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PETER J MCNAMARA

Abstract. We discuss some consequences of the invertibility of Rickard complexes in a
categorified quantum group. Results include a description of reflection functors for quiver
Hecke algebras and a theory of restricting categorical representations along a face.

1. Introduction

It is a classical construction to associate to any symmetrisable Cartan matrix a quantum
group Uq(g). We concern ourselves with a categorified version of this construction, where a
strict 2-category U is produced whose Grothendieck group is canonically identified with the
idempotented form of the corresponding quantum group.

This theory of a categorical quantum group originates with the work of Chuang and
Rouquier [CR08] who used the notion of a categorical sl2 action to construct interesting
derived equivalences. The generalisation to general g came in the work of Khovanov and
Lauda [KL3] and Rouquier [Rou12]. They give two different presentations of a 2-category U ,
the equivalence of which was shown by Brundan [Bru].

The braid group acts by algebra automorphisms on the quantum group Uq(g). The starting
point of this paper is the theorem that this braid group action can be lifted to a braid group
action on the homotopy category K(U) by autoequivalences Ts. The autoequivalence Ts is
given by conjugation by a Rickard complex, which is proved to be invertible in K(U) in [V]. In
this paper we explore the implications of the existence of this action. The applications which
we study all require the theory of standard modules for quiver Hecke algebras, also known as
KLR algebras (after Khovanov, Lauda and Rouquier). This theory was developed in [BKM]
in finite type and in [McNb] in affine type over a field of characteristic zero. The necessary
facts from this theory are all recalled when they are needed. We prove that these standard
modules are compatible with these autoequivalences Ts in a precise way in Proposition 8.4.

The main application studied in this paper is to the construction of reflection functors
for quiver Hecke algebras. These are functors which categorify the Satio reflection on the
crystal B(∞), as well as Lusztig’s braiding automorphism Ts, restricted to the positive part
of the quantum group. The Ts do not preserve the positive part Uq(g)+, but do induce an
isomorphism between two subspaces ker(sr) ∼= ker(rs) (see §2 for the definitions of these
objects). Both subspaces ker(sr) and ker(rs) are categorified by a Serre subcategory of the
category of quiver Hecke modules, which we denote by sC and Cs respectively. We show how
the autoequivalence Ts induces an equivalence of the abelian categories sC and Cs.

This equivalence was obtained geometrically in finite simply laced type over a field of
characteristic zero in [K1]. This was subsequently generalised to finite simply laced type in
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all characteristics in [McNa], see also [M2] for a proof of the requisite evenness properties.
The related work of [XZ, Zha] provides a geometric incarnation of Ts in all types but does not
produce results of the same strength that we provide here. An alternative algebraic approach
to this equivalence that works in all finite types is proposed in [KKOP], they are only able
to prove their equivalence after a localisation.

The second application is to a theory of restricting a categorical representation. In [MT],
the notion of a face of a root system is introduced. Each face defines a root system and hence
there is a quiver Hecke algebra associated to that face, which we will call RF . The main
result of [MT] is the construction of a fully faithful functor from RF -mod to R-mod, whose
essential image is explicitly determined in terms of a subcategory of cuspidal modules if the
face root system is of finite type. In this paper we go beyond the results of [MT] at the cost
of passing to the homotopy category. For any face, we show how to restrict a categorical
action on a category C to a categorical action for the face quantum group on the homotopy
category K(C). In certain cases the restricted categorical action is actually an action on C
and we give a criterion for checking this.

In this paper we work under the assumption that our Cartan data are simply laced. The
reason for restricting to simply-laced type is that we need some computational results in rank
2 which have only been carried out under this restriction, in particular Theorem 4.2. We
expect that generalising these computational results of [ALLR], to all types will allow the
results of this paper to similarly become available in greater generality, subject still to the
requirements that the necessary theory of standard modules for the relevant quiver Hecke
algebras exists.

We thank the authors of [ALLR] for providing a draft of their paper, and O. Yacobi for
bringing [V] to the author’s attention.

2. Preliminaries

Let S be a set and A = (ast)s,t∈S be a simply-laced Cartan matrix. This means that ass = 2
and if s 6= t, ast = ats ∈ {0,−1}. Choose also a realisation of A. This is the additional data
of a complex vector space h, a set of linearly independent vectors αs ∈ h∗ and a set of linearly
independent vectors α∨s ∈ h such that 〈α∨s , αt〉 = ast. Define the weight lattice

P = {λ ∈ h∗ | 〈α∨s , λ〉 ∈ Z for all s ∈ S}.

To this data, there is associated a Kac-Moody Lie algebra quantum group Uq(g). We are
most interested in its positive part U+

q (g).

The positive part of the quantum group U+
q (g) is the unital associative algebra generated

by elements θs for s ∈ S subject to the quantum Serre relations

θsθt = θsθt if ast = 0

(q + q−1)θsθtθs = θsθ
2
t + θtθ

2
s if ast = −1

The algebra U+
q (g) has an integral form over Z[q, q−1] which we call f . It is the Z[q, q−1]-

subalgebra generated by the divided powers θns /[n]!, where [n]! =
∏n
i=1

qi−q−i
q−q−1 . This algebra

is graded by NS where θs has degree s.
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Let s ∈ S. Let rs : f−→ f be the linear map defined inductively by

rs(θt) = δst

rs(xy) = qdeg(y)·srs(x)y + xrs(y).

and let sr : f−→ f be the linear map inductively defined by

sr(θt) = δst

sr(xy) = sr(x)y + qdeg(x)·sxsr(y).

We will need rs and sr in §8.
Given two objects X and Y in a graded category, we write qX for the grading shift of X,

Hom(X,Y ) for the degree zero morphisms from X to Y and

HOM(X,Y ) =
⊕
d∈Z

Hom(qdX,Y )

for the graded vector space of all morphisms.
For us a 2-category will always be a strict 2-category, which is the same thing as a category

enriched in categories, i.e. the homomorphisms between two objects forms a category.

3. The 2-category

Let k be a field. For each ordered pair (s, t) of distinct elements of S, let vst be a nonzero
element of k. To this data, there is a Kac-Moody 2-category U , defined using a diagrammatic
presentation. It has:

Objects: λ ∈ P .
Generating 1-morphisms:

Es1λ : λ→ λ+ αs, Fs1λ : λ→ λ− αs
Generating 2-morphisms:

x ∈ End(Es1λ), τ ∈ Hom(EsEt1λ, EtEs1λ), η ∈ Hom(idλ,FsEs1λ), and ε ∈ Hom(FsEs1λ, idλ)

for all choices of s, t ∈ S and λ ∈ P , drawn diagrammatically as

x = •
s

λ , τ =
s t

λ , η =
s

λ
, ε =

s

λ
. (3.1)

These are subject to a list of relations which we will reproduce below. By work of Brundan
[Bru], different choices of relations that appear in the literature give equivalent 2-categories.

Before we discuss the relations, we first explain how to compose 2-morphisms. Given two
2-morphisms, their composition is defined to be the 2-morphism obtained by stacking the
first 2-morphism on top of the second, if the endpoints of the 2-morphisms match.

The first relations we impose are the isotopy relations. These state that two diagrams
which are isotopic are equal. This, together with the definition of composition, imply that
the identity morphisms can be drawn as vertical lines without dots or crossings.
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Second, we have the quiver Hecke relations:

s t

λ• −
s t

λ
•

=
s t

λ
•

−
s t

λ• =

 s t

λ if s = t,

0 otherwise,

(3.2)

s t

λ
=



0 if i = j,

vst
s t

λ if ast = 0,

vst
s t

λ• + vts
s t

λ• otherwise,

(3.3)

s t u
λ
−
s t u

λ
=

 vst
s t u

λ
• + vst

s t u
λ
• if s = u 6= t,

0 otherwise.

(3.4)

Third, we have the right adjunction relations

s

λ =

s

λ ,
s

λ =
s

λ , (3.5)

In order to describe the remaining relations, we first introduce a new 2-morphism.

t

s

λ :=

s

t

λ : EtFs1λ → FsEt1λ.

To finish, we require that the following 2-morphisms are isomorphisms:

t

s

λ : EtFs1λ
∼→ FsEt1λ if s 6= t, (3.6)

s

s

λ ⊕
〈α∨s ,λ〉−1⊕
n=0

s

λ
n• : EsFs1λ

∼→ FsEs1λ ⊕ 1
⊕〈α∨s ,λ〉
λ if 〈α∨s , λ〉 ≥ 0, (3.7)

s

s

λ ⊕
−〈α∨s ,λ〉−1⊕

n=0

s

λ
n• : EsFs1λ ⊕ 1

⊕−〈α∨s ,λ〉
λ

∼→ FsEs1λ if 〈α∨s , λ〉 ≤ 0. (3.8)

where the label n next to a dot means that this strand carries n dots.
In more detail, the meaning of these last relations is that U contains additional gen-

erators which are two-sided inverses to the 2-morphisms described in (3.6)–(3.8). They
are L ∈ Hom(FsEt1λ, EtFs1λ), ψn ∈ Hom(idλ, EsFs1λ) for 0 ≤ n < 〈α∨s , λ〉 and ϕm ∈
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Hom(FsEs1λ, idλ) for 0 ≤ m < −〈α∨s , λ〉, and we draw them as

L =
s

t
λ ψn =

s

n
♠ λ ϕm =

s

m
♠

λ .

They satisfy the following relations:

t

s

λ =

(
t

s

λ

)−1
if s 6= t,

−
s

s

λ ⊕
〈α∨s ,λ〉−1⊕
n=0

s

λ
n
♠ =

(
s

s

λ ⊕
〈α∨s ,λ〉−1⊕
n=0

s

λ
n•

)−1
if 〈α∨s , λ〉 ≥ 0,

−
s

s

λ ⊕
−〈α∨s ,λ〉−1⊕

m=0
s

λ
m
♣

=

(
s

s

λ ⊕
−〈hi,λ〉−1⊕
m=0

s

λ
m•
)−1

if 〈α∨s , λ〉 ≤ 0.

This concludes the definition of U . The morphism spaces in U are all Z-graded, the
generators in (3.1) have degrees 2, ast, 1 + 〈α∨s λ〉 and 1− 〈α∨s λ〉 respectively.

Our next goal is to introduce some more 2-morphisms in order to state a non-degeneracy
theorem for U .

The leftward caps are defined by

s

λ =



s

λ

〈α∨s ,λ〉−1
♠ if 〈α∨s , λ〉 > 0.

s

λ
−〈α∨s ,λ〉• if 〈α∨s , λ〉 ≤ 0.

From these, we can define clockwise bubbles with a non-negative number of dots
s
λ•r ,

which are endomorphisms of idλ. It is convenient to extend this definition to allow a negative
number of dots, as in [Bru, Eq 3.8], a convention which we will employ.

Let Bλ be the unital commutative k-algebra freely generated by all bubbles
s
λ•r , for

r ≥ 〈α∨s , λ〉 (r here may be negative). Note that all of these generators are in positive degree.
So Bλ is non-negatively graded and in degree zero is simply the ground field k.

We are now in a position to define the notion of nondegeneracy. Let i = (i1, i2, . . . , in)
and j = (j1, j2, . . . , jn) be two sequences of elements of S. Let D be a matching of i
and j. To this matching, choose a representative diagram comprised of downward point-
ing crossings where any pair of strings crosses at most twice - this represents an element of
HOM(Fi1Fi2 · · · Fin ,Fj1Fj2 · · · Fjn). Now given a matchingD and a sequence a = (a1, a2, . . . , an)
of natural numbers, create a morphism fD,a by adding ai dots onto the bottom of the i-th
strand from the left of this representative diagram for 1 ≤ i ≤ n. Let Π be a basis for Bλ.

Definition 3.1. The 2-category U is said to be nondegenerate if for all i, j, the set

{fD,a ⊗ π | D ∈ D(i, j),a ∈ N|i|, π ∈ Π}
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is a basis for HOM(Fi1Fi2 · · · Fin ,Fj1Fj2 · · · Fjn).

The following fundamental theorem is important to us:

Theorem 3.2 (Nondegeneracy theorem). The 2-category U is nondegenerate.

This result was proved by Khovanov and Lauda [KL3, Theorem 1.3] in type A, and by Web-
ster [Web, Theorem A] and DuPont [D, Theorem 3.5.3] in general. Although only stated as a
result about homomorphism spaces between products of F ’s, standard adjunction techniques
allow us to find from this a basis of all morphism spaces in U .

Out of U , for ∗ ∈ {b,+,−, ∅} we construct a new 2-category K∗(U̇). Like U , its objects are

elements of P . For any two elements λ, µ ∈ P , the morphism category in K∗(U̇) is defined
to be

HomK∗(U̇)(λ, µ) = Kar(K∗(HomU (λ, µ)))

where K∗ stands for taking the (bounded, bounded above, bounded below or unbounded)
homotopy category and Kar refers to taking the Karoubian envelope.

4. Rouquier Complexes

Let n be an integer. The Nil-Hecke algebra is the graded algebra generated by elements
x1, x2, . . . , xn in degree 2, and ∂1, ∂2, . . . , ∂n−1 in degree −2, subject to the following relations:

xixj = xjxi

∂2i = 0

∂i∂i+1∂i = ∂i+1∂i∂i+1

∂ixj = xj∂i if |i− j| > 1

∂ixi+1 = xi+1∂i ± 1

∂i+1xi = xi∂i+1 ± 1.

It is known that there is an isomorphism of algebras

NHn
∼= Mat[n]!(k[x1, . . . , xn]Sn).

Let en = x2x
2
3, . . . x

n−1
n (∂1∂2 · · · ∂n−1)(∂1∂2 · · · ∂n−2) · · · (∂1∂2)(∂1). Then en is a primitive

idempotent in NHn. Let s ∈ S. There is a natural map ψ : NHn → End(Fns ) sending xi to
the dot acting on the i-th factor and ∂i to the crossing between the i-th and (i+ 1)-st factor.

Inside U̇ , we define the divided power

F (n)
s = q−

n(n−1)
2 ψ(en)Fns

and similarly for E(n)s . If n < 0, we say these divided powers are zero.
For each s ∈ S and λ ∈ P , we define the Rickard complex Θs1λ to be the complex of

objects of 1sλU1λ whose r-th component is

Θr
s1λ = q−rF (〈α∨s ,λ〉+r)

s E(r)
s .

The differentials of Θs1λ are given by the composition of the counit id → FsEs together
with projection by appropriate idempotents. The most important result about these Rickard
complexes is the following:



BRAID GROUP ACTION 7

Theorem 4.1. [V, Theorem 5.13] The complex Θs is invertible in K(U̇).

From the above result, we define a triangulated autoequivalence Ts of Kb(U̇) for each s ∈ S
by conjugating by the Rickard complex Θs.

Theorem 4.2. [ALLR] If s and t are connected by an edge, then

Ts(Ft1λ) = qFtFs1sλ → ♣FsFt1sλ, (4.1)

Ts(qFsFt1λ → ♣FtFs1λ) = Ft1sλ (4.2)

where the differential in each case is the downward crossing, and the symbol ♣ is used to
denote the term in homological degree zero.

We note that this is proved directly in [ALLR], but computations to prove this also already
appear in the literature in [CK, Corollary 5.4].

Remark 4.3. At the level of the Grothendieck group, Ts decategorifies the braid group auto-
morphism Ts constructed in [L, §38].

5. Quiver Hecke Algebras

The quiver Hecke algebra R can be defined inside U as the algebra generated by the upward
strands, subject to the isotopy and quiver Hecke relations. There are no identities in R that
do not follow from the relations only involving upward strands.

For ν ∈ NI, let R(ν) be the subalgebra of R consisting of diagrams where the colours of
the strands add to ν. Here we refer to a strand labelled by s ∈ S as having colour s.

The algebra R(ν) is Laurentian, this means that for all n, R(ν)n is finite dimensional and
for n� 0, we have R(ν)n = 0.

By placing strands next to each other there is a nonunital inclusion of algebras R(λ) ⊗
R(µ) ↪→ R(λ+ µ). There is thus a corresponding induction functor

Ind :R(λ)-mod×R(µ)-mod−→R(λ+ µ)-mod

written (M,N) 7→M ◦N , given by

M ◦N := R(λ+ µ)e⊗R(λ)⊗R(µ) (M ⊗N)

where e is the image of the unit under the algebra inclusion.
Its left adjoint is the restriction functor

Resλµ :R(λ+ µ)-mod−→R(λ)⊗R(µ)-mod

given by
Resλµ(M) = eM.

Let λ, µ ∈ NI. Then there is another adjunction [McN15, Corollary 2.6]:

Exti(A,B ◦ C) ∼= qλ·µ Exti(ResµλA,C �B), (5.1)

where B is an R(λ)-module, C is an R(µ)-module and A is an R(λ)-module.
The main theorem of [KL1] is that the quiver Hecke algebras categorify f (introduced in

§2), which means there is an isomorphism⊕
ν

K0(R(ν)-pmod) ∼= f . (5.2)



8 PETER J MCNAMARA

Here R(ν)-pmod is the category of finitely generated graded projective R(ν)-modules. Fur-
ther properties of this isomorphism including compatibilities with induction and restriction
functors are discussed and proven in [KL1].

Let f∗ be the graded Z[q, q−1]-dual of f . As a consequence of (5.2), it has the following
categorical interpretation: ⊕

ν

K0(R(ν)-fmod) ∼= f∗.

Here R(ν)-fmod denotes the category of finite dimensional graded R(ν)-modules. Under these
isomorphisms, the canonical pairing between f and f∗ is incarnated by the Hom-pairing. We
let θ∗s be the basis element of f∗ dual to θs.

6. The embeddings of categories

For each λ ∈ P , there is a functor

iλ : K−(R(ν)-pmod)→ HomK−(U̇)(λ, λ− ν).

If i = (i1, i2, . . . , in) is a sequence of elements of S, then there is an idempotent ei ∈
R(i1 + i2 + · · ·+ in) consisting of vertical strings with colours i1, . . . , in in that order without
any dots. We therefore get a projective R(ν)-module Pi = R(ν)ei = Pi1 ◦Pi2 ◦· · ·◦Pin . Under
this functor, we have

iλ(Pi) = Fi1Fi2 · · · Fin1λ.

These functors satisfy a compatibility between induction and composition, namely that
the following diagram commutes:

K−(R(µ)-pmod)×K−(R(ν)-pmod) K−(R(µ+ ν)-pmod)

HomK−(U̇)(λ− ν, λ− µ− ν)×HomK−(U̇)(λ, λ− ν) HomK−(U̇)(λ, λ− µ− ν)

Ind

iλ−ν×iλ iλ

where the horizontal map along the bottom row is the composition in K−(U̇).
Recall that for each λ ∈ P , we have a commutative algebra Bλ freely generated by clockwise

bubbles with loops, introduced in §3. By the nondegeneracy theorem, Bλ ∼= EndU (idλ). In
degree zero, this algebra is spanned by the identity and in negative degrees, it is zero.

Theorem 6.1. Suppose X and Y are two objects in Kb(R(ν))-pmod). Then there is a
canonical isomorphism of graded vector spaces.

HomKb(R(ν)−pmod)(X,Y )⊗ Bλ ∼= HomK−(U̇)(iλ(X), iλ(Y ))

Proof. Use X = (P•, d) and Y = (Q•, d) to denote bounded chain complexes of projective
modules representing X and Y . Let {bj}j∈J be a basis of Bλ.

We first prove surjectivity. Let f• : iλ(P•)−→ iλ(Q•) be a morphism of chain complexes.
We can express each fi : iλ(Pi) → iλ(Qi) in the form fi =

∑
j∈J gij ⊗ hj where each gij has

no bubbles, i.e. comes from a morphism from Pi to Qi.
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The condition that f• is a chain map is expressed in the identity∑
j∈J

dgij ⊗ bj =
∑
j∈J

gi+1,jd⊗ bj .

By the nondegeneracy theorem, Theorem 3.2, this implies that for each j, dgij = gi+1,jd.

Thus for each j ∈ J , the collection g•,j is a chain map in Kb(R(ν)-pmod).
Since there are only a finite number of j for which g•,j is non-zero, we conclude that the

map from HomKb(R(ν)−pmod(X,Y )⊗ Bλ to HomK−(U̇)(iλ(X), iλ(Y )) is surjective.

We now show injectivity. Suppose we have an element in Hom(X,Y )Kb(R(ν)−pmod ⊗ Bλ
that maps to zero. Write it in the form

∑
j∈J f•j ⊗ bj with f•j : X → Y a chain map for

all j. Since it gets sent to zero in HomK−(U̇)(iλ(X), iλ(Y )), there exists a chain homotopy∑
j∈J iλ(hij)⊗ bj : iλ(Pi−1)→ iλ(Qi) such that∑

j∈J
diλ(hi+1,j)⊗ bj +

∑
j∈J

iλ(hij)d⊗ bj =
∑
j∈J

iλ(fij)⊗ bj .

By the non-degeneracy theorem, this implies that for each j, we have

dhi+1,j + hijd = fij

and hence f•j is homotopic to the zero map. Therefore
∑

j∈J f•j⊗ bj is zero in the homotopy
category, as required. �

Corollary 6.2. The functor iλ is faithful.

7. Standard modules

We summarise the current state of the theory of standard modules for quiver Hecke al-
gebras. This theory is currently known to exist in finite type in all characteristics and in
symmetric affine type when k is of characteristic zero. The references are [BKM] in the
former case and [McNb] in the latter.

Let Φ+ be the set of positive roots. A convex order on Φ+ is a preorder ≺ such that

• If S and T are two subsets of Φ+ such that s ≺ t for all s ∈ S and t ∈ T then

spanR≥0
S ∩ spanR≥0

T = {0},

• If s � t and t � s then s and t are proportional.

Let α ∈ Φ+. A representation M of R(α) is said to be semicuspidal (with respect to the
convex order ≺) if ResβγM 6= 0 implies that β is a sum of roots less than α and γ is a sum
of roots greater than α.

Let α be an indivisible root. An indecomposable projective object in the category of
semicuspidal R(α)-modules is called a root module. The grading shift on these root modules
is customarily normalised such that their heads are self-dual. For each indecomposable root
α, the number of root modules for α is equal to the dimension of the root space gα. In
particular, if α is a real root, there is a unique root module, which we call ∆(α).

We consider the standard modules introduced in [BKM] and [McNb]. These depend on
the convex order ≺ and are built out of root modules. The root modules corresponding to
real roots have already been introduced, these are the modules ∆(α). For the indivisible
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imaginary root δ, we will call the modules denoted ∆(ω) in [McNb] root modules. These are
the projective modules in the category of cuspidal R(δ)-modules.

Standard modules are naturally indexed by root partitions. A root partition is a sequence
λ = (αn1

1 , · · · , α
nl
l ) where α1 � · · · � αl are indivisible roots, each ni is a positive integer

unless αi = δ, in which case it is a collection of partitions, indexed naturally by a collection
of chamber coweights adapted to ≺ (as defined in [McNb, §12]). We also use the symbol ≺
to denote the lexicographical order on root partitions.

To each term αnii in a root partition, a standard module ∆(αi)
(ni) is constructed. If αi is

real then ∆(αi)
◦ni is a direct sum of ni! copies of the module ∆(αi)

(ni) with grading shifts. If

αi is imaginary then ∆(αi)
(ni) is a summand of an induction product of the imaginary root

modules ∆(ω); see [McNb, §19] for the details (where this module is denoted ∆(λ)). The
standard module is then defined to be the indecomposable module

∆(λ) = ∆(α1)
(n1) ◦ · · · ◦∆(αl)

(nl).

In [BKM] and [McNb] homological properties of these modules are developed which justify
the use of the name standard. In this paper we call a module standard if it is isomorphic to
any grading shift of any ∆(λ).

From their construction, the family of standard modules satisfies the following property:

Proposition 7.1. Every standard module is obtained from a root module by a process of
induction and taking direct summands.

Remark 7.2. We expect that if a theory of standard modules is developed in affine type
over a field of positive characteristic, it will not satisfy Proposition 7.1. This expectation
is because of the essential use of the semisimplicity of the representations of the symmetric
group in [McNb]. Geometric evidence against a good theory of standard modules in positive
characteristic is discussed in [MM]. However, extensions to non-symmetric affine types in
characteristic zero, either classically or using quiver Hecke superalgebras [KKT], are likely to
be possible.

If α is a real root, let L(α) be the head of ∆(α). If λ is a multipartition, let L(λ) be the
head of ∆(λ). The modules L(λ) are all simple and if λ = αn then L(λ) = L(α)◦n (up to a
grading shift which is not relevant to us).

Let λ = (αn1
1 , · · · , α

nl
l ) be a root partition. Define the proper costandard module

∇(λ) = L(αnll ) ◦ · · · ◦ L(αn1
1 ).

We can now state a standard classification result for simple modules of quiver Hecke
algebras. Alternative references include [Kl] and [TW].

Theorem 7.3. [McNb, Theorem 8.8, Lemma 8.6] The simple modules for R(ν) are classified
up to isomorphism and grading shift by root partitions. The simple module L(λ) corresponding
to the root partition λ is the socle of ∇(λ). Furthermore every other simple subquotient L(µ)
of ∇(λ) has λ ≺ µ in the lexicographical order on root partitions.

Proposition 7.4. [McNb, Proposition 24.3] Let ∆ be a standard module and ∇ be a proper
standard module. Then for i > 0,

Exti(∆,∇) = 0.
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If M is a R(ν)-module, then we define wt(M) = ν.

Lemma 7.5. Let ∆ be a root module for a root that is not simple. Then there are root
modules ∆β and ∆γ and a nonzero q-integer m such that there is a short exact sequence

0→ q−β·γ∆β ◦∆γ
fβγ−−→ ∆γ ◦∆β → ∆⊕m → 0.

If wt(∆) is not minimal in Φ+ \ {αs}, then ∆β and ∆γ can be chosen to be in Φ+ \ {αs}.
Furthermore fβγ spans Hom(q−β·γ∆β ◦ ∆γ ,∆γ ◦ ∆β) and HOM(q−β·γ∆β ◦ ∆γ ,∆γ ◦ ∆β) is
concentrated in nonnegative degrees.

Proof. In finite type, this is [BKM, Theorem 4.10]. In symmetric affine type, this is [McNb,
Lemma 16.1] if wt(∆) is real and [McNb, Theorem 17.1] if wt(∆) is imaginary. The statement
about Hom(q−β·γ∆β ◦∆γ ,∆γ ◦∆β) being one-dimensional is not explicitly mentioned in these
references, but is clear from the proofs. �

Definition 7.6. A module M is said to have a ∆-flag if there exists a filtration by submodules

M = Mn ⊃Mn−1 ⊃ · · · ⊃M1 ⊃M0 = 0

such that each subquotient Mi+1/Mi is a standard module.

Lemma 7.7. [BKM, Theorem 3.13] A finitely generated module M has a ∆-flag if and only
if Ext1(M,∇) = 0 for all proper costandard modules ∇.

Lemma 7.8. Every module which has a ∆-flag has a finite projective resolution.

Proof. An induction on the length of the flag shows it suffices to prove this for standard
modules. By Proposition 7.1, it suffices to prove this for root modules. By Lemma 7.5, we
reduce to the case of a root module for a simple root, which is projective. �

The last lemma means that for any module M with a ∆-flag, its class [M ] ∈ K0(R-pmod)
is defined.

8. Reflection Functors

Let s ∈ S. Let se ∈ R be element of the quiver Hecke algebra which is the sum of all
generating idempotents with first strand coloured s. Let es be the sum of all generating
idempotents with last strand coloured s. Let sC (respectively Cs) be the full subcategory of
R-modules on which se (respectively es) acts by zero.

Equivalently

sC = R/〈se〉-mod and Cs = R/〈es〉-mod.

Lemma 8.1. Suppose P is projective in sC (respectively in Cs). Then ExtiR(P,M) = 0 for
all R-modules M in sC (respectively Cs) and i > 0.

Note that the Ext group is computed in the category of R-modules rather than in sC (or
Cs), so this result is not a tautology for i > 1.
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Proof. We consider the case where P is projective in sC, the other case following similarly.
Choose a convex order ≺ which has αs as its largest element (which always exists). All
root partitions, standard and proper costandard modules appearing in this proof will be
with respect to this convex order. First we will prove that P has a ∆-flag. By Lemma
7.7 it suffices to prove that Ext1(P,∇) = 0 for all proper costandard modules ∇. If λ =
(αnss , α

n2
2 , α

n3
3 , . . . , α

nl
l ) is a root partition with ns = 0, then ∇(λ) ∈ sC. So in this case

Ext1(P,∇(λ)) = 0 as P is projective in sC. If on the other hand ns 6= 0, then ∇(λ) ∼= X ◦Ls
for some X. Then by (5.1),

Ext1(P,∇(λ)) ∼= Ext1(Resαs,ν−αs P,Ls ⊗X).

Since P ∈ sC, this restriction is zero, as required in order to prove that P has a ∆-flag.
By Proposition 7.4, the fact that P has a ∆-flag implies that Exti(P,∇) = 0 for all

proper costandard modules ∇ and i > 0. We now turn our attention to the statement that
ExtiR(P,M) = 0 for all R-modules M in sC. Without loss of generality we may assume M is
simple.

Then M injects into a proper costandard module ∇. Let Q be the quotient ∇/M . By
Theorem 7.3, every simple subquotient L of Q satisfies L ≺ M in the lexicographical order
on root partitions.

By induction on the partial preorder ≺, we may assume Exti(P,L) = 0 for all L ≺M and
i > 0. Hence Exti(P,Q) = 0 for i > 0. Now apply Hom(P,−) to the short exact sequence

0→M → ∇→ Q→ 0.

The resulting long exact sequence implies that Exti(P,M) = 0 for i ≥ 2.
This leaves only the i = 1 case, but Ext1(P,M) vanishes since P is projective in sC and

M is in sC. �

For each s ∈ S, we have inclusions of full subcategories

sC, Cs ⊂ R-mod ⊂ K−(R-pmod).

If our Cartan datum is of finite type then R has finite global dimension by [McN15, Theorem
4.7]. So in this case, the essential image lies in the bounded homotopy category Kb(R-pmod).
In general, by Lemma 7.8, the standard modules have finite projective dimension so lie in
Kb(R-pmod), while R in general may have infinite global dimension.

If P is a projective object in Cs, then it is shown in the proof of Lemma 8.1 above that P
has a ∆-flag. By Lemma 7.8, it therefore has a finite length projective resolution. Therefore
we obtain a homomorphism of Grothendieck groups

χs : [Cs]→ f ,

where we use [−] to denote the split Grothendieck group of projective objects, and recalling
the isomorphism (5.2). There is similarly sχ : [sC]→ f .

Theorem 8.2. The homomorphisms χs and sχ are injective with image ker(rs) and ker(sr)
respectively.
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Proof. First we prove injectivity. For i ∈ I, let Li denote the corresponding simple and Pi
be its projective cover. Suppose that

∑
i∈I ai[Pi] ∈ ker(χs). Let M be a finite dimensional

R-module. We can apply dim RHom(−,M) to obtain∑
i∈I

∞∑
j=0

(−1)j dim Extj(Pj ,M) = 0.

Fix i ∈ I and set M = Li. Then by Lemma 8.1, all terms vanish except the one involving
Ext0(Pi, Li). Hence ai = 0 for all i. Therefore χ is injective.

We now show that im(χs) ⊂ ker(rs). If M ∈ Cs, then esM = 0, so Resν−s,s(M) = 0. The
results of [KL1] imply that

[Resν−s,sM ] = rs([M ])⊗ θs,
from which we obtain that rs([M ]) = 0, so im(χs) ⊂ ker(rs).

It remains to show that ker(rs) ⊂ im(χs). Suppose ξ ∈ ker(rs). For each i ∈ I, let
ai = 〈ξ, [Li]〉 and let P =

∑
i∈I ai[Pi]. Then from the discussion above, using Lemma 8.1,

〈χs(P )− ξ, Li〉 = 0

for all i ∈ I.
Now let L be a simple R-module that is not in Cs. From the classification of simple

R-modules, Theorem 7.3, [L] = yθ∗s for some y ∈ f∗. Therefore

〈χs(P )− ξ, [L]〉 = 〈χs(P )− ξ, yθ∗s〉 = 〈rs(χs(P )− ξ), y〉.
Since we’ve already shown that χs(P ) ∈ ker(rs) and ξ is chosen to be in ker(rs), this pairing
is zero. Since the Hom-pairing between f and f∗ is non-degenerate, we have therefore shown
that χs(P )− ξ = 0, proving that ξ ∈ im(χs) = 0, as required. �

The above theorem establishes a sense in which sC and Cs categorify ker(sr) and ker(rs).
Our main result is the following theorem, which we prove at the end of this section.

Theorem 8.3. Suppose our quiver Hecke algebra is simply laced, of finite or affine type. If
we are in affine type, assume furthermore that the ground field is of characteristic zero. Then
there is a monoidal equivalence of categories sC ∼= Cs which decategorifies to Lusztig’s braid
group automorphism.

The restriction to simply laced is due to the generality of [ALLR]. The further restrictions
are needed since we rely on the theory of standard modules, developed in [BKM] (building
on [McN15]) in finite type and in [McNb] in affine type over a field of characteristic zero.

In finite type ADE and in characteristic zero, Kato [K1] has proved this equivalence geo-
metrically. In finite type ADE and in all characteristics there is a geometric proof in [McNa]
using results of Maksimau [M2]. The paper of Xiao and Zhao [XZ] provides an interpretation
of Ts in terms of perverse sheaves in all symmetric types, again in characteristic zero, which
is subsequently generalised to all symmetrisable types in [Zha]. Kato [K2] has shown how to
use this to define Ts geometrically in characteristic zero in all symmetric types. A geomet-
ric approach to the monoidality of this functor, restricted again to characteristic zero, is in
[K2, McNc].

Choose a convex order s≺ which has αs as its largest element (which always exists). From

s≺ we can obtain another convex order ≺s, defined by
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• αs ≺s β for all β ∈ Φ+ \ {αs}
• β ≺s γ if sβ s≺ sγ for all β, γ ∈ Φ+ \ {αs}

These convex orders induce two families of standard modules in R-mod, we denote them by

s∆(λ) and ∆s(λ).

Proposition 8.4. Let µ be a root partition whose αs component is zero, and let λ ∈ P . Then

Ts(ιλ(s∆(µ))) ∼= ιsλ(∆s(sµ))

Proof. Since Ts is monoidal and additive, by Proposition 7.1 it suffices to prove this for root
modules. We will proceed by induction on the height of the root. First consider a root module
for a minimal root - we define these to be roots α ∈ Φ+ \ {αs} that cannot be expressed in
the form β+γ with β, γ ∈ Φ+ \{αs}. The proposition in this case follows from Theorem 4.2.

Now suppose that α ∈ Φ+ \ {αs} is not minimal. Consider the short exact sequence from
Lemma 7.5.

0→ q−β·γs∆(β) ◦ s∆(γ)
fβγ−−→ s∆(γ) ◦ s∆(β)→ s∆(α)⊕m → 0.

Here β and γ are other roots in Φ+ \ {αs} with α = β + γ (they are a minimal pair in the
parlance of earlier works on quiver Hecke algebras). This identifies s∆(α)⊕m as the cone of
a nonzero morphism fβγ from q−β·γs∆(β) ◦ s∆(γ) to s∆(γ) ◦ s∆(β). Recall from Lemma

7.5 that HomR(q−β·γs∆(β) ◦ s∆(γ), s∆(γ) ◦ s∆(β)) ∼= k. By Theorem 6.1, ιλ(fβγ) spans the
one-dimensional space

HomK(U̇)(iλ(q−β·γs∆(β) ◦ s∆(γ)), iλ(s∆(γ) ◦ s∆(β)).

Now apply Ts. By inductive hypothesis, Ts(ιλ(s∆(β)) ∼= ιsλ(∆s(sβ)) and Ts(ιλ(s∆(γ)) ∼=
ιsλ(∆s(sγ)). Since Ts is an equivalence, Ts(ιλ(fβγ)) spans the one-dimensional space

HomK(U̇)(ιsλ(qβ·γ∆s(sβ) ◦∆s(sγ)), ιsλ(∆s(sγ) ◦∆s(sβ))). (8.1)

By Lemma 7.5 again, there is a short exact sequence

0→ q−β·γ∆s(sβ) ◦∆s(sγ)
f ′−→ ∆s(sγ) ◦∆s(sβ)→ ∆(sα)⊕m → 0,

and a similar argument shows that ιsλ(f ′) also spans the one dimensional space in (8.1).
Therefore Ts(ιλ(fβγ)) and ιsλ(f ′) are nonzero multiples of each other, hence their cones are
isomorphic. This proves that Ts(ιλ(s∆(α))⊕m ∼= ιsλ(∆s(sα))⊕m and we can take direct
summands to conclude that Ts(ιλ(s∆(α)) ∼= ιsλ(∆s(sα)), as required. �

Lemma 8.5. Identify sC and Cs with their essential images under iλ and isλ. Let M be a
module in sC with a ∆-flag. Then Ts(M) lies in Cs and has a ∆-flag.

Proof. We proceed by induction on the length of the ∆-flag of M . When this length is 1,
this is Proposition 8.4. So now suppose that M has a ∆-flag of length greater than one and
this result is known for all modules with a smaller ∆-flag than that of M .

Then there is a short exact sequence

0→M ′ →M →M ′′ → 0

where M ′ and M ′′ have a ∆-flag of smaller length than that of M .
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The module M is identified with the cone of a morphism from M ′′[−1] to M ′. Since Ts
is exact, Ts(M) is the cone of a morphism from Ts(M ′′)[−1] to Ts(M). By induction on the
length of a ∆-flag, we know that Ts(M ′′) and Ts(M) are in Cs. Therefore they are identified
with a complex of projective R-modules, hence the same is true of Ts(M) since it appears as
a cone. Now take the long exact sequence in homology associated to the triangle

Ts(M ′′)→ Ts(M)→ Ts(M ′)
+1−−→ .

Since the homologies of Ts(M ′′) and Ts(M ′) are known to be concentrated in degree zero by
our inductive hypothesis, the same is true of Ts(M). Hence Ts(M) is the class of a module,
and appears as an extension of two modules with ∆-flags. Therefore it lies in Cs and has a
∆-flag. �

Consider a projective P in sC. In the proof of Lemma 8.1, we have shown that P has a
∆-flag. Thus by Lemma 8.5, Ts(P ) lies in Cs.
Lemma 8.6. Let P be projective in sC and let ∆ be a standard module in Cs. Then
Exti(Ts(P ),∆) = 0 for all i > 0.

Proof. There are isomorphisms

Exti(Ts(P ),∆)⊗ Bλ ∼= Exti(P, T −1s (∆))⊗ Bsλ.
As T −1s sends standard modules to standard modules, this is zero by Lemma 8.1. �

Lemma 8.7. Let Q be a finitely generated R-module and let d be a non-negative integer.
Suppose that Extd(Q,L) = 0 for all simple R-modules L. Then Extd(Q,M) = 0 for all
finitely generated modules M .

Proof. Let P • be a projective resolution of Q. Since R is Noetherian, we can, and do, choose
this resolution so that each term is finitely generated. For an integer e, let M(e) be the
submodule of M generated by all Mn with n ≥ e. Since R is Laurentian and P d is finitely
generated, there are no chain maps from P • to M(e) for sufficiently large e. Therefore
Extd(Q,M(e)) = 0 for such e. Similarly, we can simultaneously ensure that e is large enough
that Extd−1(Q,M(e)) = 0. This implies that Extd(Q,M) ∼= Extd(Q,M/M(e)). As M is
finitely generated and R is Laurentian, the module M/M(e) is finite dimensional and a
simple induction on the length of a Jordan-Holder series shows that Extd(Q,N) = 0 for any
finite dimensional module N . �

Lemma 8.8. Let P be a projective object in sC. Then Ts(P ) is projective in Cs.
Proof. It suffices to show that Ext1(Ts(P ), L) = 0 for every simple module L in Cs.

We will do this by showing that Extd(Ts(P ), L) = 0 for every simple module L and every
integer d ≥ 1 by a decreasing induction on d.

Since Ts(P ) has a ∆-flag, it has finite projective dimension. Therefore this result is true
for all sufficiently large d which establishes the base case of the induction.

For our inductive hypothesis, let us now assume that Extd+1(Ts(P ), L) = 0 for every simple
module L.

Let L be a simple module in Cs. and consider the short exact sequence

0→ K → ∆→ L→ 0
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where ∆ is the unique standard module surjecting onto L.
Apply Hom(Ts(P ),−) and consider the corresponding long exact sequence of Ext groups.

By Lemma 8.6, we obtain an isomorphism

Extd(T (P ), L) ∼= Extd+1(T (P ),K).

Note that K is finitely generated since R is Noetherian. By Lemma 8.7 and the inductive
hypothesis, Extd+1(T (P ),K) = 0. This completes the inductive step of the proof and hence
completes the proof of the Lemma. �

Proof of Theorem 8.3. Identify sC and Cs with their essential images under the faithful func-
tors iλ and isλ. Let P be projective in sC. Then by Lemma 8.8, there is a projective Q in
Cs such that Ts(iλ(P )) ∼= isλ(Q). Since Ts is an equivalence, by Theorem 6.1, there is an
induced isomorphism

EndR(P )⊗ Bλ ∼= EndR(Q)⊗ Bsλ.
As Ts also induces an isomorphism Bλ ∼= Bsλ, we get an induced isomorphism

EndR(P ) ∼= EndR(Q).

By Morita theory, an abelian category is governed by the endomorphism algebra of a
projective generator. Since T −1s induces an analogous isomorphism, it must be that Ts
induces an equivalence of categories sC ∼= Cs, as required.

The fact that Ts decategorifies to Lusztig’s braid group action follows from the fact it is
monoidal and the identities (4.1) and (4.2). �

9. restriction of categorical representations

We remind the reader that Φ is simply laced, and of finite or affine type.

Definition 9.1. A face is a decomposition of Φ+ into three disjoint subsets

Φ+ = F+ t F t F−

such that, for all x ∈ spanR≥0
F :

(1) If y ∈ spanR≥0
F+ is non-zero, then x+ y /∈ spanR≥0

(F− ∪ F ).

(2) If y ∈ spanR≥0
F− is non-zero, then x+ y /∈ spanR≥0

(F+ ∪ F ).

We often abuse notation and use F to refer to the entire face.

Example 9.2. Suppose Φ+ is of type A
(1)
n and let 1 ≤ e ≤ n be an integer. Let λ :RΦ+−→R

be a generic linear map subject to the conditions

λ(α0) = λ(α1) = · · · = λ(αe−1) = 0 = λ(αe + αe+1 + · · ·+ αn)

and λ(αe) < · · · < λ(αn).

Then F = λ−1(0) ∩ Φ+ is a face of type A
(1)
e .

We choose this example because it appears in [M1] and [RW]. Also it is not conjugate to
a standard face under the Weyl group so the 2-functor of Theorem 9.4 cannot be obtained
as a composition of reflection functors Ts.

Here is an alternative viewpoint on faces:
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Theorem 9.3. [TW, Lemma 1.10] For any face Φ+ = F+ t F t F−, there is a sequence of
linear functionals {λn}n∈N on RΦ such that

(1) F ⊂ ker(λn) for all n,
(2) For all α ∈ F+, λn(α) > 0 for all n� 0,
(3) For all α ∈ F−, λn(α) < 0 for all n� 0.

Fix a face F of Φ. Let ∆F be the set of positive real roots in F which are not sums of other
positive roots in F . Let ΦF be the corresponding root system whose simple roots are ∆F .
Since Φ is at worst of affine type, then as discussed in [TW, §3.2], ΦF is a product of finite
and affine root systems (although imaginary root spaces may decompose, see [TW, Remark
3.16] for an example).

Under our standing assumptions on Φ, namely that it is either Φ of finite type, or of
symmetric affine type and the field k is of characteristic zero, then to each face F , a quiver
Hecke algebra RF is constructed in [MT]. This is a quiver Hecke algebra for the face root
system ΦF . There is a choice of polynomials Qij to define this face quiver Hecke algebra
which is implicitly determined in [MT]. With the same choice of parameters, we can define
the face 2-category UF .

This construction is actually more general than as stated in the paragraph above, see [MT,
Assumption 3.11] for a precise statement. The restrictions on Φ and the characteristic of k
ensure that a theory of standard modules exists. However, this construction does not require
the full theory of standard modules, but only for the theory of the root modules ∆(α) for
each α ∈ ∆F . Such a theory of standard modules exists for the face of Example 9.2 in all
characteristics, as mentioned in [MT, Assumption 3.11]. Therefore we can meaningfully talk
about UF and its offshoots in this example.

We now define a 2-functor from UF to Kb(U̇). Since UF is defined by generators and
relations, to define this 2-functor, it suffices to give the image of each of the generators. We
check the relations in the proof of Theorem 9.4.

The root lattice PF of ΦF comes equipped with a natural map to P , which determines
what our 2-functor does on objects.

For α ∈ ∆F and λ ∈ PF , we send Fα1λ to iλ(∆(α)). We send Eα1λ to its biadjoint, and η
and ν to the corresponding adjunction maps.

The image of the 2-morphism τ is the image of the corresponding element of Hom(∆(α) ◦
∆(β),∆(β) ◦∆(α)) determined in [MT, Lemma 3.10]. The image of the 2-morphism x is the
image of the corresponding endomorphism of ∆(α) determined by [MT, Theorem 3.12].

Theorem 9.4. The above assignments define a 2-functor UF → Kb(U).

Proof. Since UF is given by a presentation, we have to check the defining relations hold.
We first make an observation about faces. Let (F−, F, F+) be a face. Suppose s ∈ S is

such that the corresponding simple root αs satisfies αs ∈ F−. Then we can define a new face

σs(F
−, F, F+) = (s(F−) \ {−αs}, s(F ), s(F+) t {αs}).

Conversely if αs ∈ F+ then there is a new face

σ∗s(F
−, F, F+) = (s(F−) t {αs}, s(F ), s(F+) \ {−αs}).
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In terms of the sequence of linear functionals {λn}n∈N from Theorem 9.3, both of these
constructions arise from the sequence {s(λn)}n∈N. If αs ∈ F , then applying s to each of the
functionals in this sequence does not change the face.

Suppose α ∈ ∆F . We can apply a sequence of transformations of the above type to
transform α into an element of S. By Proposition 8.4, the corresponding composition of Ts’s
will send Fs to ∆(α). We therefore conjugate by a composite of Rickard complexes, so the
one-colour relations must be preserved. This shows that the one-colour relations all hold.

The validity of the quiver Hecke relations is checked in [MT, Theorem 3.23]. It remains to
show that the image of a rightward crossing (3.6) with two different colours is invertible.

If the face is of affine type, Φ must be simply laced of affine type, hence every root is in the
W -orbit of α0, where α0 is the simple affine root and W is the Weyl group. Let α ∈ ∆F . Pick
w ∈ W such that wα = α0. Let {λn}n∈N be the sequence of linear functionals associated
to F from Theorem 9.3. We apply w to the sequence {λn}n∈N to get a new face related
by a sequence of reflection functors Ts and T −1s . Therefore we may assume without loss of
generality that any given root α ∈ ∆F is α0. So given two roots α, β ∈ ∆0, without loss of
generality α = α0. Then since α + β is a positive summand of δ and the coefficient of α0 in
δ is 1, there is no occurrence of α0 in β. Thus a projective resolution of ∆(β) by standard
projective modules has no occurrence of P0. So the map E0∆(β) → ∆(β)E0 as a map of
complexes consists of all rightward crossings. It is then clear that the inverse of this map of
complexes is the corresponding map with all leftward crossings.

If the face is of finite type then either F− or F+ is finite. Without loss of generality,
assume F− is finite. As in the one-colour case, we apply a finite number of transformations
σs to reduce to the case when F− is the empty set. Now there is a functional λ such that
λ(α) ≥ 0 for all α ∈ Φ+, and ker(λ)∩Φ+ = F . Then it is clear that F is a standard face, i.e.
arising from an inclusion J ⊂ I, and in this case the result is obvious. �

It is natural to make the following conjecture. It is not obvious from the results discussed
here since Kb(Kb(A)) 6∼= Kb(A) for a general additive category A.

Conjecture 9.5. This 2-functor from UF to Kb(U) extends to a faithful 2-functor from
Kb(UF ) to Kb(U).

Remark 9.6. In finite type the face 2-functors Kb(U̇F ) → Kb(U̇) are all compositions of the
equivalences Ts and T −1s , together with the inclusions of a face obtained from a subset of S,
and so in particular are faithful (the inclusions of these latter types of faces are faithful by
the nondegeneracy theorem).

As a consequence, any time U acts on a category A, we can restrict along the face to obtain
an action of UF on Kb(A). In special cases (such as those considered in [M1] and [RW]), we
actually get an action of UF on A. It would be interesting to have an elegant and practical
criterion to determine when this restricted action is an action on A instead of only an action
on Kb(A). In lieu of a beautiful criterion, we now state a necessary condition which is enough
to reconstruct the categorical restrictions of [M1, RW].

For all α ∈ ∆F , choose a projective resolution of ∆(α). For each indecomposable projective
appearing in a resolution except for those in homological degree zero, choose an inclusion
P ⊂ Pi as a direct summand. Write i = (i1, . . . , in). Then our criterion is, that for all
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weights λ and for all such i, that at least one of the categories

A(λ),A(λ+ i1), . . . ,A(λ+ i1 + · · ·+ in)

is zero.
This criterion works because it implies that for each generating 1-morphism of K(UF ),

there is an endofunctor of A inducing the same action on K(A).
This condition can be checked at the level of Grothendieck groups. For example, there is

a categorical action of ŝlp on the principal block of Rep (GLn;Fp) for n ≥ p, constructed in
[RW]. At the level of Grothendieck groups, this categorifies the n-th exterior power of the

natural representation of ŝlp on Cp ⊗ C[t, t−1].
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