
ON A BRAID GROUP ACTION

PETER J MCNAMARA

Abstract. We discuss some consequences of the braid group action on a categorified quan-
tum group. Results include a description of reflection functors for quiver Hecke algebras and
a theory of restricting categorical representations along a face.

1. Introduction

It is a classical construction to associate to any symmetrisable Cartan matrix a quantum
group Uq(g). We concern ourselves with a categorified version of this construction, where a
strict 2-category U is produced whose Grothendieck group is canonically identified with the
idempotented form of the corresponding quantum group.

This theory of a categorical quantum group originates with the work of Chuang and
Rouquier [CR08] who used the notion of a categorical sl2 action to construct interesting
derived equivalences. The generalisation to general g came in the work of Khovanov and
Lauda [KL10] and Rouquier [Rou12]. They give two different presentations of a 2-category
U , the equivalence of which was shown by Brundan [Bru].

The braid group acts by algebra automorphisms on the quantum group Uq(g). The starting
point of this paper is the lifting of this braid group action to a braid group action on the
homotopy category K(U) by autoequivalences Ts. This action was recently constructed by
[ALLR] under the assumption that the Cartan matrix is simply laced. In this paper we
explore the implications of the exitence of this action. The applications which we study all
require the theory of standard modules for KLR algebras. This theory was developed in
[BKM] in finite type and in [McNb] in affine type over a field of characteristic zero. The
necessary facts from this theory are all recalled when they are needed. We also prove that
these standard modules are compatible with these autoequivalences Ts in a precise way in
Proposition 7.2.

The first application is to the construction of reflection functors for KLR algebras. These
are functors which categorify the Satio reflection on the crystal B(∞), as well as Lusztig’s
braiding automorphism Ts, restricted to the positive part of the quantum group. These Ts
induce isomorphisms ker(sr) ∼= ker(rs) inside Uq(g)+. Both subspaces ker(sr) and ker(rs) are
categorified by a Serre subcategory of the category of quiver Hecke modules, which we denote
by sC and Cs respectively. We show how the autoequivalence Ts induces an equivalence of
the abelian categories sC and Cs.

This equivalence was obtained geometrically in finite simply laced type over a field of
characteristic zero in [K]. This was subsequently generalised to finite simply laced type in all
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characteristics in [McNa]. The related work of [XZ, Zha] provides a geometric incarnation of
Ts in all types but does not produce results of the same strength that we provide here.

The second application is to a theory of restricting a categorical representation. In [MT],
the notion of a face of a root system is introduced. Each face defines a root system and hence
there is a KLR algebra associated to that face, which we will call RF . The main result of
[MT] is the construction of a fully faithful functor from RF -mod to R-mod, whose essential
image is explicitly determined in terms of a subcategory of cuspidal modules if the face root
system is of finite type. In this paper we go beyond the results of [MT] and show that each
face induces a functor between the homotopy categories of categorified quantum groups. This
allows us to restrict a categorical action on a category C to a categorical action for the face
quantum group on the homotopy category K(C). In certain cases the restricted categorical
action is actually an action on C and we give a criterion for checking this.

2. The 2-category

Let Bλ be the commutative k-algebra freely generated by all bubbles.
[KL10, Definition 3.15] is a definition of nondegenerate.

Theorem 2.1 (Webster’s nondegeneracy theorem). [Web, Theorem A] Basis of Hom spaces
between products of Es and Fs is as large as possible. (i.e. U is nondegenerate)

Out of U , for ∗ ∈ {b,+,−, ∅} we construct a new 2-category K∗(U̇). Like U , its objects are

elements of P . For any two elements λ, µ ∈ P , the morphism category in K∗(U̇) is defined
to be

HomK∗(U̇)(λ, µ) = Kar(K∗(HomU (λ, µ)))

where Kar refers to taking the Karoubian envelope.

3. Summary of Necessary Results

In [ALLR], a triangulated autoequivalence of Kb(U̇) is constructed for each s ∈ S. We
denote by Ts the equivalence denoted T ′s,1 in that paper. It satisfies the following properties:

If s and t are connected by an edge, then

Ts(Ft1λ) = qFtFs1sλ → ♣FsFt1sλ, (3.1)

Ts(qFsFt1λ → ♣FtFs1λ) = Ft1sλ (3.2)

where the differential in each case is the downward crossing. The symbol ♣ denotes homo-
logical degree zero.

Theorem 3.1. [ALLR] Ts decategorifies to Ts.

4. Quiver Hecke Algebras

The KLR algebra R is the algebra generated by the upward strands, subject to the isotopy
and quiver Hecke relations.

For ν ∈ NI, let R(ν) be the subalgebra of R consisting of diagrams where the colours of
the strands add to ν.
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By placing strands next to each other there is a nonunital inclusion of algebras R(λ) ⊗
R(µ) ↪→ R(λ+ µ). There is thus a corresponding induction functor

Ind :R(λ)-mod×R(µ)-mod−→R(λ+ µ)-mod

written (M,N) 7→M ◦N , given by

M ◦N := R(λ+ µ)e⊗R(λ)⊗R(µ) (M ⊗N)

where e is the image of the unit under the algebra inclusion.
Let Pi1···in = R(i)e(i) = Pi1 ◦ · · · ◦ Pin . This is a projective R(i)-module.
There is the adjunction [McN15]

Exti(A,B ◦ C) ∼= Exti(ResA,C �B). (4.1)

5. The embeddings of categories

For each λ ∈ P , there is a functor

K−(R(ν)-pmod)
iλ−−→ HomK−(U̇)(λ, λ+ ν).

This functor sends the projective R(ν)-module Pi1···in to Fi1 · · · Fin1λ
These functors satisfy a compatibility between induction and composition.

K−(R(µ)-pmod)×K−(R(ν)-pmod) K−(R(µ+ ν)-pmod)

HomK−(U̇)(λ− ν, λ− µ− ν)×HomK−(U̇)(λ, λ− ν) HomK−(U̇)(λ, λ− µ− ν)

Ind

iλ−ν×iλ iλ

where the horizontal map along the last row is the composition in K−(U̇).
For each λ ∈ P , let Bλ be the endomorphism ring of the unit in the monoidal category

HomU (λ, λ). This space consists purely of bubbles. In degree zero, it is spanned by the
identity and in negative degrees, it is zero.

Theorem 5.1. Suppose X and Y are two objects in K−(R(ν))-pmod). Then there is an
isomorphism of graded vector spaces.

Hom(iλ(X), iλ(Y )) ∼= Hom(X,Y )⊗ Bλ.

Proof. Since X and Y are bounded above, we can choose bounded above chain complexes
P• and Q• for X and Y respectively such that each module Pi and Qi is a direct sum of
standard projective modules R(ν)ei.

Let {hj} be a basis of the space Bλ.
Let f• : iλ(P•)−→ iλ(Q•) be a morphism of chain complexes. We can express each fi in

the form fi =
∑

j gij ⊗ hj where each gij has no bubbles, i.e. comes from a morphism in

K−(R(ν)-mod).
That f• is a chain map is expressed in the identity∑

j

dgij ⊗ hj =
∑
j

gi+1,jd⊗ hj .
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By Webster’s nondegeneracy theorem, this implies that for each j, dgij = gi+1,jd. Thus,
the collection g•,j is a chain map in K−(R(ν)-pmod).

This shows that the map from Hom(X,Y ) ⊗ Bλ to Hom(iλ(X), iλ(Y )) is surjective. A
similar argument shows that if f is homotopic to zero, then this homotopy comes from
homotopies between each gij and zero. Therefore this map is injective also. �

Corollary 5.2. The functor iλ is faithful.

6. Standard modules

We summarise the current state of the theory of standard modules for quiver Hecke al-
gebras. This theory is currently known to exist in finite type in all characteristics and in
symmetric affine type when k is of characteristic zero. The references are [BKM] in the
former case and [McNb] in the latter.

Let Φ+ be the set of positive roots. A convex order on Φ+ is a preorder ≺ such that

• If S and T are two subsets of Φ+ such that s ≺ t for all s ∈ S and t ∈ T then

spanR≥0
S ∩ spanR≥0

T = {0},

• If s � t and t � s then s and t are proportional.

Let α ∈ Φ+. A representation M of R(α) is said to be semicuspidal (with respect to the
convex order ≺) if ResβγM 6= 0 implies that β is a sum of roots less than α and γ is a sum
of roots greater than α.

Let α be an indivisible root. An indecomposable projective object in the category of
semicuspidal R(α)-modules is called a root module. The grading shift on these root modules
is customarily normalised such that their heads are self-dual. For each indecomposable root
α, the number of root modules for α is equal to the dimension of the root space gα. In
particular, if α is a real root, there is a unique root module, which we call ∆(α).

We consider the standard modules introduced in [BKM] and [McNb]. These depend on
the convex order ≺ and are built out of root modules. The root modules corresponding to
real roots have already been introduced, these are the modules ∆(α). For the indivisible
imaginary root δ, we will call the modules denoted ∆(ω) in [McNb] root modules. These are
the projective modules in the category of cuspidal R(δ)-modules.

Standard modules are naturally indexed by root partitions. A root partition is a sequence
λ = (αn1

1 , · · · , α
nl
l ) where α1 � · · · � αl are indivisible roots, each ni is a positive integer

unless αi = δ, in which case it is a collection of partitions. To each term αnii a standard

module ∆(αi)
(ni) is constructed. If αi is real then ∆(αi)

◦ni is a direct sum of ni! copies of

the module ∆(αi)
(ni) with grading shifts. If αi is imaginary then ∆(αi)

(ni) is a summand of
a product of certain modules ∆(ω) of weight δ in CF ; see [McNb] for the details (where this
module is denoted ∆(λ)). The standard module is then defined to be the indecomposable
module

∆(λ) = ∆(α1)
(n1) ◦ · · · ◦∆(αl)

(nl).

In [BKM] and [McNb] homological properties of these modules are developed which justify
the use of the name standard.
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If α is a real root, let L(α) be the head of ∆(α) and let L(αn) = L(α)◦n. If λ is a
multipartition, let L(λ) be the head of D(λ). These modules are all simple.

Let λ = (αn1
1 , · · · , α

nl
l ) be a root partition. Define the proper costandard module

∇(λ) = L(αnll ) ◦ · · · ◦ L(αn1
1 ).

Theorem 6.1. The simple modules for R(ν) are classified up to isomorphism and grading
shift by root partitions. The simple module L(λ) corresponding to the root partition λ is the
socle of ∇(λ). Furthermore every other simple subquotient L(µ) of ∇(λ) has λ ≺ µ in the
lexicographical order on root partitions.

Proposition 6.2. [McNb, Proposition 24.3] Let ∆ be a standard module and ∇ be a proper
standard module. Then for i > 0,

Exti(∆,∇) = 0.

Lemma 6.3. Let ∆ be a root module. Then there are root modules ∆β and ∆γ and a nonzero
q-integer m such that there is a short exact sequence

0→ q−β·γ∆β ◦∆γ
fβγ−−→ ∆γ ◦∆β → ∆⊕m → 0.

If wt(∆) is not minimal in Φ+ \ {αs}, then ∆β and ∆γ can be chosen to be in Φ+ \ {αs}.
Furthermore fβγ spans Hom(q−β·γ∆β ◦ ∆γ ,∆γ ◦ ∆β) and HOM(q−β·γ∆β ◦ ∆γ ,∆γ ◦ ∆β) is
concentrated in nonnegative degrees.

Proof. In finite type, this is [BKM, Theorem 4.10]. In symmetric affine type, this is [McNb,
Lemma 16.1] if wt(∆) is real and [McNb, Theorem 17.1] if wt(∆) is imaginary. The statement
about Hom(q−β·γ∆β ◦∆γ ,∆γ ◦∆β) being one-dimensional is not explcitly mentioned in these
references, but is clear from the proofs. Note that we can replace Φ+\{αs} by any interval. �

Proposition 6.4. Every standard module is obtained from a root module by a process of
induction and taking direct summands.

Remark 6.5. We expect that if a theory of standard modules is developed in affine type over
a field of positive characteristic, it will not satisfy Proposition 6.4.

Definition 6.6. A module M is said to have a ∆-flag if there exists a filtration by submodules

M = Mn ⊃Mn−1 ⊃ · · · ⊃M1 ⊃M0 = 0

such that each subquotient Mi+1/Mi is a standard module.

Lemma 6.7. [BKM, Theorem 3.13] A finitely generated module M has a ∆-flag if and only
if Ext1(M,∇) = 0 for all proper costandard modules ∇.

Pick a convex order s≺ which has αs as its largest element. From s≺ we can obtain another
convex order ≺s, by

• αs ≺s β for all β ∈ Φ+ \ {αs}
• β ≺s γ if sβ s≺ sγ for all β, γ ∈ Φ+ \ {αs}

These convex orders induce two families of standard modules in R-mod, we denote them by

s∆(λ) and ∆s(λ).
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Lemma 6.8. Suppose P is projective in sC (or in Cs). Then ExtiR(P,M) = 0 for all R-
modules M in sC (respectively Cs) and i > 0.

Note that the Ext group is computed in the category of R-modules rather than in sC (or
Cs), so this result is not a tautology for i > 1.

Proof. We consider the case where P is projective in sC, the other case following similarly.
First we prove that P has a ∆-flag. By Lemma 6.7 it suffices to prove that Ext1(P,∇) = 0
for all proper costandard modules ∇. If λ is a root partition with λ(αs) = 0, then ∇(λ) ∈ sC.
So in this case Ext1(P,∇(λ)) = 0 as P is projective in sC. If λ(αs) 6= 0, then ∇(λ) ∼= X ◦ Ls
for some X. Then by (4.1),

Ext1(P,∇(λ)) ∼= Ext1(Resαs,ν−αs P,Ls ⊗X).

Since P ∈s C, this restriction is zero and hence this Ext group is zero.
Therefore we have succeeded in showing that Ext1(P,∇) = 0 for all proper costandard

modules ∇, hence P has a ∆-flag. By Propsition 6.2, this implies that Exti(P,∇) = 0 for all
proper costandard modules ∇ and i > 0.

We now turn our attention to the statement that ExtiR(P,M) = 0 for all R-modules M in

sC.
Without loss of generality we may assume M is simple. Then M injects into a proper

costandard module ∇. Let Q be the quotient ∇/M . Then every simple subquotient L of Q
satisfies L ≺M .

By induction on the partial preorder ≺, we may assume Exti(P,L) = 0 for all L ≺M and
i > 0. Hence Exti(P,Q) = 0 for i > 0. Now apply Hom(P,−) to the short exact sequence

0→M → ∇→ Q→ 0.

The resulting long exact sequence implies that Exti(P,M) = 0 for i ≥ 2.
This leaves only the i = 0 case, but Ext1(P,M) vanishes since P is projective in sC and

M is in sC. �

7. Reflection Functor

Let R be a quiver Hecke algebra and s ∈ S. Let se be the sum of all generating idempotents
with first strand coloured s. Let es be the sum of all generating idempotents with last
strand coloured s. Let sC (respectively Cs) be the full subcategory of R-modules on which se
(respectively es) acts by zero.

Equivalently

sC = R/〈se〉-mod and Cs = R/〈es〉-mod.

Fix s ∈ S. For each s, we have inclusions of full subcategories

sC, Cs ⊂ R-mod ⊂ K−(R-pmod).

If our Cartan datum is of finite type then R has finite global dimension by [McN15, Theorem
4.7]. So in this case, the essential image lies in the bounded homotopy category Kb(R-pmod).
In general, the standard modules have finite projective dimension so lie in Kb(R-pmod), while
R in general has infinite global dimension.
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Theorem 7.1. Suppose our quiver Hecke algebra is simply laced, of finite or affine type. If
we are in affine type, assume furthermore that the ground field is of characteristic zero. Then
there is an equivalence of categories sC ∼= Cs which decategorifies to Lusztig’s braid group
automorphism.

The restriction to simply laced is due to the generality of [ALLR]. The further restrictions
are needed since we rely on the theory of standard modules, developed in [BKM] (building
on [McN15]) in finite type and in [McNb] in affine type over a field of characteristic zero.

In finite type ADE and in characteristic zero, Kato [K] has proved this equivalence geomet-
rically. In finite type ADE and in all characteristics there is a geometric proof in [McNa] The
paper of Xiao and Zhao [XZ] provides an interpretation of Ts in terms of perverse sheaves
in all symmetric types which is subsequently generalised to all symmetrisable types in [Zha].
Their results are not as strong as the equivalence of categories in Theorem 7.1.

Proposition 7.2. For λ whose αs component is zero,

Ts(s∆(λ)) ∼= ∆s(s(λ)).

Proof. Since Ts is monoidal and additive, by Proposition 6.4 it suffices to prove this for root
modules. We will proceed by induction on the height of the root. First consider a root
module for a minimal root - these are roots α ∈ Φ+ \{αs} that cannot be written in the form
β + γ where β and γ are also in Φ+ \ {αs}. The proposition in this case follows from (3.1)
and (3.2).

Now suppose that ∆ is a root module for s≺ that is not minimal. Consider the short exact
sequence from Lemma 6.3.

0→ q−β·γ∆β ◦∆γ
fβγ−−→ ∆γ ◦∆β → ∆⊕m → 0.

So ∆⊕m is the cone of a nonzero morphism fβγ from q−β·γ∆β ◦∆γ to ∆γ ◦∆β. Recall that

HomR(q−β·γ∆β ◦∆γ ,∆γ ◦∆β) ∼= k. By Theorem 5.1, ιλ(fβγ) spans the space

HomK(U)(iλ(q−β·γ∆β ◦∆γ), iλ(q−β·γ∆β ◦∆γ)).

By induction on the height of ∆, Ts(∆)⊕m is the cone of Ts(fβγ) which is the unique up

to scalar nonzero morphism in HomR(q−β·γTi(∆β ◦∆γ), Ti(∆γ ◦∆β))). Hence Ti(∆)⊕m is as
desired and Ti(∆) is standard. �

Lemma 7.3. Identify sC and Cs with their essential images under iλ and isλ. Let M be a
module in sC with a ∆-flag. Then Ts(M) lies in Cs and has a ∆-flag.

Proof. We proceed by induction on the length of the ∆-flag of M . When this length is 1,
this is Proposition 7.2. So now suppose that M has a ∆-flag of length greater than one and
this result is known for all modules with a smaller ∆-flag than that of M .

Then there is a short exact sequence

0→M ′ →M →M ′′ → 0

where M ′ and M ′′ have a ∆-flag of smaller length than that of M .
The module M is identified with the cone of a morphism from M ′′[−1] to M ′. Since Ts

is exact, Ts(M) is the cone of a morphism from Ts(M ′′)[−1] to Ts(M). By induction on the
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length of a ∆-flag, we know that Ts(M ′′) and Ts(M) are in Cs. Therefore they are identified
with a complex of projective R-modules, hence the same is true of Ts(M) since it appears as
a cone. Now take the long exact seqence in homology associated to the triangle

Ts(M ′′)→ Ts(M)→ Ts(M ′)
+1−−→ .

Since the homologies of Ts(M ′′) and Ts(M ′) are known to be concentrated in degree zero by
our inductive hypothesis, the same is true of Ts(M). Hence Ts(M) is the class of a module,
and appears as an extension of two modules with ∆-flags. Therefore it lies in Cs and has a
∆-flag. �

Consider a projective P in sC. Since we have shown that P has a ∆-flag and that standard
modules get sent to standard modules, we know that Ts(P ) lies in Cs.

Lemma 7.4. Let P be projective in sC and let ∆ be a standard module in Cs. Then
ExtiR(Ts(P ),∆) = 0 for all i > 0.

Proof. There are isomorphisms

ExtiR(Ts(P ),∆)⊗ Bλ ∼= ExtiR(P, T −1s (∆))⊗ Bsλ.
As T −1s sends standard modules to standard modules, this is zero by Lemma 6.8. �

Lemma 7.5. Let P be a projective object in sC. Then Ts(P ) is projective in Cs.

Proof. Let L be a simple module in Cs and consider the short exact sequence

0→ K → ∆→ L→ 0.

Apply Hom(Ts(P ),−) and consider the corresponding long exact sequence of Ext groups. By
Lemma 7.4, for i > 0, we obtain an isomorphism

Exti(T (P ), L) ∼= Exti+1(T (P ),K).

As Ts(P ) has a ∆-flag and R is Noetherian, Ts(P ) is finitely presented. Thus for any simple
module M , there are only a finite number of integers d for which Exti(∆, qdM) 6= 0.

All simple subquotients of K are less than L or a positive grading shift of L. We can induct
on L and its grading shift to show that these Ext groups vanish, using the observation in the
previous paragraph as the base case for the induction. �

Proof of Theorem 7.1. Identify sC and Cs with their essential images under the faithful func-
tors iλ and is(λ). Let P be projective in sC. Then by Lemma 7.5, there is a projective Q
in Cs such that Ts(iλ(P )) ∼= isλ(Q). Since Ts is an equivalence, by Theorem 5.1, there is an
induced isomorphism

EndR(P )⊗ Bλ ∼= EndR(Q)⊗ Bsλ .
As Ts also induces an isomorphism Bλ ∼= Bsλ , we get an induced isomorphism

EndR(P ) ∼= EndR(Q).

An abelian category is governed by the endomorphism algebra of a projective generator.
Since T −1s induces an analogous isomorphism, it must be that Ts induces an equivalence of
categories sC ∼= Cs, as required. �
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8. restriction of categorical representations
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