =
Jγ(z)lf(z), where Jg(z) is the determinant of the Jacobian of the action of g ∈ G at the point
z ∈ hg. For now we use the canonical bounded realisation of hg.

Lemma 3.2. ∑
γ∈Γ

Jγ(z)2

converges absolutely and uniformly on compact subsets of hg.

Proof. Bound the sum (up to a constant) by the volume of hg in its bounded realisation. �

4. Poincaire series

Let f be a polynomial on p+ and consider the bounded realisation hg ⊂ p+. Define the Poincaire
series Pf : hg−→C by

Pf (z) =
∑
γ∈Γ

Jγ(z)lf(γz).

The chain rule shows that this function satisfies the modularity condition once convergence issues
are settled. Such convergence issues are covered by Lemma 3.2, and stronger results are discussed
in Section 7
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Theorem 4.1. Suppose Γ is torsion free. Let a1, . . . , an be Γ-inequivalent points in hg. Let
b1, . . . , bn be n complex numbers. Then for sufficiently large k, there exists a polynomial f in
the bounded realisation of hg such that Jf (ai) = bi.

Remark 4.2. The assumption Γ is torsion free is unnecessary, at the cost of insisting that k is
divisible by some fixed integer. One can also obtain a more general result where bi are replaced by
prescribed p-th order Taylor series expansions, see [2] for more information.

Proof. Pick 0 < u < 1. By Lemma 3.2, the set Γ′ = {γ ∈ Γ | Jγ(ai) < u} is cofinite in Γ. Let f be
a polynomial on p+ with f(ai) = bi and f(γai) = 0 if γi /∈ Γ′ ∪{1}. Then liml→∞ Pf (ai) = bi. Now
the map f 7→ (Pf (a1), . . . , Pf (an)) is linear. Hence the image is a subspace of Cn. By our limit
result, thus the image is surjective for large enough k. �

Granted this, we can separate points and tangent vectors in picking sections of line bundles.
Unfortunately we do not have an appropriate Noetherianness property. We can only conclude that
a decreasing sequence of closed analytic subsets of a complex analytic space is stationary if we know
that our space is compact. Thus, we need to study what happens at infinity. In fact it will turn
out that these sections constructed so far are all cuspidal.

5. Unbounded realisations

First we want to understand the closure of a Siegel set in the bounded realisation of hg.
So suppose we have a sequence in S converging in p+. Thus we have sequences un in ω, an in At

with limn→∞ unan∗ existing. By compactness of ω, we can find a subsequence of un converging to
u ∈ ω. So limn→∞ an∗ exists. (Use 1.9. The map ω × hg → KC has compact image). This implies
that there exists b with lim aαi

n = ∞ for i ≤ b and is finite if i > b. Here α1, . . . , αg are the simple
roots with αg long.

Thus the limit point is of the form ua∗b for some u ∈ ω and a ∈ A ∩ Lb. The action of Zb on ∗b

is trivial. So the closure of the Siegel set lies in Lb∗b, which is a hermitian symmetric space for a
smaller symplectic group. In fact it is a Siegel set in Lb.

We define the standard boundary component to be Db = Lb∗b. The group Pb acts on this com-
ponent through the quotient Lb and the stabaliser of the point ∗b is a maximal compact subgroup
of Lb.

We now define the standard unbounded realisation of hg. Consider the partial Cayley transform
is given by conjugation by cb ∈ GC.

which is the usual Cayley transformation at the first b roots and the identity at the last g − b
roots (and thus acts trivially on Lb for example). This gives us a new embedding of GR in GC.
Consider the image of cb in GC/P−KC. The claim is that the G-orbit of this lies in p+.

Lemma 5.1. The image of cbG in the Lagrangian Grassmannian lies in p+

Proof. Think of this as the G-orbit of the point log(cb)+ ∈ p+ where G is acting on the Lagrangian
Grassmannian via a cb-conjugated action. Write g ∈ G as qlk where q ∈ Zb, l ∈ Lb and k ∈ K. k
acts trivially on the point log(cb)+. The l-action is covered by the original Cartan decomposition
argument in the bounded domain. Now Zcb

b ⊂ KCP+ so preserves p+. �

This yields another realisation of hg as a domain in p+. Specifically hg is identified with the
image of cbG and the G action is conjugated by cb. We denote this (unbounded) realisation by Sb.
The extreme cases are when b = 0, we recover the canonical bounded realisation while when b = g,
we recover the classical realisation of hg mentioned in the introduction.

Given g ∈ G and X ∈ Sb, we can explicate this action and write

g ·X = log(gcb exp(X))+.
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Let p+
b be the version of p+ for Lb and Db be the corresponding canonical bounded realisation

of hb. There is a natural quotient p+ → p+
b which induces a Pb-equivariant σb :Sb−→Db.

We write Jb
γ(z) for the Jacobian in Sb, and jb

γ(z) for the Jacobian in Db.

6. The Jacobian and extension of the line bundle

Proposition 6.1 (1.11(ii)). If g ∈ Lb, we have Jb
g(z) = jb

g(σb(z))q for some positive rational
number q.

Proof. Let l ∈ Lb be such that σb(z) = l∗b. First, since g ∈ Pb, Jb
g(−) is constant along the fibres of

σb :Sb−→Db, we have Jb
g(z) = Jb

g(l∗b) = Jb
gl(∗b)Jb

l (∗b)−1. By a similar use of the cocycle formula
for jb, it suffices to consider the case z = ∗b.

Now we recall the formula [1, Lemma 1.9]

Jb
g(z) = det Ad p+((gcb exp(z))0).

Lb commutes with cb, and also commutes with exp(∗b), which is in P+. Thus for g ∈ Lb, we have
(gcb exp(z))0 = g0. Let k = g0 ∈ KC ∩ Lb. This reduces our proposition to the claim

det Ad p+(k) = det Ad p+
b
(k)q

for any k ∈ KC ∩ Lb. Even without computation, it is obvious that such a q exists, as both sides
are characters of a reductive group with rank one centre. �

Proposition 6.2. If p ∈ Pb, then there are rational numbers n and q for which

|Jb
p(z)| = |χ(p)|n|jb

p(σb(z))|q.
Here χ is a rational character of Pb.

Proof. Write p = ml with m ∈ Zb and l ∈ Lb. Then Jb
p(z) = Jb

m(lz)Jb
l (z). The first term is a

function of m only, and hence by the cocyle relation a homomorphism from Zb to C×. Thus its
absolute value is a power of |χ|. We may do a calculation to determine the sign of n (which may
be relevant later on).

For the second factor, we use the previous proposition to write it as jb
l (σb(z))q which is equal to

jb
p(σb(z))q since m acts trivially on the boundary component. �

Theorem 6.3. If k is an integer such that kq ∈ Z for all possible rational numbers q appearing in
the above propositions, then Lk extends to a line bundle on XB.

From now on we will always assume that kq ∈ Z and kn ∈ Z for all rational numbers q and n
appearing in the above propositions.

7. Poincaire-Eisenstein series

Write σb for the projection p+ → p+
b and let f be a polynomial on p+

b . Define the Poincaire-
Eisenstein series

E(z) =
∑

γ∈Γ0\Γ

f(σb(γz))Jb
γ(z)k.

Here Γ0 = Γ ∩ Ub. One must check this is well defined.
Letting Γ∞ = Γ ∩ Pb, we introduce the function

Q(h) =
∑

λ∈Γ0\Γ∞

f(σb(λh∗b))Jb
λh(∗b)k.

We expand our sum as
E(gK) = Jb

g(∗b)−k
∑

γ∈Γ∞\Γ

Q(γg).
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The term in this sum corresponding to γ = 1 is the Poincaire series already known.

Lemma 7.1. Let p = ql and σb(g∗b) = lg∗. Here q ∈ Zb, l, lg ∈ Lb and g ∈ G. We have

Q(pg) = χ(p)nkJb
g(∗b)kjb

lg(∗b)−qk
∑

λ∈Lb∩Γ

f(σb(λllg∗b))jb
λllg(∗b)qk.

Proof. First note that λqλ−1 ∈ Zb so acts trivially. Then we use the cocycle relation and Proposition
6.2 to end up at the desired result. �

Let Rf (h) = f(σb(h∗b))jb
h(∗)qk. This is a function on Lb.

Lemma 7.2. Rf (h) is left Kb-finite, z-finite and is in L1(Lb) if qk ≥ 2.

Proof. WLOG, just replace Lb by G. K acts linearly on p+ through the adjoint action, so preserves
the finite dimensional space Symn(p∗+) which contains f . Now the left K translates of Rf are all
of the form RAd (k)f so we have K-finiteness.

For the L1-ness, WLOG f = 1 and we use the Cartan decomposition to reduce to showing that∫
A Ja(∗)da is finite. This is essentially a rank one computation.
Finally we note that the z-finiteness is automatic from holomorphicity and K-finiteness, as the

following paragraph shows.
Note that for F to be holomorphic is equivalent to being annihilated by p−. We use the PBW

decomposition U(g) = U(p+)⊗U(k)⊗U(p−). Pick an ordered basis of p+ and p−, and write z ∈ z
as z =

∑
m,n XmKmnYn where Xk (resp. Yk) is a sum of monomials of degree k in the basis of p+

(resp. p−), and Kmn ∈ k. Since z commutes with the centre of k, we have that only terms with
m = n appear in this sum. So ZF = K00F and from K-finiteness of F , we deduce z-finiteness. �

Proposition 7.3. The sum
∑

λ R(λh) is uniformly absolutely convergent on compact sets, and is
a bounded function (of h) on Lb.

Proof. It is a theorem of Harish-Chandra [1, Theorem 5.4] that this is immediate from the above
lemma. �

Proposition 7.4. The Poincaire-Eisenstein series E(z) defined above converges absolutely uni-
formly on compact sets.

Proof. This follows from Theorem B.1 and the above estimates. �

8. Behaviour of P-E series in a Siegel Set

Consider the irreducible algebraic representation of G with highest weight χnk. Let vh be highest
weight vector and let c(g) = ||π(g−1)vh||−1. We compare this to the function Q from the previous
section.

Proposition 8.1. Q(g) ≤ Cc(g) for some constant C.

Proof.
Q(pk)
c(pk)

=
Q(qlk)

χnk(p)c(k)
=

χnk(q)Q(lk)
χnk(p)

||π(k−1)vh||

is a product of bounded terms (the χ’s cancel). �

We study our Poincaire-Eisenstein series in a Siegel set. (remark: we need to work with a
translate of a Siegel set to cover all boundary components (Exercise!, or read [1])). So Let u ∈ ω,
a ∈ At, k ∈ K and γ ∈ Γ. For g = uak, we have the estimate

Jb
g(∗b)−kQ(γg) ≤ C ′Jb

a(∗b)−kc(γuak).

Note we have an explicit formula for the first factor.
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The action of γ−1 on vh turns it into
∑

µ vµ a sum of weight vectors. We will care which minimal
weights appear. Action by u−1 doesn’t change the set of minimal weights. a−1 acts on vµ by
multiplication by a−µ. As K is compact, π(k) has operator norm bounded from above and below.

Putting this together, lets suppose that we travel along our Siegel set into a b′-boundary com-
ponent. (yes I know there are less comparable boundary components).

If b′ ≤ b, for this term to survive (ie not converge to zero) in the limit on this boundary
component, we must have that the action of γ can only subtract the weights of G that are also
wieghts of Lc. Thus γ must lie in Lc. The P-E series in this case extends to what is a P-E series
on the boudnary component. Note if c = b we get our original Poincaire series (so can apply the
separation results of Cartan).

If b′ > b, we always converge to zero, ie our series is cuspidal. We end up with.
Suppose k is such that nk ∈ Z and qk ∈ Z for all n and q, and that k is sufficiently large.

Theorem 8.2. The Poincaire-Eisenstein series Ef (z) extends to an element of Γ(XB,Lk). Its
restriction to the b-boundary component is equal to a Poincaire series, and its restriction to any
boundary component not containing this b-boundary component is zero.

9. The topological structure

First the construction of the compactification as a set.
Define a rational boundary component to be a G(Q)-orbit of a standard boundary component.

As a set, we take XB to be the union of hg and all its rational boundary components (call this h∗g),
modulo the left action of Γ.

The topology (see [1, §4.8]) is defined by taking a fundamental system of neighbourhoods of some
x ∈ XB to be all Γx-invariant subsets x ∈ U ⊂ h∗g such that the intersection of γU with a closure of
a Siegel set containing γx is open in the closed Siegel set, for all γ. This turns XB into a compact
Hausdorff space with X an open dense subset.

10. The analytic structure

The main theorem which gives us an analytic structure is the following
V is a second countable Hausdorff space, a disjoint union of finitely many subspaces Vi, each of

which is an irreducible normal analytic space.
On V one defines a sheaf of A-functions. An A-function on an open U ⊂ V is a continuous

complex-valued function on U whose restriction to each U ∩ Vi is analytic.

Theorem 10.1. [1, Theorem 9.2] Suppose that
(1) For each integer d, the union of all strata of dimension at most d is closed, and furthermore

there is a unique stratum V0 of maximal dimension which is open and dense in V .
(2) Each point of V has a fundamental system of open neighbourhoods Uj with Uj∩V0 connected.
(3) The restrictions to Vi of the sheaf of A-functions define the structure sheaf of Vi.
(4) Each point has a neighbourhood U whose points are separated by the A-functions defined on

U .
Then V with its sheaf of A-functions is an irreducible normal analytic space.

11. Borel’s Theorem

Via the theory of the Kobayashi invariant pseudo-distance, one can prove the following (I don’t
know what happens if Γ has torsion and g ≥ 2).

Theorem 11.1. [3] Let D be the open unit disc in C and D× be the punctured unit disc. Suppose
Γ is torsion-free. Then any holomorphic map from Da× (D×)b to X extends to a holomorphic map
from Da+b to X.
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Now suppose Y is a smooth quasi-projective algebraic variety over C. It is well known (resolution
of singularities) that we can find an open embedding of Y into a projective variety Y such that
Y \ Y is a normal crossings divisor. So locally for the complex analytic topology the embedding
Y ↪→ Y is of the form Da × (D×)b ↪→ Da+b.

Thus by the above theorem, any holomorphic f :Y −→X can be extended to a holomorphic map
f :Y −→ X. This is a holomorphic map between the analytifications of two projective complex
algebraic varieties, thus is algebraic.

Corollary 11.2. The complex algebraic structure on Γ\hg is unique.

Appendix A. Siegel Sets

Let ω be a compact subset of U . Fix t and let At = {a ∈ A|aβ > t ∀ β ∈ ∆} A set of the form
ωAtK is called a Siegel set.

Theorem A.1. If ω is large enough and t is small enough then we have G(Z)S = G.

Proof. Left multiplication by elements of U(Z) means that G = ωAK for large enough ω. We
concentrate on the torus part. We have X∗(S)⊗R ' A via the exponential map. Write g = ueλk.

Pick α ∈ ∆ with λ(α) less than some absolute negative constant. (If such a simple root doesn’t
exist, there is nothing to prove). Write u = u′eα(x) with |x| ≤ 1/2 (WLOG via left multiplication
by U(Z)). Consider sαg = (u′)sesλe−α(xα(eλ))sk. Let us perform an Iwasawa decomposition on
e−α(xα(eλ)) in the corresponding root subgroup of G.

This is a SL2 calculation. The result is that when we write sg = u′eλ′k′ we have from the SL2

calculation that λ′ lies on the line segment between λ and sλ.
If we keep applying this process, we improve λ in each iteration (it is now closer to any given

point in the interior of the dominant chamber). There are no accumulation points via the SL2

calculation, so after multiplying by enough elements of G(Z), eventually we will end up with an
element lying in ωAtK as required. �

Corollary A.2. If G has no rational characters then G(Z)\G(R) has finite volume.

Proof. A Siegel set has finite volume. �

Theorem A.3. [4, Theorem 4.8, p193] For any x ∈ G(Q), the set of γ ∈ Γ with γS ∩ xS 6= ∅ is
finite.

Appendix B. Convergence of Eisenstein Series

Let P be a parabolic subgroup of G and let χ be the character of P

χ(p) = det( Ad (p)|u).

We think of χ as a character of A.

Theorem B.1. Let s ∈ Hom (A, C×) be such that <(s) > χ. Let f :G−→V be a function satisfying
f(γg) = f(g) for all γ ∈ Γ∞ and such that

sup
p∈P

||χ(p)sf(pg)||

is bounded whenever g runs over a compact set. Then the Eisenstein series

E(f, g) =
∑

γ∈Γ∞\Γ

f(γg)

converges absolutely uniformly on compact sets.
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Proof. In the decomposition G = KMAU , the A component is uniquely determined, we write
a :G−→A for the function this determines. By the Iwasawa decomposition, we can find the bound
||f(g)|| ≤ Ca(g)−s for some absolute constant C (Without loss of generality, assume s is real). So
it suffices to consider the particular Eisenstein series

E(s, g) =
∑

γ∈Γ∞\Γ

a(γg)−s.

Let us fix a compact subset Z of G. Then there exists a compact neighbourhood C of the identity
in G such that for any fixed g ∈ X, the sets γgC with γ ∈ Γ are disjoint. We get the bound

E(s, g) ≤
∫

Γ∞\ΓgC
a(h)−sdh.

Consider a highest weight representation V of G, with vλ a highest weight vector stabilised by
P , and contained in a lattice L stabilised by Γ. Let us write γgc = uma(γgc)k and consider the
equation γ−1vλ = a(γgc)λ(gck−1)vλ. The term ||γ−1vλ|| is bounded from below since it is the
length of a vector in the lattice L, and ||gck−1vλ|| is bounded from above for g ∈ Z, c ∈ C and
k ∈ K are all running over compact sets. Thus we get a(γgc)λ is bounded from above.

Varying λ, we find a constant t such that a(γgc) ∈ A∗t = {a ∈ A|aω < t} where one is running
over all relevant positive fundamental weights ω.

We require the fact that there exists some set ω ∈ U.M of finite measure with U.M = Γ∞ω
(Corollary A.2). Now we have

E(s, g) <

∫
ωA∗

t K
a(h)−sdh = vol (ω) vol (K)

∫
A∗

t

aχ−sda.

This is a product of integrals of the form
∫ T
0 ys−1dy with s > 0, hence converges as required. �
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