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Abstract. This is a compilation of my own comments on my papers.

[1] Factorial Grothendieck Polynomials

This paper is essentially my honours thesis. Factorial Grothendieck polynomials represent
the classes in equivariant K-theory of Schubert varieties in the Grassmannian. This is not
discussed in this paper, but follows from the comparison made with double Grothendieck poly-
nomials once one knows how the double Grothdieck polynomials represent classes in the equi-
variant K-theory of the flag variety. For a better relationship between the factorial and double
Grothendieck polynomials, see http://petermc.net/maths/papers/fgpaddendum.pdf.

[3] Metaplectic Whittaker Functions and Crystal Bases

This, together with [5], is essentially my PhD thesis.

Remark 8.5: The conjecture made here is false. A counterexample in G2 appears in [L].

[4] Factorial Schur Functions via the Six Vertex Model

This was never published because [7] contains stricly stronger results.

[5] Principal Series Representations of Metaplectic Groups Over Local
Fields

p5: The remark (that isn’t used in the paper) that [AdCK] produces a central extension
whose commutator is the Hilbert symbol is not correct, the commutator is only the Hilbert
symbol up to a sign.

Proof of Theorem 4.2: The fact that the index of M(k) in G(k) is coprime to n is stated
without proof. The case where G = GLN essentially appears as problem A4 in the 2022
Simon Marais competition and the solution in [Mc] shows how to prove this result in the
generality needed for this paper.

Proof of Theorem 12.2, 3rd line: p(t) ∈ T ∩K should be replaced by p(tkt−1) ∈ T ∩K.
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Theorem 12.3: The condition for relation (4) should be 〈α∨, λ〉 = 2nα (we apologise for
using α for a coroot instead of a root).

Proof of Theorem 12.3: The “appropriate volume” is not q2nα−1, it is ql−ql−1. To compute

this volume, we have to know when h =
(
b$2l d
−a −u$−l

)
and H =

(
B$2l D
−A −U$−l

)
are in the

same left I-coset. This happens precisely when h−1H ∈ I, which upon multiplying out leads
to the condition (−Du + Ud)$−l ∈ OF . Since d, u,D,U are all units, this is equivalent to
D/U ∼= d/u (mod $l) and there are ql − ql−1 units in OF /$l, hence ql − ql−1 cosets, hence
this is the correct volume. The computation/proof discussed here should really have been
done by first applying an Iwasawa factorisation to

(
a b
c d

)
to make it simpler.

[8] Finite Dimensional Representations of Khovanov-Lauda-Rouquier
Algebras I: Finite Type

A small missing argument in types ADE in positive characteristic is completed in [9].
Alternative arguments that avoid a case-by-case analysis in type ADE appear in [10] (I have
not checked if they generalise to types BCFG - the key argument is the one using R-matrices
in [10, §15]).

The homological properties proved in this paper essentially imply that finite type KLR
alegbras are affine quasi-hereditary, see [9] where the theory of standard modules is developed,
and [14, §6], which collates the results.

[9] Homological Properties of Finite Type Khovanov-Lauda-Rouquier
Algebras (with J. Brundan and A. Kleshchev)

The results in this paper can be restated in the language of affine quasi-hereditary algebras
introduced in [K], and a discussion of these results in this language is in [14, §6].

[10] Representations of Khovanov-Lauda-Rouquier algebras III: Symmetric
affine type

The strange numbering of this paper (there is no II) is because originally II was going to
be a paper about affine sl2, but the results in this paper were obtained before the other was
written up, and supercede them.

Proposition 9.2: R(nδ) should be R(nα).

[13] Folding KLR algebras

This paper was written in order to provide the foundations for [19]. The identification of
the ring A with Z in all types is obtained in [MSZ].

[18] Singularities of Schubert varieties within a right cell (with M. Lanini)

The discussion in §4.3 can be simplified using [17, Theorem 5.1] which gives an alternative
and much more general family of sheaves, which agrees with parity sheaves on Schubert
varieties, and whose theory is more amenable to restriction along a slice.
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