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Abstract. We describe an algorithm which pattern embeds, in the sense of Woo–Yong, any
Bruhat interval of a symmetric group into an interval whose extremes lie in the same right
Kazhdan–Lusztig cell. This apparently harmless fact has applications in finding examples
of reducible associated varieties of sln-highest weight modules, as well as in the study of W -
graphs for symmetric groups, and in comparing various bases of irreducible representations
of the symmetric group or its Hecke algebra. For example, we are able to systematically
produce many negative answers to a question from the 1980s of Borho–Brylinski and Joseph,
which had been settled by Williamson via computer calculations only in 2014.
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1 Introduction

Let F ln be the variety of complete flags in Cn. For each permutation w ∈ Sn, the Schubert
variety Xw is a closed subvariety of F ln consisting of flags which intersect a fixed flag in a par-
ticular way prescribed by w – see (3.1) for the precise definition. The Bruhat order on Sn is
defined by x ≤ y if Xx ⊆ Xy.

Right, left and two-sided cells were introduced by Kazhdan and Lusztig in their seminal
paper [KL] in order to construct representations of the Hecke algebra associated to a Coxeter
group W . In general, cells are equivalence classes on W defined using the Kazhdan–Lusztig
basis of the Hecke algebra. When W is a symmetric group, there is a simple combinatorial
description in terms of the Robinson–Schensted correspondence: namely that two permutations
belong to the same right, left, two-sided cell respectively if and only if their P symbols coincide,
Q symbols coincide, their P (or, equivalently, Q) symbols have the same shape.

The key result of this paper is the following:

Theorem 1.1. Let x, y ∈ Sn with x ≤ y. Then, there exist N ≥ n, and two permutations
v, w ∈ SN with v ≤ w such that

� v and w belong to the same right cell;

� the singularity of Xw at v is smoothly equivalent to the singularity of Xy at x.

The permutations v, w of the above theorem are obtained from x and y by an explicit algo-
rithm, described in Section 2. Each step of the algorithm produces an interval pattern embedding
(see Definition 3.1), which, by results of Woo–Yong [WY], induces smooth equivalences.
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As a consequence, any possible behaviour of invariants of Schubert variety singularities (e.g.,
Kazhdan–Lusztig polynomials, their positive characteristic analogues, decomposition numbers
of perverse sheaves, etc.) can appear within a single right cell. An analogous statement holds
for left cells. Any of these statements imply the same result for two-sided cells.

Historically there had been some hope that the singularity of a Schubert variety Xw at
a point v with v and w in the same cell would be better behaved than general singularities of
Schubert varieties. Our work shows this not to be the case. An example of this hope is Borho–
Brylinski and Joseph’s conjecture from the 1980s that the associated variety of an sln-module
would be always irreducible [BB, Jo]. Such a question was settled only in 2014 by Williamson
in [W2]. For the moment, we just want to mention that the answer provided in [W2] is obtained
by using Howlett and Nguyen’s software [HN] for computing W -graphs in MAGMA [BCP]. Thanks
to our main result, this is now a consequence of the known reducibility of type A characteristic
varieties. We discuss this in greater detail in Section 4.1.

In Sections 4.2 and 4.3 two further applications of Theorem 1.1 are presented. The first one
deals with the study of edge weights in W -graphs for symmetric groups and the so-called 0-1
conjecture, which would have implied that all the weights are either 0 or 1. Thanks to [MW]
the conjecture was already known to be false, but we obtain in Section 4.2 a counterexample
which does not come from computer calculations. The last application we discuss is about the
comparison of several Specht module bases – the Springer basis, the Goldie rank basis, the
Kazhdan–Lusztig basis and the p-Kazhdan–Lusztig bases for each prime p (see Section 4 for
more details). Our approach allows us to transfer known examples of singularities of Schubert
varieties into a single cell and thus exhibit many examples where these bases differ. In fact,
thanks to the torsion explosion phenomenon from [WKM] we know that there are infinitely
many such examples, as explained in Section 4.3.

2 Robinson–Schensted correspondence

The Robinson–Schensted correspondence is a bijection between Sn and pairs of standard tab-
leaux of the same shape with n boxes. If w ∈ Sn, we write (P (w), Q(w)) for the corresponding
pair of tableaux. The P symbol P (w) is obtained by successively performing n column insertions
into the empty tableau, with numbers w(n), w(n − 1), . . . , w(1) in that order. The equivalence
of this with the more familiar row insertion definition follows from [S, Lemma 7.23.15]. The Q
symbol Q(w) is obtained by the recording the cell added at each insertion step: after adding the
i-th cell to P (w), one adds a cell with content i in the same position as the new cell in P (w).

Here, and in the rest of the paper, we use the one line notation for permutations: we represent
w ∈ Sn as [w1 . . . wi . . . wn], meaning that wi = w(i) for any 1 ≤ i ≤ n.

Example 2.1. If w = [3142] ∈ S4, the (column) insertion procedure produces the following two
sequences of tableaux, and hence the P and Q symbols:

2 ,
2
4
, 1 2

4
, 1 2

3 4
= P (w), 1 ,

1
2
, 1 3

2
, 1 3

2 4
= Q(w).

Left and right cells are equivalence classes on a Coxeter group defined in terms of Kazhdan–
Lusztig polynomials by Kazhdan and Lusztig (cf. [KL] after Theorem 1.3). We omit the original
definition here, as we only deal with the symmetric group case where a combinatorial charac-
terisation exists. The following is [A, Theorem A] or [GM, Fact 8], and is originally from [KL,
Section 5]. It gives a characterisation of left and right cells in the symmetric group.

Theorem 2.2. Two permutations x and y in Sn are in the same right (respectively left) cell if
and only if P (x) = P (y) (respectively Q(x) = Q(y)).
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Two elements x and y of a Coxeter group are in the same left cell if and only if x−1 and y−1

are in the same right cell. For a standard tableau T and an entry s of T , we denote by cT (s) the
column index of the entry. For example if T = P (w) from Example 2.1, then cT (1) = cT (3) = 1
and cT (2) = cT (4) = 2.

Lemma 2.3. Let T be a standard tableau, and let s be an entry of T . Let r be such that no
entries of T lie in the interval (r, s) and let k ≤ r−s be a positive integer. Choose k−1 integers
r < r1 < · · · < rk−1 < s. Let T ′ be the tableau obtained from T by column inserting rk−1, . . . , r1.
Then

1) cT ′(ri) = i and cT ′(s) = m, where m = max{cT (s), k},
2) if s′ is an entry of T such that s′ > s, then cT ′(s

′) = cT (s′) or cT ′(s
′) ≤ m + n, where m

is as before and n is the number of entries in T in [s, s′).

Proof. By induction on t, we show that if we column insert rk−1, . . . , rk−t, then

� rk−t+i lies in the (i+ 1)-st column for 0 ≤ i < t,

� s lies in the m-th column, for m = max{cT (s), t+ 1}.

The base case t = 0 is tautologically true. Now suppose we have inserted rk−1, . . . , rk−t+1, in
accordance with the inductive hypothesis. After these insertions, s will be placed in column
max{cT (s), t}. When we column insert rk−t, any rk−t+i bumps out rk−t+i+1 from the i-th
column. In particular, rk−1 is placed in the t-th column and s gets bumped out if and only if
max{cT (s), t} = t, that is cT (s) ≤ t. This proves the first part of the lemma.

We now prove the second statement by induction on n. Let s1 < · · · < sn−1 be the elements
of (s, s′) that lie in T . During the column insertions s′ can be bumped out only by the entries
between r and s′. By the previous part of this lemma, the entries r1, . . . , rk−1, s lie in the first m
columns of T ′, and hence can bump s′ out from its box only if cT (s′) ≤ m and none of the entries
s1, . . . , sn−1 appear in the first m columns. If this is the case, cT ′(s

′) ≤ m+1. Clearly, the entries
s1, . . . , sn−1 can bump s′ out of its box only if they move. Hence, assume that s′ gets bumped
out from its box the first time by an si, then s′ will always be bumped out by si, unless it lands
on a column which contains sj for some j. If this is the case, then s′ stays on that column. We
conclude that cT ′(s

′) ≤ cT ′(si) + 1, and hence the statement follows by induction. �

Let x ∈ Sn and v ∈ SN (for some n ≤ N). We say that the pattern of v in the last n positions
is x if it holds that v(N − n+ i) < v(N − n+ j) if and only if x(i) < y(j) for all 1 ≤ i < j ≤ n.

Thanks to the first part of the previous lemma, we are now able to prove the following central
result.

Theorem 2.4. Given x, y ∈ Sn, there exist v, w ∈ SN for some N ≥ n with P (v) = P (w),
v(i) = w(i) for i ≤ N − n and with the pattern of v and w in the last n positions being the
permutations x and y.

Proof. Let k be the largest integer such that P (x) and P (y) have all entries less than or equal
to k in the same place. (If P (x) = P (y) we set k = n.) We perform an induction on the value
of n− k, the case n− k = 0 being trivial. Define t by

t = max{cP (x)(k + 1), cP (y)(k + 1)} − 1.

Let n′ = n+ t and define x′, y′ ∈ Sn′ by

x′(i) =


k + i if i ≤ t,
x(i− t) if i > t and x(i− t) ≤ k,
x(i− t) + t if i > t and x(i− t) > k,

(2.1)

with y′ defined similarly from y.
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By the description of P in terms of column insertion, P (x′) and P (y′) are obtained by inserting
the numbers k+t, k+t−1, . . . , k+1, into the tableau obtained from P (x) and P (y) by adding t
to all entries greater than k. By Lemma 2.3(1), P (x′) and P (y′) agree for all entries less than
or equal to k + t+ 1 (by the choice of t).

Let k′ be defined from x′ and y′ analogously to the definition of k. Then n′ − k′ ≤ (n+ t)−
(k+ t+1) < n−k. So by induction there exists v and w with P (v) = P (w) and the pattern of v
and w in the last n′ positions being the permutations x′ and y′. Since the patterns of x′ and y′

in the last n positions are those of x and y respectively, these v and w satisfy the conditions of
the theorem, completing the proof. �

Example 2.5. If x = [21654387] and y = [62845173], then the proof outputs the pair v =
[895621a743cb] and w = [8956a2c471b3], where a = 10, b = 11, c = 12. This example involves
two invocations of Lemma 2.3.

We choose this example because the singularity of Xy at x is the Kashiwara–Saito singularity
[KS, Example 8.3.1] and to point out that the pair v, w ∈ S12 that we obtain is different from
the permutations chosen in [W2, Section 3.5]. The relevance of this example will be discussed
in more detail in Section 4.1.

Proposition 2.6. In Theorem 2.4 above, we can always take N ≤ n(n+ 1)/2.

Proof. The inductive proof of Theorem 1.1 gives an algorithm for constructing u and v from x
and y. It produces a sequence of permutations {xi}, {yi} where x0 = x, y0 = y and xi+1 = x′i
and yi+1 = y′i are defined as in (2.1) where ki+1 is the minimal entry which appears in a different
place in P (xi) and P (yi), and ti = max{cP (xi)(ki + 1), cP (yi)(ki + 1)} − 1. Let ni = n+

∑i−1
j=0 tj

be the index of the symmetric group xi and yi lie in.

We prove now by induction on i ≥ 1 that for any l > ki−1 + ti−1 Let i = 1. By Lemma 2.3(2),
either cP (x1)(l) = cP (x)(l − t0) or cP (x1)(l) ≤ (t0 + 1) + l − (k0 + 1 + t0). In the first case, the
thesis follows from cP (x)(l − t0) ≤ l − t0 = l − n1 + n, as P (x) is standard. As for the second
case, we just notice that k0 ≥ t0, and hence also in this case we have cP (x1)(l) ≤ l − t0.

The induction step is proven analogously: by Lemma 2.3(2) we can distinguish the two cases
cP (xi)(l) = cP (xi−1)(l− ti−1) and cP (xi)(l− ti−1) ≤ (ti−1 + 1) + l− (ki−1 + 1 + ti−1) = l− ki−1. In
the first case, the thesis follows by induction, while for the second case it is enough to observe
that ki−1 ≥ ni − n, which follows inductively from ki ≥ ki−1 + ti−1.

Clearly, the same upper bound is obtained for cP (yi)(l). Since ki + 1 > ki−1 + ti−1, we get

cP (xi)(ki + 1), cP (yi)(ki + 1) ≤ ki + 1− ni + n.

Therefore ti ≤ n− (ni − ki). We have N = n+
∑

i ti. The proof of Theorem 2.4 shows that the
sequence ni − ki is a strictly decreasing sequence of positive integers and that we have at most
n− 1 iterations. Therefore N ≤ n+

∑n−1
j=1 j = n(n+ 1)/2. �

3 Interval pattern embeddings

Pattern avoidance has been applied to investigate properties of Schubert varieties for several
decades. The first, and arguably most famous, instance of this is Lakshmibai–Sandhya’s criterion
for smoothness [LS]. We refer the interested reader to [AB] for a nice survey on the power of
pattern avoidance techniques and generalisations.

Here we exploit Woo–Yong’s approach of interval pattern embeddings, which gives a sufficient
condition for when two singularities in different Schubert varieties are smoothly equivalent.

We first recall the notion of pattern embedding:
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Definition 3.1 ([WY, Section 2.1]). Let 2 ≤ n ≤ m.

1. Let y ∈ Sn and w ∈ Sm. We say that y embeds into w if there are indices 1 ≤ ϕ1 < · · · <
ϕn ≤ m such that w(ϕj) < w(ϕk) if and only if y(j) < y(k) for any 1 ≤ j < k ≤ n. In this
case we say that the set Φ = {ϕ1, . . . , ϕn} is an embedding of y into w.

2. Let [x, y] and [v, w] be two intervals in the Bruhat orders on Sn and Sm. We say that [x, y]
embeds into [v, w] if there is a common embedding Φ = {ϕ1, . . . , ϕn} of x into v and of y
into w, where the entries of v and w agree outside of Φ, and [x, y] ' [v, w] as posets.

Now we briefly recall the definitions of Schubert and Richardson varieties.
For v1, . . . , vj ∈ Cn, we denote by 〈v1, . . . , vj〉 the C-subspace of Cn that they span. Let

e1, e2, . . . , en be the standard basis of Cn, and, for j = 1, . . . , n− 1, we set

Ej = 〈e1, . . . , ej〉, and Eopp
j = 〈en, en−1, . . . , en−j+1〉.

Write V• = {V0 ⊂ V1 ⊂ · · · ⊂ Vn} for a complete flag of subspaces of Cn with dimVp = p.
Let w ∈ Sn. The Schubert variety is defined by

Xw =
{
V• ∈ F ln | dim(Vp ∩ Eq) ≥ kp,q, 1 ≤ p, q ≤ n

}
, (3.1)

where kp,q = #{i ≤ p | w(i) ≤ q}. For v ∈ Sn, the opposite Schubert variety is defined by

Xv =
{
V• ∈ F ln | dim

(
Vp ∩ Eopp

q

)
≥ hp,q, 1 ≤ p, q ≤ n

}
,

where hp,q = #{i ≤ p | v(i) ≥ n+ 1− q}.
For a pair of permutations x ≤ y ∈ Sn, we define the Richardson variety

Xx
y = Xy ∩Xx.

The relevant result for us is the following.

Theorem 3.2 ([WY, Theorem 4.2]). Let Φ be an interval pattern embedding of [x, y] into
[v, w]. Then the affine neighbourhoods of Xy and Xw respectively at x and v are isomorphic up
to a Cartesian product with an affine space.

Remark 3.3 ([Wo, Theorem 1]). Under the same conditions, we also get an isomorphism of
Richardson varieties Xx

y and Xv
w.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. By Theorem 3.2, we only have to show that any iteration of our
algorithm produces an interval pattern embedding. We keep the same notation as in the proof
of Theorem 2.4.

By the explicit formula (2.1), we see that Φ = {t, t + 1, . . . , n + t − 1} gives a common
embedding of x into x′ and y into y′ such that x′(j) = y′(j) for any 1 ≤ j < t.

We are now left to show that [x, y] ' [x′, y′] as posets. By [WY, Lemma 2.1], it is enough to
check that

`(y)− `(x) = `(y′)− `(x′),

where `(w) = #{i < j | w(i) > w(j)} for any permutation w. This is an immediate consequence
of (2.1), from which we see that

`(x′) = `(x) + (t− 1)(k − 1) and `(y′) = `(y) + (t− 1)(k − 1). �
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4 Some applications

4.1 Associated varieties of highest weight modules

A detailed account of the constructions and properties we mention in this section can be found,
for example, in [T, Section 1].

Let ρ be half the sum of the positive roots of sln(C). For a permutation w ∈ Sn, we
denote by Lw the simple sln(C)-module of highest weight −w(ρ) − ρ. Denote by D the sheaf
of complex algebraic linear differential operators on the flag variety F ln and by Lw the D-
module corresponding to Lw under the Beilinson–Bernstein correspondence, that is the IC-
extension of the constant local system CCw

of the cell Cw. Its characteristic variety Ch(Lw)
is a subvariety of the cotangent bundle T ∗F ln and the corresponding characteristic cycle is
a Z≥0-linear combination of the classes of the (closures) of conormal bundles of the Schubert
cells:

CC(Ly) =
∑
x≤y

mx,y[T ∗xF ln].

Determining the numbers mx,y is a natural (but in general very hard) question. As my,y = 1,
the characteristic variety Ch(Ly) is irreducible if and only if mx,y = 0 for any x 6= y. The mx,y’s
only depend on the singularity type of the Schubert variety Xy at x (see [VW, Section 3.2]).
Thus, we have the following corollary of Theorem 1.1:

Corollary 4.1. Let x, y, v, w be as in Theorem 1.1. Then mx,y = mv,w.

The associated variety V (Lw) can be obtained as the image of Ch(Lw) under the moment
map γ : T ∗F ln → g∗. This variety V (Lw) is irreducible if and only if mx,y = 0 for any x 6= y
such that x and y lie in the same two-sided Kazhdan–Lusztig cell (see [W2, Introduction] for
a sketch of a proof of this fact).

While several examples of reducible characteristic varieties have been known for a long time, it
was conjectured that the associated varieties for sln(C)-highest weight modules were irreducible
(cf. [BB, Conjecture 4.5] and [Jo, Section 10.2]). The first example of a reducible associated
variety was exhibited by Williamson in [W2]. This was found by a computer search motivated
by constraints that must be satisfied in order for torsion to occur in the intersection cohomology
of Schubert varieties.

Williamson’s example ended up producing a singularity in the S12 flag variety where x and y
belong to in the same right cell and mx,y 6= 0. It was then shown that this singularity is
smoothly equivalent to the one studied by Kashiwara and Saito [KS] where the corresponding
characteristic variety was shown to be reducible. Since the mx,y’s only depend on the singularity
type of the Schubert variety Xy at x, this yields a reducible associated variety. Corollary 4.1
gives a simpler and systematic method for producing similar examples. See Example 2.5.

Remark 4.2. By [T, Section 3.1(A)], the irreducibility of an associated variety is equivalent to
the coincidence of two bases (the Goldie rank basis and the Springer basis) of a complex irre-
ducible Sn-representation, so that our algorithm also provides a method to determine examples
of representations for which the two bases differ. A similar question is addressed in Section 4.3,
where we explain how to apply Theorem 1.1 to the comparison of bases of Specht modules for
the Hecke algebra of a symmetric group.

4.2 The 0-1 conjecture and edges of W -graphs for symmetric groups

Let x, y ∈ Sn. Let µx,y be the coefficient of q(`(y)−`(x)−1)/2 in the Kazhdan–Lusztig polynomial
Px,y(q), where `(z) denotes the number of inversions of z ∈ Sn. This is the highest possible
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monomial that can occur in Px,y(q). The 0-1 conjecture stated that µx,y ∈ {0, 1}. This conjecture
was disproven in [MW] by producing a pair of permutations x, y ∈ S10 with µx,y = 4 via
combinatorial methods. We note here that in their example x and y belong to different left cells.

A weaker hope was that the 0-1 conjecture was valid once restricted to pairs of permutations
lying in the same left cell.

The relevance of such a conjecture is in the representation theory of the symmetric group
Hecke algebra. Indeed, in [KL] Kazhdan and Lusztig associated with any left cell a representation
which could be read off from its W -graph, which is a graph having as set of vertices the elements
of the cell and edges between any pair x < y labelled by µx,y. The 0-1 conjecture would have
implied that these labels are unnecessary. A counterexample to this weaker version of the 0-1
conjecture was exhibited in [MW] and relied on computer computations.

By [WY, Corollary 6.3], if x, y, v, w are as in Theorem 1.1, then Px,y(q) = Pv,w(q), so that
in particular we have the following corollary:

Corollary 4.3. If x, y, v, w are as in Theorem 1.1, then µx,y = µv,w.

It is hence enough to find a pair of permutations x, y not necessarily in the same cell with
µx,y > 1 to produce a pair v−1, w−1 of elements belonging to the same left cell and satisfying
µv−1,w−1 > 1 (as Pv,w = Pv−1,w−1). Since v and w are in the same right cell, v−1 and w−1 are
in the same left cell. Therefore, the failure of the weaker conjecture can be now deduced by
combining McLarnan–Warrington’s counterexample to the 0-1 conjecture together with Corol-
lary 4.3. As an illustration, we compute explicitly the obtained counterexample to the weaker
conjecture.

Let us identify S10 with the permutation of the set {0, 1, . . . , 9}. The second part of [MW,
Theorem 1] says that if

x = [4321098765], y = [9467182350]

then µx,y = 4. The algorithm in the proof of Theorem 2.4 applied to x, y outputs the pair

v = [nopqrhijklcdef7845296310smgba],

w = [nopqrhijklcdef78452s9bg1m36a0],

where we identified S29 with the permutations of {0, . . . , 9, a, b, . . . , s}.
The pair v−1, w−1 is an instance of two permutations lying in the same left cell and having

µv−1,w−1 = µx−1,y−1 = µx,y = 4 > 1. Thanks to our main result, this pair can be obtained more
conceptually. We want to point out that our counterexample does not appear in the smallest
possible rank. In fact the counterexample provided in the second part of [MW, Theorem 1] lies
in S16 (and has µv,w = 5).

4.3 Bases of Specht modules

Consider the Hecke algebra Hn(q) of the symmetric group Sn. Let {Hx}x∈Sn be the Kazhdan–

Lusztig basis of Hn(q) as a Z
[
q±

1
2

]
-module. This is a cellular basis (cf. [GL, Example 1.2]).

Let λ be a partition and Q a standard tableau of shape λ. Since the Kazhdan–Lusztig basis is
cellular, the set

{Hx | Q(x) = Q}

is a basis of the Specht module Sλ which does not depend on the choice of Q. We call this the
KL basis of Sλ. Jensen [J1] studies the analogous situation for the p-Kazhdan–Lusztig basis
{pHx}x∈Sn of Hn(q) – defined in terms of parity sheaves on the flag variety. Here p is a prime.
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One defines left, right and two-sided p-cells analogously to the case of the Kazhdan–Lusztig
basis. Jensen [J1, Theorem 4.33] shows that these p-cells are the same as the Kazhdan–Lusztig
cells. Furthermore, in [J1, Corollary 4.39], he shows that

{pHx | Q(x) = Q}

is a basis of the Specht module Sλ which does not depend on the choice of Q. We call this the
p-KL basis of Sλ.1

Define the transition matrix (pmxy)x,y∈Sn by

pHy =
∑
x

pmxyHx.

By Theorem 3.2 and [W1, Theorem 3.7], if the pair (x, y) is such that x 6= y and x is a maximal
(w.r.t. the Bruhat order) such that pmxy 6= 0 then the pair (v, w) has the same property for any
interval pattern embedding of [x, y] into [v, w]. Thus, we obtain a third immediate application
of Theorem 1.1.

Corollary 4.4. If x, y, v, w are as in Theorem 1.1 and x is a maximal element 6= y such that
pmxy 6= 0 then pmv,w 6= 0.

If we can find x and y with x 6= y, Q(x) = Q(y) and pmxy 6= 0, then the KL and p-KL bases
of the corresponding Specht module will disagree. Thus, Corollary 4.4 is designed to provide
such examples, whenever we can find any x 6= y maximal with the property that pmxy 6= 0.
For instance, in Example 2.5, 2mv,w 6= 0 [JW, Section 5.6], and P (v) = P (w) have shape
λ = (4, 4, 2, 2). Hence the KL basis of S(4,4,2,2) disagrees with the 2-KL basis.

For instance, transferring the torsion explosion examples from [WKM] and applying Propo-
sition 2.6, we get infinitely many examples where these bases differ with n < A(log p)2 for some
constant A (we have made no effort to optimise this bound).

By transferring the examples of non-perverse parity sheaves from [Mc], we see that the change
of basis matrix within a Specht module can contain polynomials in q of arbitrarily large degree.

The W -graph for the KL basis of a Specht module is bipartite. Since Nguyen [N, Theorem 9.8]
shows that all strongly connected admissible W -graphs in type A are the Kazhdan–Lusztig ones,
this implies that whenever the p-KL basis differs from the KL basis, the corresponding W -graph
for the p-KL basis is not bipartite. An explicit example of a non-bipartite W -graph for p = 2 in
type C3 was previously exhibited in [J1].
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