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Abstract. Kang, Kashiwara, Kim and Oh have proved that cluster monomials lie in the
dual canonical basis, under a symmetric type assumption. This involves constructing a
monoidal categorification of a quantum cluster algebra using representations of KLR alge-
bras. We use a folding technique to generalise their results to all Lie types.
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1. Introduction

Let G be a Kac-Moody group, w an element of its Weyl group. Then associated to w and G
there is a unipotent subgroup N(w), whose Lie algebra is spanned by the positive roots α such
that wα is negative. Arguably the most important case is when G is finite dimensional and w
is the longest element in the Weyl group, when N(w) is maximal unipotent. The coordinate
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ring C[N(w)] has a natural structure of a cluster algebra [GLS1]. This story generalises to the
quantum setting [GLS2, GY1], where the quantised coordinate ring Aq(n(w)) has a quantum
cluster algebra structure. In this paper, we work with the quantum version. However, for
this introduction, we shall continue with the classical story.

Kashiwara [Ka] and Lusztig [Lu1, Lu2] defined a remarkable basis of the enveloping algebra
U(n), called the lower global base or the canonical basis. It’s dual, the dual canonical basis,
is a basis of C[N ] and is of concern to us. This dual canonical basis further induces a basis
of the cluster algebra C[N(w)].

It was a long-standing conjecture that the cluster monomials in the cluster algebra structure
on C[N(w)] lie in the dual canonical basis. This was recently proved whenever G is sym-
metric by Kang, Kashiwara, Kim and Oh [KKKO2]. Their proof used the categorification
of Aq(n(w)) by categories of modules over Khovanov-Lauda-Rouquier algebras (henceforth
called KLR algebras). They find a monoidal categorification of the cluster algebra structure
inside these categories of KLR modules.

In this paper we follow in the footsteps of Lusztig’s approach to the canonical basis in non-
symmetric types using the technique of folding by an automorphism of the Dynkin diagram.
The corresponding theory of folding KLR algebras was recently developed in [Mc2]. Inside
these folded categories, we are able to fold the monoidal categorification of [KKKO2] to deduce
the fact that the cluster monomials lie in the dual canonical basis, and more generally, that
they lie in the dual p-canonical basis for all primes p. The p-canonical basis is the analogue
of the canonical basis defined using KLR algebras in characteristic p.

Our main theorem that we prove in this paper is the following:

Theorem 1.1. The algebra Aq(n(w)) has the structure of a (explicitly defined, independent
of p) quantum cluster algebra in which every cluster monomial lies in the dual p-canonical
basis.

Our main contribution is the categorification of the cluster algebra structure via folding,
together with its implication about the cluster monomials belonging to the dual p-canonical
basis. The fact that Aq(n(w)) has the structure of a quantum cluster algebra was established
in this generality by Goodearl and Yakimov [GY1, GY2].

While this paper was being written, Qin [Qi] gave an independent proof of Theorem 1.1
for the dual canonical basis by different methods. That theorem is proved here as the special
case p = 0.

We now briefly discuss the contents of this paper. We begin with an overview of the theory
of generalised minors and bases of canonical type (which are closely related to perfect bases).

We then summarise the necessary background results about folded KLR algebras. These
results are all proved in [Mc2].

Finally we discuss the work of Kang, Kashiwara, Kim and Oh, and show how to incorporate
the diagram automorphism into their story. This is where we prove the main results of the
paper. These results comprise the categorification of the cluster algebra structure on C[N(w)]
in terms of folded KLR algebras, and have Theorem 18.2 as their most straightforward and
classical corollary.

The results of this paper prove that certain modular decomposition numbers for KLR
algebras are trivial. In particular, they prove that the reduction modulo p of any irreducible
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module which corresponds to a cluster monomial remains irreducible. Such results also have
some geometric consequences, implying the non-existence of torsion in the stalks and costalks
of the intersection cohomology of certain (Lusztig) quiver varieties. For example, by [Wi2,
Theorem 3.7], there is no such torsion in A4, as in this case Aq(n) is a finite type cluster
algebra.

We thank B. Leclerc for useful discussions about the theory of cluster algebras.

2. The quantum group

Let g be a symmetrisable Kac-Moody Lie algebra and I be a set indexing the simple roots.
To each i ∈ I is an associated integer di which is the entry of the symmetrising matrix.

We work over the ring Z[q, q−1] or its fraction field Q(q). For each i ∈ I, let qi = qdi .
The quantum integer [n]i is (qni − q

−n
i )/(qi− q−1

i ). The quantum factorial [n]i! is the product
[n]i[n− 1]i · · · [1]i.

Let Uq(g) be the corresponding quantised enveloping algebra. Write Uq(n) for the upper-
triangular part and let Aq(n) be its graded dual. Let {θi}i∈I denote the usual generating set
of Uq(n) as an algebra, and use θ∗i to denote the dual generating set of Aq(n). We work with

the Z[q, q−1]-form of Uq(n) generated as an algebra by the divided powers θ
(n)
i := θni /[n]i! and

the corresponding Z[q, q−1]-form of Aq(n) which is its graded integral dual. When writing
Uq(n) or Aq(n), we will always refer to this integral form.

The bar involution on Uq(n) is the automorphism fixing the Chevalley generators and send-
ing q to q−1. This involution induces a bar involution on the dual Aq(n). For homogeneous
elements a and b of degrees α and β in Aq(n), we have the formula [Le, Proposition 1]

ab = qα·β b̄ā. (2.1)

Let P be the weight lattice and let P+ denote the set of dominant weights. If i ∈ I,
let ωi be the corresponding fundamental weight. For each λ ∈ P+, we denote by V (λ) the
irreducible highest weight Uq(g)-module with highest weight λ. There is a partial order on
P where λ ≥ µ if λ− µ is a sum of positive roots.

The algebra Aq(n) is graded by P+, we write Aq(n)λ for the λ’th graded piece. The graded
components of the coproduct on Aq(n) are denoted

rν1,...,νn :Aq(n)ν1+···+νn−→Aq(n)ν1 ⊗ · · · ⊗ Aq(n)νn .

Write Ei (the image of θi under the inclusion of Uq(n) in Uq(g)) and Fi for the usual
generators of Uq(g). Let φ be the involutive antiautomorphism of Uq(g) sending Ei to Fi.

Again, we write F
(c)
i := F ci /[c]i! for the divided power.

Let (·, ·) denote the q-Shapovalov form on V (λ). This is a nondegenerate bilinear form
such that

(xv,w) = (v, φ(x)w)

for all x ∈ Uq(g) and v, w ∈ V (λ). We normalise the q-Shapovalov form so that (vλ, vλ) = 1,
where vλ is a chosen highest weight vector.

We now define a weight vector vµ for all extremal weights µ in V (λ). Such an extremal
weight µ is of the form wλ for some w in the Weyl group W . Let w = si1 · · · sin be a reduced
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decomposition of w. Then we define

vµ = F
(c1)
i1
· · ·F (cn)

in
vλ

where the integers ck are defined by ck = (αik , sik+1
· · · sinλ). The element vµ does not depend

on the choice of w or the choice of reduced decomposition.
The q-Shapovalov form satisfies (vµ, vµ) = 1 for all extremal weight vectors vµ. This is

proved by a rank one computation.
The coproduct is denoted rν1,...,νn :Aq(n)−→Aq(n)⊗ · · ·Aq(n).

3. Bases of canonical type

We need the notion of a basis of dual canonical type. This is a strengthening of the notion
of a perfect basis of Aq(n).

For i ∈ I and p ∈ N, define ipr and rip to be the linear operators on Aq(n) which are the

adjoints of left and right multiplication by θ
(p)
i respectively.

Let σ be the antiautomorphism which fixes the Chevalley generators. The bar involution
is the automorphism fixing the Chevalley generators and sending q to q−1.

Definition 3.1. A basis B of Uq(n) is said to be of canonical type if it satisfies the condi-
tions (1)–(6) below:

(1) The elements of B are weight vectors.
(2) 1 ∈ B.
(3) Each right ideal (θpiUq(n)⊗Q(q)) ∩ Uq(n) is spanned by a subset of B.

(4) In the bases induced by B, the left multiplication by θ
(p)
i from Uq(n)/θiUq(n) onto

θpiUq(n)/θp+1
i Uq(n) is given by a permutation matrix.

(5) B is stable by σ.
(6) B is stable under the bar involution.

Definition 3.2. A basis B∗ of Aq(n) is said to be of dual canonical type if it satisfies the
conditions (1)–(6) below:

(1) The elements of B∗ are weight vectors.
(2) 1 ∈ B∗.
(3) Each ker(rip) is spanned by a subset of B∗.
(4) In the bases induced by B∗, the map

rip : ker(rip+1)/ ker(rip)−→ker(ri)

is given by a permutation matrix.
(5) B∗ is stable by σ.
(6) B∗ is stable under the bar involution.

The dual basis to a basis of canonical type is of dual canonical type and vice versa.
It is proved in [BK, §5] that each basis of dual canonical type induces a crystal structure

on B (or B∗) isomorphic to B(∞).
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Theorem 3.3. [Ba, Mc2] Let λ ∈ P+. Let V (λ) be a highest weight module of Uq(g) with
highest weight λ and let vλ be a highest weight vector. Let B be a basis of canonical type.
Then the set

{bvλ | b ∈ B, bvλ 6= 0}
is a basis of V (λ).

The algebra Uq(n) is the quotient of the free Z[q, q−1]-algebra ′f on the generators {θi}i∈I .
The shuffle algebra X is defined as the graded dual of ′f , where the basis of words [i1, . . . , in]
in X is dual to the basis of monomials in ′f . Then Aq(n) is a subalgebra of X and we write
ι for the inclusion.

Let i1, i2, . . . be a sequence of elements of I such that each element of I appears infinitely
often. A word is said to be extremal for an element x ∈ Aq(n) if it is minimal for the relevant
lexicographical order amongst all words which appear in ι(x) with nonzero coefficient.

Lemma 3.4. Let B∗ be a basis of dual canonical type and let b∗ ∈ B∗. Let i = ia11 i
a2
2 · · · be

an extremal word for b∗. Then i appears in ι(b∗) with coefficient

[a1]i1 ![a2]i2 ! · · · .

Proof. Consider ia11
r(b∗). By Condition (4) in Definition 3.2, it lies in B∗. The word ia22 i

a3
3 . . .

is extremal for i
a1
1
r(b∗) and by induction, we may assume that it appears with coefficient

[a2]i2 ! · · · in ι(ia11
r(b∗)). This implies that i appears in ι(b∗) with the desired coefficient,

namely [a1]![a2]! · · · . �

Lemma 3.5. [Kl, §2.8] Let B∗ be a basis of dual canonical type and let x and y be two
elements of B∗. Expand their product in the basis B∗:

xy =
∑
b∗∈B∗

cb∗b
∗. (3.1)

Then there exists b∗ such that cb∗ is a power of q.

Proof. We have an extremal word ia11 i
a2
2 . . . for x and an extremal word ib11 i

b2
2 · · · for y. Then

the word ia1+b1
1 ia2+b2

2 . . . is extremal for xy and appears with multiplicity

[a1 + b1]![a2 + b2]! · · ·

by Lemma 3.4. Apply · · · r
i
a2+b2
2

r
i
a1+b1
1

to (3.1). The left hand side is a power of q, while

by extremality, each term in the right hand side is cb∗ times an element of B∗ or zero. The
element 1 ∈ B∗ can only appear once, so there must be a term where cb∗ is a power of q. �

For any weight basis B, let Bν be the elements in B of weight ν.

Lemma 3.6. Let B be a basis of canonical type. Let λ ∈ P+ and let µ ≤ η be two elements
of Wλ. Then there is exactly one choice of b ∈ Bη−µ such that bvµ 6= 0. For this choice of b
we have bvµ = vη.

Proof. Since the q-Shapovalov form is nondegenerate and the η-weight space of V (λ) is one-
dimensional, bvµ 6= 0 if and only if (bvµ, vη) 6= 0.
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We concentrate on the first statement and proceed by induction on η. First consider the
base case when η = λ. In this case we have (bvµ, vη) = (vµ, σ(b)vη). The invariance of B
under σ implies that φ(b) ∈ B if and only if b ∈ B. By Theorem 3.3, there is a unique choice
of φ(b) ∈ B making this pairing nonzero, hence a unique choice of b ∈ B.

Now consider the case of η 6= λ. Then there exists i such that η < siη. Then vη = F
(c)
i vsiη

for some integer c. We compute

(bvµ, vη) = (bvµ, F
(c)
i vsiη) = (E

(c)
i bvµ, vsiη).

If b ∈ EiUq(n) then E
(c)
i bvµ factors through the weight space V (λ)η−αi which is zero. If

b /∈ EiUq(n), then there exists a unique b′ = ẽcib ∈ B such that E
(c)
i b− b′ ∈ Ec+1

i Uq(n). By a

similar argument, E
(c)
i bvη = b′vη. Here ẽi is the crystal operator.

By the inductive hypothesis, there exists a unique choice of b′ ∈ B such that (b′vµ, vsiη) = 0.
As ẽi is injective, there is thus at most one choice of b such that (bvµ, vη) 6= 0. The existence
of such a b is obvious as the condition µ ≤ η means that it is easy to write down a product
x of Chevalley generators in Uq(n)η−µ such that xvµ 6= 0.

At this point we have proved the existence of exactly one choice of b ∈ Bη−µ such that
bvµ 6= 0. We now aim to show that for this choice of b, we have bvµ = vη. We induct on η,
the base case where η = µ being trivial.

Suppose then that η 6= µ. Then there exists i such that µ ≤ siη < η. Then by the inductive

hypothesis, there exists b′ ∈ B such that b′vµ = vsiη. Then E
(c)
i b′vµ = vη for some integer

c and we do a similar argument to show that (ẽcib
′)vµ = vη, so by uniqueness of b, we’re

done. �

4. Generalised minors

Definition 4.1. Let λ ∈ P+ and µ, η ∈ Wλ. The generalised minor D(µ, η) ∈ Aq(n) is
defined by

D(µ, η)(x) = (xvµ, vη)

for all x ∈ Uq(n).

The agreement between this definition and the definition of [KKKO2, §9.1] is discussed in
[GLS1, §5].

Theorem 4.2. Let B∗ be a basis of dual canonical type. All generalised minors D(µ, η) with
µ ≤ η lie in B∗.

Proof. Suppose b ∈ B where B is the basis dual to B∗. Then D(µ, η)(b) = (bvµ, vη). By
Lemma 3.6, there is a unique choice of b ∈ B such that this is nonzero, and for this particular
choice of b, bvµ = vη. Therefore D(µ, η) ∈ B∗. �

Lemma 4.3. Let λ ∈ P+ and suppose that µ1 < µ2 < · · · < µn+1 are weights in Wλ. Then

rµ1−µ2,...,µn−µn+1(D(µ1, µn+1)) = D(µ1, µ2)⊗ · · · ⊗D(µn, µn+1).

Proof. Let B be a basis of canonical type. Suppose that b1, . . . , bn ∈ B are such that

(rµ1−µ2,...,µn−µn+1(D(µ1, µn+1)), b1 ⊗ · · · ⊗ bn) 6= 0.



CLUSTER MONOMIALS ARE DUAL CANONICAL 7

Then (D(µ1, µn+1), b1 · · · bn) 6= 0. By the definition of the generalised minor, this implies
that

(vµ1 , b1 · · · bnvµn+1) 6= 0.

By repeated application of Lemma 3.6, there is a unique choice of b1, . . . , bn ∈ B such that
this pairing is nonzero, and for this choice of b1, . . . , bn, the value of the pairing is 1.

Furthermore, by looking at the degrees involved, we see that the identity

bivµi+1 = vµi

holds for each i.
Therefore we have identified rµ1−µ2,...,µn−µn+1(D(µ1, µn+1)) as a tensor product of elements

of B∗. Furthermore the proof of Lemma 3.6 identifies each factor as D(µi, µi+1). �

Lemma 4.4. Let λ be a dominant weight and µ, ζ ∈Wλ. Then

D(µ, ζ)2 = q(µ−ζ,µ−ζ)/2D(2µ, 2ζ).

Proof. The submodule of V (λ)⊗V (λ) generated by vλ⊗ vλ is isomorphic to V (2λ). Now let
us specialise to q = 1. Then we can define a bilinear form on V (λ)⊗ V (λ) by setting

(x1 ⊗ x2, y1 ⊗ y2) = (x1, y1)(x2, y2)

and extending by linearity, where (·, ·) is the Shapovalov form. When restricted to V (2λ)
inside V (λ)⊗ V (λ) this form satisfies

(xv,w) = (v, φ(x)w)

for all x ∈ g, hence is the Shapovalov form on V (2λ).
Note that vµ ⊗ vµ and vζ ⊗ vζ are normalised extremal weight vectors in V (2λ). Thus at

q = 1, we have

D(2µ, 2ζ)(x) = (x(vµ ⊗ vµ), vζ ⊗ vζ)
= (D(µ, ζ)⊗D(µ, ζ))(∆(x))

= D(µ, ζ)2(x).

We have thus proved this lemma when q is specialised to 1. Now pick a basis B∗ of dual
canonical type such that the structure constants for multiplication all lie in N[q, q−1]. For
example, by [Mc2, Theorem 12.7], we could take a basis coming from simple representations
of KLR algebras. From Theorem 4.2, D(µ, ζ) and D(2µ, 2ζ) both lie in B∗. So by considering
the expansion of D(µ, ζ)2 in the basis B∗ and comparing with what we already know about
the behaviour at q = 1, the only option is that D(µ, ζ)2 = qND(2µ, 2ζ) for some integer N .
We can identify the integer N from the identity (2.1). �

5. KLR algebras with automorphism

Let Q be a quiver with vertex set I (not the same as the set I in §2) and let a be a finite
order automorphism of Q. We assume that there are no arrows between any pair of vertices
in the same a-orbit. Let n be the order of a.

To such a quiver with automorphism, let J be the set of a-orbits on I. Define · : J×J−→Z
by j · j = 2|j| and for j 6= k, −j · k is equal to the total number of edges in Q between an
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element of j and an element of k. This is a symmetrisable Cartan datum expressed using the
formulation in [Lu3]. It is known that every symmetrisable Cartan datum arises from such
a construction. The relationship between (Q, a) and the Kac-Moody Lie algebra g we work
with is that g is the Kac-Moody Lie algebra with Cartan datum (J, ·).

Define, for any ν =
∑

i∈I νii ∈ NI, |ν| =
∑

i∈I νi and

Seq (ν) = {i = (i1, . . . , i|ν|) ∈ I |ν| |
|ν|∑
j=1

ij = ν}.

This is acted upon by the symmetric group S|ν| in which the adjacent transposition (i, i+ 1)
is denoted si.

Define polynomials Qi,j(u, v) for i, j ∈ I by

Qi,j(u, v) =

{∏
i→j(u− v)

∏
j→i(v − u) if i 6= j

0 if i = j

where the products are over the sets of edges in Q from i to j and from j to i, respectively.
Let k be an algebraically closed field whose characteristic does not divide n.

Definition 5.1. The KLR algebra R(ν) is the associative k-algebra generated by elements
ei, yj, τk with i ∈ Seq (ν), 1 ≤ j ≤ |ν| and 1 ≤ k < |ν| subject to the relations

eiej = δi,jei,
∑

i∈Seq(ν)

ei = 1,

ykyl = ylyk, ykei = eiyk,

τlei = esliτl, τkφl = τlφk if |k − l| > 1,

τ2
k ei = Qik,ik+1

(yk, yk+1)ei,

(τkyl − ysk(l)τk)ei =


−ei if l = k, ik = ik+1,

ei if l = k + 1, ik = ik+1,

0 otherwise,

(τk+1τkτk+1 − τkτk+1τk)ei

=


Qik,ik+1

(yk, yk+1)−Qik,ik+1
(yk+2, yk+1)

yk − yk+2
ei if ik = ik+2,

0 otherwise.

(5.1)

We remark that we have not used the most generic choice of polynomials Qij(u, v) as in
[Ro1] to define these algebras. However it is important to us that we do use this choice,
which implies that these algebras are isomorphic to certain Ext algebras [VV, Ro2, Ma] on
the moduli stack of representations of the quiver Q. We rely on some results from [KKKO2]
which require this geometric interpretation of these algebras. This assumption also implies
that the algebras R(ν) symmetric in the sense of [KKK], giving us access to the theory of
R-matrices for KLR algebras.
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The algebras R(ν) are Z-graded by setting ei to have degree zero, yi to have degree 2 and
τiei to have degree ii · ii+1. All R(ν)-modules which we consider in this paper will be graded
left modules.

The automorphism a of Q induces isomorphisms R(ν) ∼= R(aν) for all ν. In particular,
when aν = ν, it induces an automorphism of the algebra R(ν), which we will also denote by
a.

Consider ν such that aν = ν. We consider the category Cν of pairs (M,σ) where M is a
representation of R(ν) and σ : a∗M−→M is an isomorphism such that

σ ◦ a∗σ ◦ · · · ◦ (a∗)n−1σ = idM . (5.2)

A morphism from (M,σ) to (N, τ) is a R(ν)-module map f :M −→ N such that the
following diagram commutes:

a∗M
a∗f−−−−→ a∗Nyσ yτ

M
f−−−−→ N

Let Lν be the full subcategory of Cν whose objects are pairs (M,σ) where M is finite
dimensional. In [Mc2] it is shown that Cν and Lν are abelian categories.

6. The Grothendieck group construction

Let Z[ζn] denote the ring of cyclotomic integers where ζn is a primitive n-th root of unity
and fix a ring homomorphism Z[ζn]→ k.

An object (A, σ) of Cν is said to be traceless if there is a representation M of R(ν), an
integer t ≥ 2 dividing n such that (a∗)tM ∼= M , and an isomorphism

A ∼= M ⊕ a∗M ⊕ · · · ⊕ (a∗)t−1M

under which σ corresponds to an isomorphism carrying the summand (a∗)jM onto (a∗)jM
for 1 ≤ j < t and the summand (a∗)tM onto M .

The group K(Lν) is defined to be the Z[ζn]-module generated by symbols [(M,σ)] where
(M,σ) is an object of Lν , subject to the relations

[X] = [X ′] + [X ′′] if 0→ X ′ → X → X ′′ → 0 is exact

[(M, ζnσ)] = ζn[(M,σ)]

[X] = 0 if X is traceless

There is also a version of this construction for the category of finitely generated projective
modules. It plays an important role in [Mc2] but is not needed in this paper.

There is an action of q on K(Lν) by shifting the grading. Thus K(Lν) is naturally a
module over the ring Z[ζn, q, q

−1].
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7. Induction, restriction and duality

Given (M,σ) and (N, τ) in Cλ and Cµ respectively, we can form the induced module

M ◦N := R(λ+ µ)
⊗

R(λ)⊗R(µ)

M ⊗N.

The isomorphisms σ and τ induce an isomorphism a∗M ◦a∗N →M ◦N . When precomposed
with the natural isomorphism a∗(M ◦N) ∼= a∗M ◦ a∗N , we obtain an isomorphism

σ ◦ τ : a∗(M ◦N)→M ◦N.
The object

(M,σ) ◦ (N, τ) := (M ◦N, σ ◦ τ)

is an element of Cλ+µ.
This induction functor induces a product structure on the direct sum of Grothendieck

groups ⊕
ν∈NJ

K(Lν).

For λ, µ ∈ NJ , let eλµ be the image of the identity under the inclusion R(λ) ⊗ R(µ) →
R(λ+ µ). Given a R(λ+ µ)-module M , its restriction is defined by

Resλ,µM := eλµM.

It is a R(λ)⊗R(µ)-module.
Since eλµ is invariant under a, there is a canonical isomorphism a∗(ResM) ∼= Res(a∗M).

Thus we obtain a restriction functor from Cλ+µ to Cλtµ. This restriction functor induces a
coproduct structure on the same direct sum of Grothendieck groups⊕

ν∈NJ
K(Lν),

the details of which can be found in [Mc2].
Let ψ be the antiautomorphism of R(ν) which sends each of the generators ei, yj and τk

to themselves.
Let M be a finite dimensional R(ν)-module. Then its dual D(M) := Homk(M,k) is also

an R(ν)-module by
r(λ)(m) = λ(ψ(r)m)

for all r ∈ R(ν), λ ∈ D(M) and m ∈ M . This extends to a contravariant autoequivalence of
Lν which we also denote D, where D(L, σ) = (DL, (Dσ)−1).

An object (M,σ) of Lν is said to be self-dual if there is an isomorphism

(M,σ) ∼= (DM, (Dσ)−1).

In [Mc2], a ring Z ⊂ A ⊂ Z[ζn + ζ−1
n ] is defined. This ring is equal to Z whenever n < 5

or k has characteristic zero, and there are no known examples where A 6= Z.
Let k∗ be the A[q, q−1]-submodule of

⊕
ν∈NJ K(Lν) spanned by the self-dual simple mod-

ules. For each j ∈ J , there is a canonical self-dual simple object of Lj which we denote by
L(j). It is unique if n is odd and unique up to rescaling σ by ±1 if n is even. A canonical
choice is made in [Mc2, §7]. The main theorem of [Mc2] is:
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Theorem 7.1. [Mc2, Theorem 6.2] There is an A[q, q−1]-linear grading preserving isomor-
phism γ∗ : k∗−→Aq(n)⊗Z A such that

(1) γ∗([L(j)]) = θ∗j for all j ∈ J .

(2) Under the isomorphism γ∗, the multiplication Aq(n)λ ⊗ Aq(n)µ → Aq(n)λ+µ corre-
sponds to the product on k∗ induced by Indλ,µ.

(3) Under the the isomorphism γ∗, the comultiplication Aq(n)λ+µ → Aq(n)λ ⊗ Aq(n)µ
corresponds to the coproduct on k∗ induced by Resλ,µ.

(4) Under the isomorphism γ∗, the bar involution on Aq(n) corresponds to the anti-linear
antiautomorphism on k∗ induced by the duality D.

It is shown in [Mc2] that classes of self-dual simple objects give a basis of k∗, which by
Theorem 7.1 is transported to a basis of Aq(n). We denote this basis by B∗. It is also shown
that B∗ is a basis of dual canonical type. We call B∗ the dual p-canonical basis, where p is
the characteristic of k. When p = 0, B∗ is the usual dual canonical basis, also known as the
upper global basis.

8. Cuspidal modules

For now we work with the unfolded Dynkin diagram obtained by forgetting the orientation
on Q. Let W be the corresponding Weyl group, generated by si for i ∈ I. Let Φ+ be the set
of positive roots and Φ− be the set of negative roots. Fix an element w ∈W . Define

Φ(w) = {α ∈ Φ+ | w(α) ∈ Φ−}.

The following important fact is standard

Proposition 8.1. Let w = si1 · · · sil be a reduced expression of w ∈W . For each 1 ≤ k ≤ l,
let βk = si1 · · · sik−1

αik . Then

Φ(w) = {β1, β2, . . . , βl}.

Definition 8.2. [TW, Definition 1.8] A convex preorder is a pre-order � on Φ+ such that,

(1) For any equivalence class C , any a ∈ spanR≥0
C and any non-zero x ∈ spanZ≥0

{β ∈
Φ+ | β � C }, we have that a+ x 6∈ spanZ≥0

{β ∈ Φ+ | β � C }.
(2) For any equivalence class C , any a ∈ spanR≥0

C and any non-zero x ∈ spanZ≥0
{β ∈

Φ+ | β ≺ C }, we have that a+ x 6∈ spanZ≥0
{β ∈ Φ+ | β � C }.

A convex order is a convex pre-order which is a total order on real roots.

Example 8.3. Let (V,≤) be a totally ordered Q-vector space. Let h :QΦ−→V be an injective
linear transformation. For two positive roots α and β, say that α ≺ β if h(α)/ht(α) <
h(β)/ ht(β) and α � β if h(α)/ ht(α) ≤ h(β)/ ht(β). This defines a convex order on Φ.

In the above example we can take V = R with the usual ordering to get the existence of
many convex orders.

Lemma 8.4. Fix a reduced expression w = si1 · · · sil and let βi be the root defined in Propo-
sition 8.1. Then there exists a convex order ≺ such that β1 ≺ β2 ≺ · · · ≺ βn and for any
α ∈ Φ+ \ Φ(w−1), α � βl.
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Proof. Choose a generic hyperplane h in RΦ such that the roots in Φ(w) and the roots in
Φ+ \ Φ(w) are on opposite sides of h. Choose a linear map h :RΦ−→R, injective on QΦ,
such that h = kerh and h(Φ(w)) ⊂ R<0. From h, the construction in Example 8.3 provides
us with a convex order ≺′ on Φ+. Now define our desired convex order ≺ by

• β1 ≺ β2 ≺ · · · ≺ βn
• If α ∈ Φ(w) and β /∈ Φ(w) then α ≺ β
• If α, β /∈ Φ(w) then α ≺ β if and only if α ≺′ β.

It is straightforward to check that this construction gives a convex order. �

Definition 8.5. Let α ∈ Φ+. An object (M,σ) of Cα is ≺-cuspidal if whenever Resλ,µM 6= 0,
we have that λ is a sum of roots less than or equal to α while µ is a sum of roots greater than
or equal to α under ≺.

Remark 8.6. Elsewhere, in [Mc1, TW], this notion is called semicuspidal. Since we will only
care about the case where α is a real root, the distinction between cuspidal and semicuspidal
is irrelevant.

Theorem 8.7. [TW] Let α be a real root and ≺ a convex order. Then there exists a unique
self-dual simple ≺-cuspidal R(α)-module, denoted L(α).

The following theorem is [GLS1, Proposition 7.4] together with [Mc1, Theorem 9.1]. But
we will give a direct proof.

Theorem 8.8. Let si1si2 · · · sil be a reduced expression for w ∈ W and let ≺ be a convex
order constructed from this reduced expression as in Lemma 8.4. For each k with 1 ≤ k ≤ l,
let βk = si1 · · · sik−1

αik and let L(βk) be the corresponding cuspidal R(βk)-module. Then

[L(βk)] = D(si1 · · · sikωik , si1 · · · sik−1
ωik),

the identity taking place in Aq(n), identified with the Grothendieck group via Theorem 7.1.

Proof. WriteD forD(si1 · · · sikωik , si1 · · · sik−1
ωik). Note that βk = si1 · · · sik−1

ωik−si1 · · · sikωik .
By Theorem 4.2, D ∈ B∗ so by [Mc2, Theorem 12.7], D is the class of a self-dual simple
module of R(βk). Consider the classification of semicuspidal modules in terms of semicuspi-
dal decompositions from [TW]. Since there is a unique irreducible cuspidal representation of
R(βk), it suffices to show that

rβl,βk−βl(D) = 0

for all l < k.
Thus it suffices to show that si1 · · · sikωik − βl is not a weight in V (ωik). Since βl is a real

root, it suffices to show

(si1 · · · sikωik , βl) ≤ 0.

By the Weyl group invariance of the pairing (·, ·) and the fact that sil(αil) = −αil , this is
equivalent to

(ωik ,−sik−1
· · · sil+1

αil) ≤ 0.

Since sik−1
· · · sil is a reduced expression, sik−1

· · · sil+1
αil is a positive root, which thus has a

nonnegative pairing with ωik , completing the proof. �
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9. The quantum unipotent ring and its categorification

Fix w ∈ W . Choose a reduced expression for w. This determines an enumeration of
Φ(w) by β1, . . . , βl and some dual PBW vectors E∗βi ∈ Aq(n)βi . We will not give the usual
definition of these in terms of the braid group action here, but will note that by Theorem
8.8 and [GLS2, Proposition 7.4], E∗β = [L(β)], so it can be defined as a generalised minor if
desired.

Let Aq(n(w)) be the Z[q, q−1]-subring of Aq(n) generated by E∗β1 , . . . , E
∗
βl

. It is known that
this does not depend on the choice of a reduced decomposition.

Let π = (π1, . . . , πl) be a sequence of l natural numbers. Associated to π is the element

E∗π = (E∗β1)π1 · · · (E∗βl)
πl .

Then this collection E∗π is a Z[q, q−1]-basis of Aq(n(w)).

Definition 9.1. Let Cw(ν) be the full subcategory of finite dimensional R(ν)-modules such
that whenever Resλ,µM 6= 0, λ ∈ NΦ(w). Let Cw = ∪νCw(ν).

Since the restriction functor is exact, Cw is closed under subquotients and extensions. This
implies it is abelian.

Theorem 9.2. The Grothendieck group of the category Cω satisfies⊕
ν∈NI

K0(Cw(ν)) ∼= Aq(n(w))

Proof. The category Cw is closed under the induction product by the Mackey filtration [KL,
Proposition 2.18]. It also contains the modules L(βk) since they are cuspidal. Therefore we
have ⊕

ν∈NI
K0(Cw(ν)) ⊃ Aq(n(w))

To complete the proof, it will suffice to show that the dual PBW basis vectors E∗π span
K0(Cw), since they form a basis of Aq(n(w)).

The dual PBW basis vector E∗π is the class of the proper standard module ∆(π) = L(β1)◦π1◦
· · · ◦ L(βl)

◦πl . By [Mc1, Theorem 10.1(3)] (although that paper is about affine Cartan data,
the argument works in all types), the change of basis matrix between the proper standard
modules and the simple modules is unitriangular. Since the classes of the simple modules in
Cw form a basis of its Grothendieck group, the same is thus true for the classes of the proper
standard modules, completing the proof. �

Remark 9.3. The above also shows that our category Cw is the same as the one with the same
name in [KKKO2], since both are Serre subcategories.

10. R-matrices

Since the polynomials Qi,j(u, v) appearing in the definition of the KLR algebras are all
polynomials in u− v, the construction of R-matrices for KLR algebras in [KKK] applies.

Thus for every pair of modules X and Y , there is a nonzero morphism:

rX,Y :X−→Y.
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Given any three modules X, Y , and Z, these R -matrices satisfy the Yang-Baxter equation

(rY,Z ◦ idX)(idY ◦ rX,Z)(rX,Y ◦ idZ) = (idZ ◦ rX,Y )(rX,Z ◦ idY )(idX ◦ rY,Z) (10.1)

as well as the identity

(rY ◦X,Z)(rX,Y ◦ idZ) = (idZ ◦ rX,Y )(rX◦Y,Z). (10.2)

The R-matrices also behave nicely with respect to the automorphism a, namely we have
the identity

ra∗X,a∗Y = a∗rX,Y

Lemma 10.1. Let X and Y be modules such that X ◦ Y is simple. Then X ◦ Y ∼= Y ◦ X
with a pair of inverse isomorphisms being given by rX,Y and rY,X .

Proof. When q is specialised to 1, the Grothendieck group becomes commutative. Therefore,
at q = 1, [Y ◦ X] = [Y ][X] = [X][Y ] = [X ◦ Y ]. So [Y ◦ X] has the same class as a simple
module at q = 1, which corresponds to forgetting the grading. Therefore Y ◦X is simple.

The R-matrices rX,Y and rY,X must be isomorphisms by virtue of being nonzero maps be-
tween simple modules. By [KKK, Lemma 1.3.1(vi)], the R-matrices with spectral parameters
satisfy RY,XRX,Y (v ⊗ w) = (z − w)tv ⊗ w for vectors v and w of highest degree in X and
Y respectively. Since rY,XrX,Y = (z −w)−sRY,XRX,Y |z=w=0 and is an isomorphism, it must
be that s = t and rY,XrX,Y is the identity (since it is a scalar multiple of the identity and
preserves v ⊗ w). Therefore the R-matrices rX,Y and rY,X are inverses of each other. �

For suchX and Y , there are integers Λ(X,Y ) and Λ(Y,X) such that the modules qΛ(X,Y )X◦
Y and qΛ(Y,X)Y ◦X are self-dual simple modules (this is denoted Λ̃ in [KKKO2]). Now con-
sider the diagram

qΛ(X,Y )X ◦ Y
rX,Y−→←−
rY,X

qΛ(Y,X)Y ◦X.

We define X�Y to be the direct limit of this diagram, it is thus a self-dual irreducible module
which is canonically isomorphic to both X ◦ Y and Y ◦X up to grading shift.

Now given (X,σ) ∈ Cλ and (Y, τ) ∈ Cµ with X and Y as above, the following diagram
commutes

qΛ(X,Y )X ◦ Y
rX,Y

..
qΛ(Y,X)Y ◦X

rY,X

nn

qΛ(X,Y )a∗(X ◦ Y )
a∗rX,Y

//

σ◦τ

OO

qΛ(Y,X)a∗(Y ◦X)
a∗rY,X

oo

τ◦σ

OO

so there is a canonical element (X �Y, σ� τ) in Cλ+µ which does not depend on the order
of the factors up to canonical isomorphism.

Now suppose we have a family of self-dual simple modules X1, . . . , Xn such that Xi ◦Xj

is simple for all i, j. Then we define
n⊙
i=1

Xi inductively by

n⊙
i=1

Xi =

(
n−1⊙
i=1

Xi

)
�Xn.
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Via the R-matrices, using (10.1) and (10.2), this module is canonically isomorphic to a grading
shift of Xσ(1) ◦ · · · ◦Xσ(n) for any permutation σ ∈ Sn.

If in addition there are isomorphisms σi : a∗Xi−→Xi satisfying (5.2), then by iterating the
case of two modules, we obtain an object(

n⊙
i=1

Xi,
n⊙
i=1

σi

)
which does not depend on the order of the factors up to canonical isomorphism.

11. Reduction modulo p

We shall need to make some arguments involving reduction modulo p. For this we need a
p-modular system. Since we can work over any field with n n-th roots of unity, it is easy to
find such a system. For example, we can take F = Q(ζn), O = Z[ζn] and let π be a place of
F over p (recall that we assume p does not divide n). Then (Fπ,Oπ,Fp[ζn]) is a p-modular
system. The KLR algebras are known to be free over Z [Ma], so the standard theory of
reduction modulo p can be applied.

The following diagram of isomorphisms commutes, where d is the decomposition map and
the subscripts on the k∗s and γ∗s refer to the characteristic of the field k used to define them.

k∗0
d //

γ∗0 $$

k∗p

γ∗pzz

Aq(n)⊗A
A module M is said to be real if M ◦M is irreducible.

Proposition 11.1. Let λ ∈ P+ and µ ≤ η two elements of Wλ. Then there exists a real
self-dual simple R(η − µ)-module M(η, µ) satisfying

γ∗([M(µ, η)]) = D(µ, η).

Furthermore, the reduction of M(µ, η) modulo any prime remains irreducible.

Proof. By Theorem 4.2, D(µ, η) ∈ B∗. Therefore a self-dual simple R(η−µ)-module M(η, µ)
must exist satisfying γ∗([M(µ, η)]) = D(µ, η). This module is real because by Lemma 4.4,
D(µ, η)2 ∈ qZB∗. It remains irreducible when reduced modulo p because the decomposition
map commutes with the isomorphism to Aq(n). �

There are fundamentally three places in [KKKO2] where the assumption that the ground
field k has characteristic zero is used. This is in their proof that all generalised minors lie
in B∗, as well as in their Theorem 10.3.1 and Proposition 10.3.3. In the rest of this section,
we show how to prove these results in arbitrary characteristic, ensuring that all results in
[KKKO2] are valid in arbitrary characteristic.

We know that all generalised minors D(µ, ζ) lie in B∗ by Theorem 4.2 and [Mc2, Theorem
12.7]. The other two results which we need to prove appear as Theorem 11.2 and Corollary
11.5 below.

Given any two modules M and N , we define M �N to be the head of M ◦N .
First we generalise [KKKO2, Theorem 10.3.1] to all characteristics.
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Theorem 11.2. Let λ ∈ P+ and µ1, µ2, µ3 ∈Wλ such that µ1 � µ2 � µ3. Then

M(µ1, µ2) �M(µ2, µ3) ∼= M(µ1, µ3).

Remark 11.3. It is possible to prove this in all characteristics from the characteristic zero
result by an argument using reduction modulo p. However we give a uniform proof.

Proof. By Lemma 4.3, we get

Resµ2−µ1,µ3−µ2 M(µ1, µ3) ∼= M(µ1, µ2)⊗M(µ2, µ3).

By adjunction there is thus a nonzero morphism from M(µ1, µ2) ◦M(µ2, µ3) to M(µ1, µ3).
Since M(µ1, µ2) is real, [KKKO1, Theorem 3.2] implies that M(µ1, µ2) ◦M(µ2, µ3) has an
irreducible head, which must thus be M(µ1, µ3). �

Lemma 11.4. Let M and N be modules for a characteristic zero KLR algebra and let Mp

and Np denote reductions of M and N modulo the prime p. Suppose that Mp ◦Mp and Np

are simple. Then
deg rM,N = deg rMp,Np .

Proof. Since Mp ◦Mp is simple, the same is true of M ◦M . It is immediate from [KKKO1,
Theorem 3.2] that the spaces Hom(M ◦ N,N ◦ M) and Hom(Mp ◦ Np, Np ◦ Mp) are one
dimensional, spanned by rM,N and rMp,Np respectively. The morphism rM,N can be reduced
modulo p to give a nonzero morphism in Hom(Mp ◦Np, Np ◦Mp) of the same degree. By the
one-dimensionality of this homomorphism space, we have our desired result. �

As a Corollary, we are able to prove [KKKO2, Proposition 10.3.3] in all characteristics:

Corollary 11.5. Let x ∈ W and i ∈ I be such that xsi > x in Bruhat order and xωi 6= ωi.
Let X = M(xsωi, xωi) and Y = M(xωi, ωi). Then

deg rX,Y + deg rY,X = 2.

Proof. By Proposition 11.1 and Lemma 11.4, we reduce ourselves to the case where the
ground field k is of characteristic zero, which is [KKKO2, Proposition 10.3.3]. �

As a consequence of these results, all results proved in [KKKO2] are valid over an arbitrary
ground field.

12. Quantum cluster algebras

Here we give the definition of a skew-symmetrisable quantum cluster algebra, introduced by
Berenstein and Zelevinsky [BZ]. Some of our powers of q are different from those which appear
elsewhere in the literature. We make these choices so that we do not have to ever extend
scalars to Z[q1/2, q−1/2]. Specialising q = 1 recovers the classical notion of a commutative
cluster algebra.

Let ex ⊂ S be two finite sets. A cluster matrix is an integer matrix B with rows labelled by
S and columns labelled by ex. We call elements of S vertices and elements of ex exchangeable
vertices. Vertices not in ex are called frozen.

Let Λ = (λij)i,j∈S be a skew-symmetric integer matrix. We say that the pair (Λ, B) is
compatible if

ΛB = −2E
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where E = (est) is a matrix with est ≥ 0 for all s, t and est > 0 if and only if s = t ∈ ex.
We write es for the integer ess. If (Λ, B) is compatible, then the principal part of B is
automatically skew-symmetrisable.

The mutation of (Λ, B) in the direction k ∈ ex is the pair (Λ′, B′) where

λ′st =

{
λst if s, t 6= k∑

i max(bik, 0)λit if s = k 6= t,

and

b′ij =

{
−bij if i = k or j = k

bij +
|bik|bkj+bik|bij |

2 otherwise.

It is easily checked that the mutation of a compatible pair is compatible.
Let Q be a lattice and (·, ·) :Q×Q−→Z a bilinear form. Let A be a Q-graded Z[q, q−1]-

algebra which embeds in a skew-field K. Suppose A has a grading-preserving bar-involution
which satisfies q = q−1 and

AB = q(a,b)B ·A
for homogeneous elements A and B of degrees a and b respectively.

Fix a compatible pair (Λ, B) and let {di}i∈S be a family of elements in Q+ such that
λij ∼= (di, dj) (mod 2) for all i, j ∈ S. Let Yi ∈ Adi for i ∈ S be a family of elements such
that

YiYj = qλijYjYi.

We call such a family of elements Λ-commuting.
Given such a choice of Λ-commuting elements, make a choice of identification S ∼= {1, 2, . . . ,m}.

Let a = (a1, . . . , am) ∈ Nm. Define

Y a = (q1/4)(
∑

i aidi,
∑

i aidi)−
∑

i ai(di,di)+2
∑

i>j aiajλijY a1
1 Y a2

2 · · ·Y
am
m .

This is an element of a A that does not depend on the ordering of the indexing set S. The
condition λij ∼= (di, dj) (mod 2) implies that the exponent of q is an integer. If each Yi is
self-dual (i.e. invariant under the bar involution), then so is Y a.

The based quantum torus associated with Λ is the Z[q, q−1]-algebra T (Λ) generated by
X±1

1 , . . . , X±1
n subject to the relations

XiXj = qλijXjXi.

Definition 12.1. A quantum seed in A is a triple ({Ys}s∈S ,Λ, B) with (Λ, B) a compatible
pair and {Ys}s∈S a Λ-commuting family of self-dual elements of A such that the induced map
from T (Λ) to K is injective.

In such a situation, we call the set {Ys}s∈S the cluster, and the Ys are the cluster variables.
If s ∈ ex then the corresponding cluster variable is called exchangeable, otherwise frozen.
The elements Y a are the quantum cluster monomials corresponding to this seed.

We now define how to mutate a quantum seed at an exchangeable variable. Fix s ∈ ex.
Define a+(s)t = max(bts, 0) and a−(s)t = max(−bts, 0). This defines two sequences a+(s)
and a+(s) of integers indexed by S. The mutation variable Y ′s is then defined by

YsYs
′ = Y a+(s) + qesY a−(s). (12.1)
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It is easy to check the following

Proposition 12.2. The triple ({Yt}t∈S ∪ {Y ′s} \ {Ys},Λ′, B′) is also a quantum seed in K.

Now we can define a quantum cluster algebra.

Definition 12.3. Let I be a quantum seed in A. The quantum cluster algebra A(I) associated
to I is the Z[q, q−1]-subalgebra of K generated by all quantum cluster variables in all quantum
seeds obtained from I by all sequences of mutations.

A quantum cluster algebra will necessarily be a subalgebra of the fraction field of T (Λ).

13. The initial quiver

The quivers that appear from now on will always refer to combinatorial data used in cluster
mutation. They bear no relation to the quiver used to define the KLR algebras, which can
be safely forgotten about.

We now give a construction of a quantum cluster algebra associated to an element w ∈W .
The construction will a priori depend on a choice of reduced expression for w, but ultimately
we will show that this quantum cluster algebra does not depend on this choice.

Let w = si1 . . . sim be a reduced expression for w ∈ W . To this data, we now define a
quiver Q(i1, . . . , im). Consider an array indexed by {1, . . . ,m}×I. We place a vertex at each
point in the array of the form (t, it). We place a horizontal arrow from the vertex (a, i) to the
vertex (b, i) if a > b and there is no vertex (c, i) with a > c > b. The other arrows between
rows form a zigzag pattern: We place −i · j arrows from (a, i) to (b, j) if a < b and there is
no (c, j) with the properties that (i) c > b and (ii) there is no vertex (d, i) with c > d > b.
For each i ∈ I, the vertex of the form (a, i) with largest a is decreed to be frozen.

For example suppose that our Cartan matrix is 2 −3 −4
−3 2 −2
−4 −2 2


and that our reduced word is sisjsisksisjsisjsksj , where i, j and k are used to label the rows
of the Cartan matrix, in that order. Then the quiver Q(i, j, i, k, i, j, i, j, k, j) is

1

3
��

3

4

��

oo 5

3
��

oo 7oo

3

**4

��

2

2

''

3

55

6

3

@@

oo 8

2
��

oo 10oo

4

2

33
4

55

9

2

>>

oo

where a number on an arrow means that there are that many arrows between the vertices.
Frozen vertices are depicted in bold.

To the vertex (t, it), we associate the cluster variable

Yt := D(si1 · · · sitωit , ωit). (13.1)
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These are the cluster variables in an initial cluster in the quantum cluster algebra structure
on Aq(n(w)).

14. Seeds with automorphism

Definition 14.1. A quantum monoidal seed with automorphism is a quadruple
J = ({Mi}i∈V , Q, a, {σi}i∈V ) where

(1) Q is a quiver without loops with vertex set V = Vex t Vfr.
(2) a is an automorphism of Q preserving the decomposition V = VextVfr such that there

are no arrows in Q between any two vertices in the same a-orbit.
(3) {Mi}i∈V is a family of modules such that Mi ◦Mj is simple for all i, j ∈ V .
(4) {σi}i∈V is a family of isomorphisms

σi : a∗Mi−→Mai

such that the composition

σan−1i ◦ a∗σan−2i ◦ · · · ◦ (a∗)n−1σi

is the identity map on (a∗)nMi = Mi = Mani.

We remark here an important consequence of condition (3) in this definition. It implies
that any Mi1 ◦ · · · ◦Min is simple for any i1, . . . , in ∈ V . This follows from [KKKO2, Prop
3.2.5].

Let s denote an orbit of a on Vex. We define the mutation µs(Q) of Q in the direction s
to be the quiver obtained by the following combinatorial rule.

(1) For every i ∈ s and pair of arrows j → i→ k in Q, we add an arrow j → k.
(2) Reverse the direction of any arrow involving a vertex in s.
(3) If there is a pair of opposing edges x → y and y → x in the quiver, delete both.

Repeat until no such opposing pair exists.

It is clear that a induces an automorphism of µs(Q). We note that µs(Q) is the quiver
obtained by successively mutating Q at each vertex of s under the usual process of quiver
mutation.

Definition 14.2. Let J = ({Mi}i∈V , Q, a, {σi}i∈V ) be a quantum monoidal seed with auto-
morphism. A mutation of J in direction s is a quantum monoidal seed with automorphism
of the form

µs(J ) = ({Mi}i∈V \s ∪ {M ′i}i∈s, µs(Q), a, {σi}i∈V \s ∪ {σ′i}i∈s)
where for every k ∈ s, the module M ′k and the automorphism σ′k : a∗M ′k−→M ′ak are such that
there is the following commutative diagram with exact rows:

0 −−−−→ a∗(q
⊙
i→k

Mi) −−−−→ a∗(qΛ̃(Mk,M
′
k)Mk ◦M ′k) −−−−→ a∗

⊙
k→i

Mi −−−−→ 0y�σi yσk◦σ′k y�σi
0 −−−−→ q

⊙
i→k

Mai −−−−→ qΛ̃(Mk,M
′
k)Mak ◦M ′ak −−−−→

⊙
k→i

Mai −−−−→ 0

(14.1)

where the products are always taken over edges in Q.
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Here the integer Λ̃(M,M ′) is defined by 2Λ̃(M,M ′) = ν · ν ′ + deg rM,M ′ , where M and
M ′ are modules for R(ν) and R(ν ′). An alternative a postiori formula for these degree shifts
that do not depend on degrees of R-matrices is given in [KKKO2, Eq (6.3)].

It is clear that if a mutation in direction s exists, then it is unique. However the existence
of such a mutation is highly nonobvious.

Definition 14.3. Let J = ({Mi}i∈V , Q, a, {σi}i∈V ) be a quantum monoidal seed with auto-
morphism. It is said to be compatible with B∗ if

[(Mi �Mai � · · · �Mad−1i, σi � σai � · · · � σad−1i)] ∈ B∗

for all i ∈ V , where d is the minimal integer such that adi = i.

Note that by [KKKO2, Prop 3.2.5], (Mi �Mai � · · · �Mad−1i, σi � σai � · · · � σad−1i) is a
self-dual simple element of C, so its class is a priori a root of unity times an element of B∗.

15. The initial seed

Recall the setup from §5. Thus we have a KLR algebra associated with vertex set I, that
has a finite order automorphism a. Associated to I and a, we constructed a Cartan datum
(J, ·) to which we attach a symmetrisable Kac-Moody algebra g. Let W be the Weyl group of
g. Let W ′ be the Weyl group of the symmetric Cartan datum associated to I. Then there is
a canonical embedding of W in W ′ sending each sj to

∏
i∈j si. Throughout, we use standard

notation such as sk to denote generators of the Weyl group, and ωk to denote fundamental
weights, where the indices may come from either I or J , and the location of the index tells
us which root system we are considering.

Let w ∈ W . Let w = sj1 . . . sjn be a reduced expression for w in W . To this data, we
will construct in this section a quantum monoidal seed with automorphism compatible with
B∗. This quantum monoidal seed with automorphism will serve as an initial seed in our
categorification of Aq(n(w)).

From our reduced expression of w in W , we obtain a reduced expression for w ∈ W ′ by
replacing each occurrence of sj by

∏
i∈j si. The order in which this product is written will

not matter. Write w = si1 · · · sim for the reduced expression thus obtained.
Let Q0 be the quiver Q(i1, . . . , im) as defined in §13. It is equipped with a decomposition

of its vertex set V into exchangeable and frozen vertices and has a canonical automorphism
which we also denote by a satisfying condition (2) in Definition 14.1.

Let v = (t, it) be a vertex of Q. Define

Mv = M(si1 · · · sitωit , ωit),

the notation being as in Proposition 11.1.
It is shown in [KKKO2] that Mi ◦Mj is simple for all i, j ∈ V . Indeed this collection of

modules is the same as the monoidal seed constructed in that paper.
A collection of isomorphisms σv : a∗Mv−→Mv is constructed via the following lemma.

Lemma 15.1. Let w = sj1 · · · sjN be a reduced expression in W . For i ∈ jN , let Mi =
M(wωi, ωi). Then there exist isomorphisms σi : a∗Mi−→Mai such that
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(1)
σan−1i ◦ a∗σan−2i ◦ · · · ◦ (a∗)n−1σi

is the identity map on (a∗)nMi = Mi = Mani, and
(2)

[(
⊙
i∈jN

Mi,
⊙
i∈jN

σi)] ∈ B∗.

Proof. We proceed by induction on N , with the base case N = 0 being trivial. So suppose
N ≥ 1. Let Ni = N(sj2 · · · sjNωi, ωi). By inductive hypothesis there exist isomorphisms
τi : a∗Ni−→Nai such that

τan−1i ◦ a∗τan−2i ◦ · · · ◦ (a∗)n−1τi (15.1)

is the identity map on (a∗)nNi = Ni = Nani, and

[(
⊙
i∈jN

Ni,
⊙
i∈jN

τi)] ∈ B∗.

Let Xi = M(wωi, sj2 · · · sjNωi). Then Xi is a simple module of R(ν) where ν is a sum of
elements of j1. Therefore Xi is a circle product of one-dimensional simples, hence there is
a canonical choice of isomorphism xi : a∗Xi −→Xai. By Theorem 11.2, Mi

∼= Xi � Ni. We
define σi to be the isomorphism induced from xi ◦ τi. That condition (1) is satisfied follows
from (15.1). To check (2), note that

(
⊙
i∈jN

Mi,
⊙
i∈jN

σi) = (f̃j1)e(
⊙
i∈jN

Ni,
⊙
i∈jN

τi)

for some integer e, where f̃j is the crystal operator from [Mc2, §9]. The basis B∗ is defined

in [Mc2] in such a way that it is preserved by f̃j , so this completes the proof. �

In [KKKO2], it is shown that for each vertex k ∈ Vex, there exists a real simple module
M ′k and a short exact sequence

0→ q
⊙
i→k

Mi → qΛ̃(Mk,M
′
k)Mk ◦M ′k →

⊙
k→i

Mi → 0. (15.2)

Lemma 15.2. For each s ∈ Vex, there is an isomorphism a∗M ′s
∼= M ′as.

Proof. Since a∗M ′s and M ′as are simple, it suffices to prove an equality a[M ′s] = [M ′as] in
the Grothendieck group. Since the Grothendieck group Uq(n) is a domain, the class [M ′s] is
computed from the short exact sequence (15.2). By Lemma 15.1, there is an isomorphism
between a∗Mt and Mat for all vertices t of Q0. This proves the desired equality a[M ′s] =
[M ′as]. �

Theorem 15.3. There exist choices of isomorphisms σs : a∗Ms −→ Mas for s ∈ V and
σ′s : a∗M ′s−→M ′as for s ∈ Vex such that

(1)
σan−1i ◦ a∗σan−2i ◦ · · · ◦ (a∗)n−1σi

is the identity map on (a∗)nMi = Mi = Mani, and

σ′an−1i ◦ a
∗σ′an−2i ◦ · · · ◦ (a∗)n−1σ′i

is the identity map on (a∗)nM ′i = M ′i = M ′ani.
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(2) for all s ∈ Vex, the commutative diagram (14.1) with exact rows holds.

Proof. For each vertex s, choose an isomorphism τs : a∗Ms−→Mas and for each exchangeable
vertex s, choose an isomorphism τ ′s : a∗M ′s−→M ′as.

For each exchangeable s, consider the diagram

0 −−−−→ a∗(q
⊙
t→s

Mt) −−−−→ a∗(qΛ̃(Ms,M ′s)Ms ◦M ′s) −−−−→ a∗
⊙
s→t

Mt −−−−→ 0yf yτs◦τ ′s yg
0 −−−−→ q

⊙
t→s

Mat −−−−→ qΛ̃(Ms,M ′s)Mas ◦M ′as −−−−→
⊙
s→t

Mat −−−−→ 0.

(15.3)

Here, f and g are isomorphisms canonically induced by the isomorphism τs ◦τ ′s since Ms ◦M ′s
is uniserial.

Since �t→sMt and �s→tMt are irreducible and k is algebraically closed, Schur’s Lemma
implies that there exist δs, εs ∈ k× such that

f = δs
⊙
t→s

τt, g = εs
⊙
s→t

τt.

Let σs = λsτs and σ′s = µsτ
′
s for some constants λs and µs which are to be determined.

Note that (14.1) will be satisfied if and only if

λsµs = δs
∏
t→s

λt and λsµs = εs
∏
s→t

λt. (15.4)

For each i ∈ I, consider the leftmost vertex s in Q0 with second coordinate i. Make a
choice of λs for these classes such that the corresponding collection of σs’s satisfy the condition
(15.3). This is possible by Lemma 15.1. We now claim that once this choice is made, there
is a unique solution to (15.4) in the remaining variables λs and µs.

To see this, note first that it suffices first to solve the following system of equations in the
variables λt:

δs
∏
t→s

λt = εs
∏
s→t

λt. (15.5)

This system of equations determines the values of λt recursively. To find the value of λt
in terms of those λs with s where s has a smaller first coordinate, look at and rearrange the
equation (15.5) where s is the vertex immediately to the left of t.

This deals with the question of satisfying the second property in the theorem statement.
For the first, we stack many copies of the diagram (14.1) on top of each other to obtain

0 −−−−→ (q
⊙
i→k

Mi) −−−−→ (qΛ(Mk,M
′
k)Mk ◦M ′k) −−−−→

⊙
k→i

Mi −−−−→ 0yf yg yh
0 −−−−→ q

⊙
i→k

Mi −−−−→ qΛ(Mk,M
′
k)Mk ◦M ′k −−−−→

⊙
k→i

Mi −−−−→ 0

where f , g and h are all the appropriate compositions of circle products. Induct on the
vertex again. By inductive hypothesis, f = id. Since End(Mk ◦M ′k) ∼= k and the diagram
commutes, g = id. Therefore we get the property for the primed composition. Again since
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the diagram commutes, h = id, so we get the desired property there too, completing the
induction step. �

Definition 15.4. The quadruple

Jin = ({Mi}i∈V , Q0, a, {σi}i∈V )

is the initial seed associated to the choice of reduced expression for w.

Proposition 15.5. Suppose v = (k, ik) ∈ V . Let l1, . . . , lr be the location of indices in the
reduced expression si1 · · · sik that are equal to ik (so in particular lr = k). In the classification
of irreducible modules in terms of a cuspidal decomposition from [TW], we have

Mv = hd(L(βlr), . . . , L(βl1)).

Proof. For 0 ≤ m ≤ r, let µm = si1si2 · · · silmωik . We rewrite Theorem 8.8 in the form
[L(βlm)] = D(µm, µm−1). By Lemma 4.3, we then see that

Resµr−µr−1,...,µ1−µ0 Mv
∼= L(βlr)⊗ · · · ⊗ L(βl1).

This is enough to identify Mv in the classification of irreducible modules in terms of semi-
cuspidal decompositions. �

Corollary 15.6. The modules Mv in an initial cluster all lie in the cuspidal category Cw.

16. Cluster mutation

Theorem 16.1. Pick a reduced expression for w. Then the corresponding initial quantum
monoidal seed with automorphism Jin from Definition 15.4 admits arbitrary mutations in all
directions.

Proof. We have to show that for any sequence s1, . . . , st of elements in Kex, the mutation
µst · · ·µs1(Jin) exists.

We will achieve this via an induction on t. For t ≤ 1, this was proved in the previous
section. So now suppose that t ≥ 2. Define

J = ({Mi}i∈V , Q, a, {σi}i∈V ) = µst−2 · · ·µs1(Jin).

By inductive hypothesis, for each s ∈ Kex, the mutation

µs(J ) = ({Mi}i∈V \s ∪ {M ′i}i∈s, µs(Q), a, {σi}i∈V \s ∪ {σ′i}i∈s)
exists. Let

µst−1(J ) = ({Ni}i∈V , µst−1(Q), a, {τi}i∈V ).

As in [KKKO2], we shall assume that there are only arrows in Q from st−1 to st, the other
case proceeding similarly. Let y ∈ st. Choose x ∈ st−1 Define modules

Lx,y = N
�bxy
x

and
Ax,y =

⊙
i
M
�min(bixbxy ,−biy)
i .

A module M ′′y is then constructed in the proof of [KKKO2, Theorem 7.1.3] such that

Lxy �M ′y ∼= M ′′y ◦Axy.
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Make a choice of isomorphism fy :Lxy �M ′y−→M ′′y ◦Axy.
Now we have isomorphisms σ′ : a∗Lx,y−→Lax,ay and σ : a∗Ax,y−→Aax,ay which are induced

from µx(J ) and J . There is also an isomorphism σ′ : a∗M ′y −→M ′ay. Together they induce
an isomorphism σ′ : a∗(Lx,y �M ′y)−→Lax,ay �M ′ay. Consider the diagram

a∗(Lx,y �M ′y)
σ′−−−−→ Lax,ay �M ′ayya∗fy yfay

a∗M ′′y ◦ a∗Ax,y
τ−−−−→ M ′′ay ◦Aax,ay

(16.1)

There is a unique morphism τ as in the diagram above making it commute. Since M ′′y ◦Ax,y is
irreducible, there is a unique τy : a∗M ′′y −→M ′′ay such that τ = τy ◦σ. This τy is the morphism
we seek.

The family of morphisms τy satisfy the condition (4) in Definition 14.1 if and only if the
family τ do. Since the family σ′ satisfies this condition, this follows from the commutative
diagram (16.1).

It remains to show the mutation property holds. Define

B =
⊙

biy>0, bix>0

M
�bixbxy
i �

⊙
b′iy>0, biy<0, bix>0

M
�b′iy
i ,

Py =
⊙

biy>0,i 6=x
M
�biy
i , Qy =

⊙
b′iy<0, i 6=x

M
�−b′yi
i .

We consider the following diagram, whose horizontal rows are the exact sequences con-
structed in the proof of [KKKO2, Theorem 7.1.3] (two displayed equations above (7.13)).
The integer c is described explicitly in [KKKO2] and the vertical morphisms are composites
of the canonical maps from a∗Xy to Xay for X ∈ {B,P,A,M,L,M ′, Q}.

0 // a∗(q(By
⊙
Py) ◦Ay) //

��

a∗(qcMy ◦ (Ly �M ′y)) //

��

a∗((Ly
⊙
Qy) ◦Ay) //

��

0

0 // q(Bay
⊙
Pay) ◦Aay // qcMay ◦ (Lay �M ′ay) // (Lay

⊙
Qay) ◦Aay // 0.

This diagram is built from the short exact sequences for mutation between My and M ′y,
together with R-matrix constructions. Using (14.1) and a∗rX,Y = ra∗X,a∗Y , we see that this
diagram commutes.

We then combine this with (16.1) to obtain a commutative diagram

0 // a∗(q(By
⊙
Py) ◦Ay) //

��

a∗(qcMy ◦M ′′y ◦Ay) //

��

a∗((Ly
⊙
Qy) ◦Ay) //

��

0

0 // q(Bay
⊙
Pay) ◦Aay // qcMay ◦M ′′ay ◦Aay // (Lay

⊙
Qay) ◦Aay // 0.

The proof of [KKKO2, Theorem 7.1.3] then shows that the following diagram has exact
rows



CLUSTER MONOMIALS ARE DUAL CANONICAL 25

0 // a∗q(By
⊙
Py) //

��

a∗(qcMy ◦M ′′y ) //

��

a∗(Ly
⊙
Qy) //

��

0

0 // q(Bay
⊙
Pay) // qcMay ◦M ′′ay // (Lay

⊙
Qay) // 0.

We need to show that this diagram commutes to show that µst · · ·µs1(Iin) exists. It
commutes because the diagram above it is obtained by applying − ◦ A, and that diagram
commutes. �

17. Decategorification

Now we have established the existence of a quantum monoidal seed with automorphism,
that has successive mutations in all directions. There was a choice made in the construction
of the initial seed, but Theorem 17.7 below shows that this choice does not matter for the
categorified quantum cluster structure. We now investigate what implications this categorical
structure has for a cluster algebra structure on Aq(n(w)).

Suppose J = ({Mi}i∈V , Q, a, {σi}i∈V ) is a reachable quantum monoidal seed with auto-
morphism in Cw. From J , we now give a recipe for constructing a cluster in Aq(n(w)).

For each a-orbit s of V (Q), we define the cluster variable

xs =

[(⊙
i∈s

Mi,
⊙
i∈s

σi

)]
(17.1)

The exchange matrix B is constructed from Q in the following fashion. Let s and t be two
a-orbits on the vertex set V . Then bts is equal to the number of arrows from one element of
t to all elements of s. Here if an arrow goes from t to s it counts as a positive arrow and if
an arrow goes from s to t it counts as a negative arrow for the purposes of this count.

The matrix Λ = (λst) is uniquely determined by the equations xsxt = qλstxtxs, using
Lemma 17.1 below.

Denote the collection ({xs}, B,Λ) by X(J ).

Lemma 17.1. The elements xs defined by (17.1) all q-commute.

Proof. By [KKKO2, Proposition 3.2.5], xsxt and xtxs are both classes of simple modules.
These must be the same simple, hence they are equal up to a power of q. �

Lemma 17.2. Suppose that J is a quantum monoidal seed with automorphism that admits a
mutation in the direction s. Then the clusters X(J ) and X(µs(J )) are related by a quantum
cluster mutation as in (12.1).

Proof. Let k ∈ s and let d be the smallest positive integer such that adk = k. Define

Ms = (Mk �Mak � · · · �Mad−1k, σk � σak � · · · � σad−1k).

andM′s andMi for i 6= s similarly. Let Z =Ms �M′s. By (14.1), there is a canonical map
from Z to �k→iMi and a canonical map from �i→kMi to Z. Therefore

xsx
′
s =

∏
k→i

xi + qes
∏
i→k

xi + c

where c corresponds to the other terms in the Jordan-Holder filtration of Ms �M′s.
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Let us now forget the diagram automorphism and consider the underlying KLR module
only. The composition factors of each Mj ◦M ′j for each j ∈ s are known by (14.1). Therefore

the only simple subquotients L of the underlying KLR module ofMs◦M′s satisfying a∗L ∼= L
are the submodule �k→iMi and the quotient module �i→kMi identified above. Returning to
the folded situation, this implies that apart from the simple submodule and quotient explicitly
identified, all of the simple composition factors of Ms ◦M′s are traceless by [Mc2, Theorem
3.6]. Hence c = 0 as required. �

Lemma 17.3. Let ({Mi}i∈V , Q0, a, {σi}i∈V ) be the initial quantum monoidal seed with auto-
morphism arising from a reduced expression w = sj1 · · · sjN of some w ∈W . Let 1 ≤ k ≤ N .

To k corresponds an a-orbit in Q0. Let s, as, . . . , ad−1s be an enumeration of this orbit. Let
v = sj1 . . . sjk Then

[(
⊙
i∈jk

Mais,
⊙
i∈jk

σais)] = D(vωjk , ωjk).

Proof. We will first prove this identity holds up to a factor of a root of unity, then eliminate
the root of unity ambiguity in the proof of Theorem 17.4 below.

The module �i∈jkMais is simple. Therefore the left hand side of our desired identity lies
in B∗ up to a root of unity.

The module V (ωjk) is the quotient of Uq(n) by the left ideal generated by θ2
jk

and θl
for l 6= jk. By Theorem 3.3 and the fact that the vωjk -weight space of V (ωjk) is one-
dimensional, the generalised minor D(vωjk , ωjk) ∈ B∗ is characterised up to scalar by the
fact that rν−2jk,2jkD(vωjk , ωjk) = 0 and rν−l,l = 0 for l 6= jk, where ν = ωjk − vωjk .

Therefore to complete the proof up to a root of unity, it suffices to show that

Resν−2jk,2jk(
⊙
i∈jk

Mais,
⊙
i∈jk

σais) = 0 and Resν−l,l(
⊙
i∈jk

Mais,
⊙
i∈jk

σais) = 0 for l 6= jk.

These restrictions can be computed at the unfolded level. It is already known that
[�i∈jkMais] =

∏
i∈jk D(vωi, ωi), which is enough information to make this conclusion.

This completes the proof up to a root of unity, which is enough for its application in the
proof of Theorem 17.4 below. The conclusion of Theorem 17.4 below implies that the root
of unity ambiguity can be removed, completing the proof. �

Theorem 17.4. Let ({Mi}i∈V , Q0, a, {σi}i∈V ) be the initial seed as above. Then

[(Ms �Mas � · · · �Mad−1s, σs � σas � · · · � σad−1s)] ∈ B∗

and
[(M ′s �M ′as � · · · �M ′ad−1s, σ

′
s � σ′as � · · · � σ′ad−1s)] ∈ B∗,

where d is the minimal integer such that ads = s.

Proof. Let r ∈ V . If it exists, let s be the vertex immediately to the left of r in the same row
of Q0. We will assume as our inductive assumption that the classes of the objects

(Mt �Mat � · · · �Mad−1t, σt � σat � · · · � σad−1t)

lie in B∗ for all t ∈ V with smaller first coordinate than r. From this assumption, we will
conclude that

[(Ms �Mar � · · · �Mad−1r, σr � σar � · · · � σad−1r)] ∈ B∗ (17.2)
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and
[(M ′s �M ′as � · · · �M ′ad−1s, σ

′
s � σ′as � · · · � σ′ad−1s)] ∈ B∗ (17.3)

which suffices to prove our theorem.
If r is the first vertex in its row, then we are done by Lemma 15.1. Suppose this is not

the case and let s be the vertex immediately to the left of r in its row. Let d be the smallest
positive integer such that adr = r. Taking the circle product of d copies of (14.1), we see that

K := qd
(⊙
t→s

d−1⊙
i=0

Mait,
⊙
t→s

d−1⊙
i=0

σait

)
is the socle of

Z := ((qdΛ̃(Ms,M ′s)Ms�· · ·�Mad−1s)◦(M ′s�· · ·�M ′ad−1s), (σs�· · ·�σad−1s)◦(σ′s�· · ·�σ′ad−1s))

and

Q := (
⊙
s→t

d−1⊙
i=0

Mait,
⊙
s→t

d−1⊙
i=0

σait)

is the head of Z.
Since each Mk ◦M ′k is of length two, all simple subquotients of Z apart from K and Q are

traceless, so [Z] = [K] + [Q] in the Grothendieck group.
By inductive hypothesis, we know [Q] ∈ qZB∗. There exists some root of unity ζ such

that ζ[K] ∈ qZB∗ and ζ = 1 if and only if (17.2) holds. The class of Z is, up to a power
of q, the product of x = [(Ms � Mas � · · · � Mad−1s, σs � σas � · · · � σad−1s)] and x′ =
([M ′s �M ′as � · · · �M ′ad−1s

, σ′s � σ′as � · · · � σ′ad−1s
)]. We know by inductive hypothesis that

x ∈ B∗. We know that ζ ′x′ ∈ B∗ for some root of unity ζ ′, which is 1 if and only if (17.3)
holds.

We now specialise to q = 1. We get an equation of the form

x(ζ ′x′) = ζ ′ζ−1a+ ζ ′b

where and a and b are, by Lemma 17.3, products of generalised minors. By [Wi1], these
generalised minors are cluster variables in an initial cluster of a cluster algebra structure on
C[N(w)], so x divides a+ b.

In [GLS3, Theorem 1.3], it is shown that cluster variables are irreducible, which implies
they are prime in our case as C[N(w)], being a polynomial ring, is a unique factorisation
domain. If ζ 6= 1, then we can use the two divisibility results to show that x divides both a
and b in C[N(w)], contradicting this primality result.

Therefore ζ = 1. Lemma 3.5 now implies that ζ ′ = 1 which completes the proof. �

Corollary 17.5. The initial quantum monoidal seed Jin = ({Mi}i∈V , Q0, a, {σi}i∈V ) is com-
patible with B∗.

Theorem 17.6. All reachable quantum monoidal seeds with automorphism are compatible
with B∗.

Proof. For an initial seed, this is Corollary 17.5. We now proceed by induction. So suppose
that J = ({Mi}i∈V , Q, a, {σi}i∈V ) is a quantum monoidal seed with automorphism compat-
ible with B∗ and s be an a-orbit in Vex. We will show that µs(J ) is also compatible with
B∗.
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Let i ∈ s and Y ′s = [M ′i �M ′ai � · · · �M ′ad−1i
, σ′i � σ′ai � · · · � σ′ad−1i

]. We have to show

that Y ′s ∈ B∗. By Lemma 17.2, we have YsY
′
s = x+ y where Ys, x, y ∈ qZB∗ by the inductive

hypothesis. Furthermore Y ′s is a root of unity times an element of B∗, since it is the class of
a self-dual simple object. Lemma 3.5 says that a product of two elements of B∗ has at least
one coefficient a power of q when expanded in the basis B∗. Therefore the root of unity must
be one, completing the proof. �

At this point in time, our cluster categorification depends on the choice of a reduced
expression for w. This is not the case because of the following theorem.

Theorem 17.7. The initial clusters for each choice of reduced decomposition are all reachable
from each other.

Proof. Note that if it exists, there is a unique up to isomorphism quantum monoidal seed
with automorphism compatible with B∗ categorifying any particular cluster. Therefore this
theorem follows from its decategorified version, i.e. that any two initial clusters coming from
different reduced decompositions are reachable from each other in the cluster algebra. This
is a standard fact about the cluster algebra structure on C[N(w)] - if two reduced decom-
positions are related by a braid relation of the form sisjsi = sjsisj , then the corresponding
initial clusters are a single cluster mutation apart from each other. �

18. Conclusion

The following theorem is [GY1, Theorem 10.1], generalised in [GY2]. The proof of Goodearl
and Yakimov is purely non-commutative ring theoretic.

Theorem 18.1. The Z[q, q−1]-algebra Aq(n(w)) has the structure of a quantum cluster al-
gebra. An initial cluster is given by the collection of generalised minors in (13.1), while the
exchange matrix for the initial cluster is given by the construction in §15.

We have categorified this theorem with the results of this paper.
Now recall that B∗ denotes the dual p-canonical basis. As a corollary of our categorification

results, we obtain:

Theorem 18.2. Every cluster monomial in Aq(n(w)) lies in B∗.

Proof. For the cluster variables, this is a consequence of Theorem 17.6. That the monomials
in the cluster variables lie in B∗ then follows up to a root of unity by [KKKO2, Prop 3.2.5].
That the root of unity is 1 is Lemma 3.5. �
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