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ABSTRACT. Simple representations of KLR algebras can be used to realize the in-
finity crystal for the corresponding symmetrizable Kac-Moody algebra. It was
recently shown that, in finite and affine types, certain sub-categories of “cuspidal”
representations realize crystals for sub Kac-Moody algebras. Here we put that
observation an a firmer categorical footing by exhibiting a corresponding functor
between the category of representations of the KLR algebra for the sub Kac-Moody
algebra and the category of cuspidal representations of the original KLR algebra.
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1. INTRODUCTION

Khovanov-Lauda-Rouquier (KLR) algebras have been a subject of intense study
in the last few years, due to the fact that their categories of graded representations
categorify various objects in the theory of quantum groups. Most importantly
here, the gradable simple modules for a KLR algebra can be used to realize the
crystal B(−∞) of the positive part of a universal enveloping algebra.

In [TW], the correspondence between simple modules for KLR algebras and
crystals is used to define Mirković-Vilonen polytopes in all affine types. There
the polytopes arise as the character polytopes of representations of KLR algebras
(along with some decoration in affine types). One of the key observations is that,
for every face of the MV polytope, there was a sub-category (the cuspidal repre-
sentations for that face) whose simple representations realized a crystal for a lower
rank enveloping algebra. There the correspondence is just combinatorial, but it is
natural to ask for a corresponding functor from representations of the smaller rank
KLR algebra to representations of the original KLR algebra. Here we construct
such a functor under the following conditions:

Assumption 1.1. Either

• The original root system is of finite type, or
• The original root system is of symmetric affine type, and the KLR algebra is geo-

metric and over a field of characteristic 0.

In fact, our construction works under somewhat more general conditions, see As-
sumption §3.11. We construct the functor by considering a certain projective object
P in the category of cuspidal representations which has the property that End(P )
is isomorphic to a new KLR algebra. Our face functor is then X → P ⊗End(P ) X .

If the original KLR algebra satisfies Assumption 1.1 and the face is of finite type
then P is a projective generator and our functor is an equivalence of categories.
More generally this is not true, but we still show that the functor respects much of
the structure. In particular, it intertwines the crystal operators for the KLR alge-
bra associated to the face and the crystal operators from [TW] for the category of
cuspidal modules corresponding to the face whenever both are defined.

We then analyze some implications of our construction for the category of imag-
inary cuspidal representations of R(δ) in the affine case. Essentially, our functors
allow us to understand all such categories in terms of the ŝl3 case. This allows us to
show that the category of cuspidal modules of R(δ) is equivalent to the category
of representations of k[z] ⊗ Z where Z is the finite type zig-zag algebra defined
in [HK]. This last result in the special case of a balanced convex order appears
in [KM], where they also consider the cuspidal representations of R(nδ) for all n.
Their proof relies on significantly more case-by-case analysis, which our reduction
to ŝl3 avoids. We believe our arguments should generalize to give their result on
cuspidal R(nδ)-modules, which would generalize it to arbitrary convex orders.

Recent work of Kashiwara and Park [KP] is closely related to our construction.
Our face functors are examples of the Kashiwara-Park functors, at least in finite
type. Kashiwara and Park do not show that their functors are equivalences of
categories for finite type faces (which is not true in the generality they consider),
and do not see the connection with the crystal structure in [TW].
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2. PRELIMINARIES

2.1. Root systems and convex orders. Fix a root system Φ. Let (aij)i,j∈I be its
Cartan matrix, and di the usual symmetrizing factors. Let ∆ denote the set of
simple roots of Φ. For i, j ∈ I , write i · j for diaij . Then i · j = j · i. Extend this
by linearity to a Z-valued bilinear pairing on NI . For λ = (ni)i∈I ∈ NI , define
ht(λ) =

∑
i∈I ni.

Definition 2.1. A face is a decomposition of Φ+ into three disjoint subsets

Φ+ = F+ t F t F−

such that, for all x ∈ spanR≥0
F :

(1) If y ∈ spanR≥0
F+ is non-zero, then x+ y /∈ spanR≥0

F− ∪ F .
(2) If y ∈ spanR≥0

F− is non-zero, then x+ y /∈ spanR≥0
F+ ∪ F .

We often denote a face simply by F , with F+, F− being suppressed.

Remark 2.2. The terminology “face” comes from the fact that, in finite type, there
is a bijection between faces in the sense of Definition 2.1 and faces of the Weyl
polytope (i.e. the convex hull of the Weyl group orbit of ρ).

Definition 2.3. [TW, Definition 1.8] A convex preorder is a pre-order � on Φ+ such
that, for every equivalence class C, F− = {α : α ≺ C}, F = C,F+ = {α : α � C} is a
face. A convex order is a convex pre-order which is a total order on positive real roots.

Remark 2.4. There is also a notion of convex order based on the condition that if
three roots satisfy α + β = γ, then γ is between α and β. It is clear from defi-
nitions that any order which is convex according to Definition 2.3 is also convex
in that sense. In finite type the two notions were shown to be equivalent in [TW,
Paragraph before Proposition 1.16]. In affine type the equivalence is shown in [M,
Theorem 3.2].

Definition 2.5. A convex order≺ is said to be compatible with a face F if F is an interval
for ≺ and F− ≺ F ≺ F+.

For any linear functional c : RΦ → R, we get a convex pre-order on Φ+ by
setting α � β if c(α)/ht(α) ≤ c(β)/ht(β). The following should be considered a
partial converse to this statement.

Lemma 2.6. [TW, Lemma 1.10] For any face F there is a sequence {Hn}n∈N of coori-
ented hyperplanes in RΦ+ such that

• F ⊂ Hn for all n,
• for all α ∈ F+, α lies on the positive side of Hn for n� 0, and
• for all α ∈ F−, α lies on the negative side of Hn for n� 0.
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In particular, for any N , if we let Γ be the set of roots in Φ+ of height at most N , there is a
linear functional c :RΦ+−→R such that

(F+ ∩ Γ, F ∩ Γ, F− ∩ Γ) = (c−1(R>0) ∩ Γ, c−1(0) ∩ Γ, c−1(R<0) ∩ Γ).

Let ∆F be the set of positive real roots in F which cannot be written as sums of
other positive roots in F . Let ΦF be the corresponding root system whose simple
roots are ∆F . If Φ is at worst affine then, as discussed in [TW, §3.2], ΦF is a product
of finite and affine root systems (although imaginary root spaces may decompose).

Remark 2.7. The parenthetical remark above is because, if ΦF has two or more
affine components, it contains non-parallel imaginary roots, all of which come
from the imaginary root space of Φ. See [TW, Remark 3.16] for an example.

Lemma 2.8. For every face F there is a compatible convex order ≺. Furthermore, for any
convex order ≺F on Φ+

F , we can choose ≺ such that its restriction to Φ+
F agrees with ≺F .

Proof. Choose a sequence of linear functionals Γn which define the co-oriented
hyperplanes from Lemma 2.6. Define α ≤ β if Γn(α)/ht(α) ≤ Γn(β)/ht(β) for all
sufficiently large n. This is manifestly a convex pre-order, and Φ+

F is an equivalence
class. By [TW, Lemma 1.14], this can be refined to a convex total order, which can
be made to agree with any chosen convex order on Φ+

F . �

2.2. KLR algebras. Here we review the Khovanov-Lauda-Rouquier algebras in-
troduced in [KL, R]. For any ν ∈ NI , define

Seq(ν) = {i = (i1, . . . , iht(ν)) ∈ Iht(ν) |
ht(ν)∑
j=1

ij = ν}.

The symmetric group Sht(ν) acts on Seq(ν). Let si denote the adjacent transposition
(i, i+ 1). Fix a field k. For each i, j ∈ I , choose Qij(u, v) ∈ k[u, v] such that

(Q1) Qii(u, v) = 0.
(Q2) If u has degree 2di and v has degree 2dj thenQij is homogeneous of degree

−2diaij = −2djaji. Furthermore, the coefficients tij and tji of u−aij and
v−aji are both nonzero.

(Q3) Qij(u, v) = Qji(v, u).

Definition 2.9. The KLR algebra R(ν) is the associative k-algebra generated by elements
ei, yj , ψk with i ∈ Seq(ν), 1 ≤ j ≤ ht(ν) and 1 ≤ k < ht(ν), subject to the relations

(2.1)

eiej = δi,jei,
∑

i∈Seq(ν)

ei = 1, ykyl = ylyk, ykei = eiyk,

ψlei = esliψl, ψkψl = ψlψk if |k − l| > 1, ψ2
kei = Qik,ik+1

(yk, yk+1)ei,

(ψkyl − ysk(l)ψk)ei =


−ei if l = k, ik = ik+1,

ei if l = k + 1, ik = ik+1,

0 otherwise,

(ψk+1ψkψk+1 − ψkψk+1ψk)ei

=


Qik,ik+1

(yk, yk+1)−Qik,ik+1
(yk+2, yk+1)

yk − yk+2
ei if ik = ik+2,

0 otherwise.
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Define R =
⊕
ν∈NI

R(ν).

This is a graded algebra where each ei has degree zero, yjei has degree ij ·ij and
ψkei has degree −ik · ik+1. Fix ν. For each σ ∈ Sht(ν), choose a reduced expression
σ = si1 · · · sik , and let ψσ = ψi1 · · ·ψik As shown in [KL, 2.5],ψσ

ht(ν)∏
k=1

yrkk

 ei | i ∈ Seq(ν), r1, . . . , rht(ν) ≥ 0, σ ∈ Sht(ν)


is a basis for R(ν).

Throughout this paper we assume all modules are graded and finitely gener-
ated. We write q for the grading shift functor, if V = ⊕n∈ZVn, then (qV )n = Vn−1.
For modules U and V , the space of homomorphisms Hom(U, V ) is graded, we
have Hom(U, V ) = ⊕n∈Z Hom(U, V )n, where Hom(U, V )n is the space of ho-
mogenous homomorphisms from qnU to V , or equivalently from U to q−nV . For a
graded vector space V = ⊕n∈ZVn, its graded dimension is dimq V =

∑
n∈Z(dimVn)qn.

IfM is anR(ν) module we say wt(M) = ν, and define its character to be the formal
sum

ch(M) =
∑
i

dimq(eiM)[i].

Since we only consider finitely generated modules these dimensions are all finite.

Remark 2.10. There is also a diagrammatic approach toR, see [KL, KL2, TW]. There
the yi are represented by dots and the ψi by crossings.

Fix λ, µ ∈ NI . There is a natural inclusion ιλ,µ : R(λ)⊗R(µ)→ R(λ+µ) defined
by ιλ,µ(ei ⊗ ej) = eij, ιλ,µ(yi ⊗ 1) = yi, ιλ,µ(1 ⊗ yi) = yi+ht(λ), ιλ,µ(ψi ⊗ 1) = ψi,
ιλ,µ(1⊗ ψi) = ψi+ht(λ). These combine to give an inclusion ι : R⊗R→ R. Let eλµ
be the image of the unit under the inclusion R(λ)⊗R(µ)→ R(λ+ µ)

Definition 2.11. The induction functor Indλ,µ : R(λ)⊗R(µ)-mod→ R(λ+ µ)-mod is
given by

Indλ,µ(M) = R(λ+ µ)eλµ
⊗

R(λ)⊗R(µ)

M.

For an R(λ)-module A and an R(µ)-module B, we write A ◦B for Indλ,µ(A⊗B).
The restriction functor Resλ,µ : R(λ+ µ)-mod→ R(λ)⊗R(µ)-mod is given by

Resλ,µ(M) = eλµM.

By iterating Definition 2.11, functors such as

Resλ1,...,λl : R(λ1, . . . , λl)-mod→ R(λ1)⊗ · · · ⊗R(λl)-mod

Indλ1,...,λk : R(λ1)⊗ · · · ⊗R(λl)-mod→ R(λ1, . . . , λl)-mod
can be unambiguously defined.

The induction functor is left adjoint to the restriction functor. Since Indλ,µ sends
projective modules to projective modules, there is a natural isomorphism

(2.2) Exti(M1 ◦ · · · ◦Mn, N) ∼= Exti(M1 ⊗ · · · ⊗Mn,ResN).

The restriction functor also has a right adjoint, given by the usual coinduction
construction. We will need [LV, Theorem 2.2], which says

(2.3) CoInd(A⊗B) ∼= q−λ·µB ◦A.
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In [LV] this is stated for finite dimensional modules, but the same proof shows it
is true in complete generality. Thus, if A is a R(λ+µ)-module, B is a R(λ)-module
and C is a R(µ)-module, then there is a natural isomorphism

(2.4) Hom(ResA,B ⊗ C) ∼= Hom(A, q−λ·µC ◦B).

The following is often called the Mackey filtration.

Theorem 2.12. [KL, Proposition 2.18] Let λ1, . . . , λk, µ1 . . . , µl ∈ NI be such that∑
i λi =

∑
j µj , and let M be a R(λ1)⊗ · · · ⊗R(λk)-module. Then the composition

Resµ1,...,µl ◦ Indλ1,...,λk(M)

has a filtration indexed by tuples ηij satisfying λi =
∑
j ηij and µj =

∑
i ηij . Every

subquotient of this filtration is isomorphic to Indµη ◦τ ◦ Resλη(M), where

• Resλη : ⊗iR(λi)-mod−→⊗i(⊗jR(ηij))-mod is the tensor product of the Resηi• ,
• τ : ⊗i (⊗jR(ηij))-mod−→⊗j(⊗iR(ηij))-mod is given by permuting the tensor

factors and shifting the degree. The degree shift is the degree of the permutation
acting on the idempotent eη11η12···ηk` , and

• Indµη : ⊗j (⊗iR(ηij))-mod−→⊗jR(µj)-mod is the tensor product of the Indη•i .

There is an anti-automorphism † of R which fixes each of the generators ei, yj
and ψk. Thus, given a finite dimensionalR-moduleM , we can define the structure
of an R-module on its dual M~ = Homk(M,k) by (r · φ)(m) = φ(r† ·m). As in
[KL, §3.2] each finite dimensional simple module is isomorphic to its dual up to a
grading shift. The dual induces the bar involution on the Grothendieck group. Its
behavior with respect to induction is

(2.5) (M ◦N)~ ∼= qwt(M)·wt(N)N~ ◦M~.

As discussed in [KL2], different choices ofQij can produce isomorphic algebras.

Definition 2.13. Let R be a KLR algebra of symmetric type. We say R is of geometric
type if R is isomorphic to the one defined in [M] via an isomorphism φ which respects the
inclusion ι : R⊗R→ R in the sense that φ ◦ ι = ι ◦ (φ⊗ φ).

The terminology is due to a geometric interpretation of KLR algebras with this
choice of parameters. The following is discussed by Khovanov and Lauda [KL2].

Lemma 2.14.
(1) Every KLR algebra whose Dynkin diagram is a tree is of geometric type. In par-

ticular, every KLR algebra of affine type Dn and En is of geometric type.
(2) For n ≥ 3, A KLR algebra of type ŝln with I = Z/nZ and Qi,i+1 = siu+ tiv is

of geometric type if and only if s1 · · · sn/t1 · · · tn = (−1)n.
(3) A KLR algebra of type ŝl2 is of geometric type if and only if the quadratic polyno-

mial Q0,1(u, v) has discriminant zero.

Proof. Fix a root system. There is an action of (k∗)I×I on the set of KLR algebras
where (zij)i,j∈I acts by ψjei 7→ zijij+1

ψjei, yjei 7→ z−1
ijij

yjei and ei 7→ ei. This
sends algebras to isomorphic algebras. The Qij change according to Q′ij(u, v) =
zijzjiQij(ziiu, zjjv). Furthermore, all possible isomorphisms of KLR algebras that
fix the idempotents ei arise in this way. To see this notice that, for i 6= j, looking at
only 2 strands, it is clear for weight reasons that any automorphism must sendψ1ei
to a multiple of itself, say zi1i2ψ1ei. Also, looking at a single strand, y1 must be sent
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to a multiple of itself, say zi1i1y1. The relation that, if i1 = i2, (ψ1y2 − y1ψ1)ei = ei
implies that a crossing with both stands colored i must be scaled by z−1

ii .
If the Dynkin diagram is a tree, it is clear that all choices of Qij are related by

such isomorphisms. This establishes (1).
In type ŝln, for the KLR algebras used in [M], it is easy to check that the stated

relations hold. The action of (k∗)I×I preserves these relations, as do diagram au-
tomorphisms, so they hold for all geometric type KLR algebras. Furthermore, one
can check that all KLR algebras that satisfy these conditions are related in this way,
establishing (2) and (3). �

Definition 2.15. A pseudo-KLR algebra is a KLR algebra in the sense of Definition 2.9
with the requirement that tij 6= 0 in Condition (Q2) removed.

The following demonstrates that pseudo-KLR algebras which are not in fact
KLR algebras have noticeably different categories of representations. Fix i 6= j.
Due to the categorification results from [KL], for an actual KLR algebra R((1 −
aij)i + j), the number of irreducible modules up to grading shift is exactly the
dimension of that weight space of U+, so 1− aij .

Theorem 2.16. In a pseudo-KLR algebra with the coefficient tij = 0 for some i 6= j, the
algebra R((1− aij)i+ j) has at least 2− aij irreducible modules.

Proof. For each a, b ∈ Z≥0 with a + b = 1 − aij , consider the irreducible R(ai) ⊗
R(j) ⊗ R(bi)-module La,b = L(ia) ⊗ L(j) ⊗ L(ib). We claim that La,b is in fact a
module for R((1− aij)i+ j), where all generators which are not in R(ai)⊗R(j)⊗
R(bi) act by zero. To see this, one must check that the relations defining the KLR
algebra are all respected. This happens because, since tij = 0, the polynomial
Qij(u, v) is divisible by v, which corresponds to a dot ya+1 on the j colored strand,
and this dot kills the simple L(j). The right side of the difficult relations (the ones
involving multiple ψ’s and which involve the j strand) then all have a factor of
ya+1.

Each La,b is irreducible since its restriction toR(ai)⊗R(j)⊗R(bi) is irreducible.
Thus we have found 2− aij distinct irreducible modules. �

2.3. Cuspidal modules. For the remainder of this section, fix a face F and a com-
patible convex order ≺. An R-module M is called F -cuspidal if, for all λ, µ ∈ NI
such that Resλ,µM 6= 0,

λ ∈ spanR≥0
(F− ∪ F ) and µ ∈ spanR≥0

(F+ ∪ F ).

Fix a module M and c as in Lemma 2.6 for N = ht(wt(M)). In [TW], M is
called semi-cuspidal if Resλ,µM 6= 0 implies c(λ) ≤ 0 (in that paper there is a
stronger notion of cuspidal, which is why the term semi-cuspidal is used). This
notion of semi-cuspidal is equivalent to our notion of cuspidal, but to see this one
must use [TW, Theorem 2.4 and Corollary 2.12], which imply that, if Resλ,µM 6= 0
and c(λ) > 0, then there is a root β with Resβ,wt(λ)−βM 6= 0 and c(β) > 0. In any
case, we see:

Lemma 2.17. Fix a module M and c as in Lemma 2.6 such that, for roots β of height at
most wt(M), β is in F+/F/F− if and only of c(β) is positive/zero/negative. Then M is
cuspidal if and only if Resλ,µM 6= 0 implies c(λ) ≤ 0. �

Definition 2.18. Let CF denote the full subcategory of cuspidal R-modules.
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Recall from Definition 2.3 that each equivalence class for a convex pre-order �
is a face. We call a module �-cuspidal if it is cuspidal for some equivalence class.

Theorem 2.19. [TW, Theorem 2.19] If L1, . . . , Lh are simple, �-cuspidal, and satisfy
wt(L1) � · · · � wt(Lh), then L1 ◦ · · · ◦ Lh has a unique simple quotient. Furthermore,
every simple appears this way up to a grading shift for a unique sequence of simple cuspidal
representations. Here wt(Li) � wt(Lj) means that these are in the positive spans of some
equivalence classes Ci, Cj , and Ci � Cj .
Corollary 2.20. [TW, Corollary 2.17] Fix a convex total order � and a positive real root
α. There is a unique self-dual simple cuspidal R(α)-module L(α).

Definition 2.21. Let α be a positive real root. Let F (α) be the face defined by

F+ = {β | β � α}, F = {α}, F− = {β | β ≺ α}.
Define the root module ∆(α) to be the projective cover of L(α) in CF (α).

2.4. Crystal structures.

Definition 2.22. Let B be the set of simple self-dual elements of R-mod. For each face F
let BF be the set of self-dual simple elements of the cuspidal category CF .

Theorem 2.23. [LV] B is isomorphic to a copy of B(∞) for the root system Φ, where the
crystal operators are given by fi(L) = q

εi(L)
i hd(L ◦ L(i)).

Remark 2.24. The precise grading shift is not given in [LV]. It can be found without
proof in [KKKO, Definition 4.16(iii)]. For completeness here is a proof: By the
definition of εi,

Reswt(L)−εi(L)i,εi(L)i L ' L′ ⊗ L(εi(L)i) and Reswt(L)−(εi(L)+1)i,(εi(L)+1)i L = 0

for a self-dual L′. By rank 1 calculations, L(εi(L)i) ◦ L(i) = q
−εi(L)
i L((εi(L) + 1)i).

It follows that

Reswt(L)−εi(L)i,(εi(L)+1)i, L ◦ L(i) ' q−εi(L)
i L′ ⊗ L((εi(L) + 1)i).

Since the restriction of a self-dual representation is self-dual the statement follows.

Theorem 2.25. [TW] Assume Φ is at worst affine. Then:
• If F is finite type, BF is isomorphic to a copy of B(∞) for the root system ΦF .

The crystal operators are given by, for each i ∈ ∆F , fi(L) = q
εi(L)
i hd(L ◦ L(i)).

• If ΦF has one or more affine components, BF is isomorphic to a union of infinitely
many copies of B(∞) for ΦF , with crystal operators fi(L) = q

εi(L)
i hd(L◦L(i)).

Remark 2.26. The grading shift is not specified in [TW], but follows by an an argu-
ment similar to Remark 2.24. The key step is that, for some self-dual L′,

Res
R(wt(L)−εi(L)i),R(i)

⊗εi(L)+1 L ◦ L(i) ' q−εi(L)
i [εi(L) + 1]!L′ ⊗ L(i)⊗εi(L)+1.

3. THE FACE CUSPIDAL CATEGORY

Fix a root system Φ and let R be an associated KLR algebra. Fix a face F and
a compatible convex order ≺ (which is possible by Lemma 2.8). Let C be the full
subcategory of R-mod consisting of F -cuspidal representations (which is CF from
§2.3). The main purpose of this section is to define a projective object P in C, and,
under certain conditions, show that End(P ) is isomorphic to a KLR algebra for the
root system ΦF .
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3.1. Properties.

Lemma 3.1. C is abelian and is closed under ◦. That is, if M,N ∈ C, then M ◦N ∈ C.

Proof. It is clear that C is abelian. Fix M,N and choose c as in §2.3 for wt(M) +
wt(N). By the definition of ◦, if ei(M ◦N) 6= 0, then i is a shuffle of some i1 and i2
such that ei1M 6= 0 and ei2N 6= 0. Thus, if i′ is a prefix of i, then i′ is a shuffle of a
prefix i′1 of i1 and i′2 of i2. But then c(i′1), c(i′2) ≤ 0, so c(i′) ≤ 0. This holds for all i
such that ei(M ◦N) 6= 0 and all prefixes, so M ◦N ∈ C by definition. �

Lemma 3.2. For any α ∈ ∆F the modules L(α) and ∆(α) depend only on the face, not
on the choice of compatible convex order.

Proof. Fix convex orders≺,≺′ compatible with F . Let L(α) be the simple cuspidal
for α with respect to ≺. Consider the cuspidal decomposition

L(α) = hd(L′1 ◦ · · · ◦ L′k)

from Theorem 2.19 with respect to ≺′. If wt(L′1) is not in F , then

Reswt(L′1),α−wt(L′1) L(α) 6= 0

contradicts the cuspidality of L(α) with respect to ≺, and similarly for L′n. Thus,
for all k, wt(L′k) = skβk for βk ∈ F . But α =

∑
skβk contradicts α ∈ ∆F unless the

cuspidal decomposition is only one step. Thus L(α) is cuspidal for ≺′. Since L(α)
is the unique simple of weight α in C defined using either ≺ or ≺′, it follows that
∆(α) also does not depend on this choice. �

Lemma 3.3. Let β1, . . . , βn, γ1, . . . γn ∈ ∆F with
∑
βi =

∑
γj . Let M1, . . . ,Mn be

face-cuspidal modules with wt(Mi) = βi. Consider

Resγ1,...γn(M1 ◦ · · · ◦Mn).

The non-zero layers in the Mackey filtration from Theorem 2.12 are exactly those corre-
sponding to permutations of the factors (i.e. where for some permutation σ, ηij = 0 unless
j = σ(i)). The sub-quotients are of the form Mσ−1(1) ⊗ · · · ⊗Mσ−1(n), with a shift by
the degree of σ acting on the idempotent eβ1···βn . In particular, the restriction is non-zero
if and only if {β1, . . . , βn} = {γ1, . . . , γn} as multisets.

Proof. It is clear that there is a subquotient Resγ1,...γn(M1 ◦ · · · ◦Mn) in the Mackey
filtration corresponding to any permutation σ ∈ Sn such that γσ(i) = βi for all i.
Suppose there is a non-zero subquotient that does not correspond to such a per-
mutation. Let k be the first index such that γk is a nontrivial sum γk =

∑
i ηik. For

each i such that ηik 6= 0, the minimality of k implies that Resηik,βi−ηikMi 6= 0. The
face-cuspidality of Mi implies that c(ηik) ≤ 0, where c is a functional compatible
with F as in Lemma 2.6 for N =

∑
βi. Since γk is a simple root in the face F , ηik

does not lie in F and hence, since ηik is a prefix of βi, c(ηik) < 0. Since γk =
∑
i ηik,

convexity implies that c(γk) < 0, a contradiction. �

Lemma 3.4. Fix i1, . . . , in ∈ ∆F andM ∈ C. Every simple subquotient of Resi1,...,inM
is of the form L(i1)⊗ · · · ⊗ L(in) up to a grading shift.

Proof. By Lemma 2.6, we can choose a linear functional c such that F ⊂ c−1(0)
and, for any root γ of height at most ht(wt(M)), γ ∈ F− if and only if c(β) < 0,
and β ∈ F+ if and only if c(β) > 0.

Let M1 ⊗ · · · ⊗Mn, be a simple subquotient of Resi1,...,inM . Assume that, for
some j, Mj is not isomorphic to L(ij), and take j minimal for this to occur. Let
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Mj = hd(N1 ◦ . . . ◦ Nk) be the decomposition of Mj as in Theorem 2.19 for the
corresponding convex preorder, and let λ = i1 + · · · + ij−1 + wt(N1). Since ij is
simple for ΦF , wt(N1) cannot be a multiple of a root in F , so c(N1) > c(Mj) = 0.
But then

eλ,wt(M)−λM 6= 0 and c(λ) = 0 + · · ·+ 0 + c(wt(N1)) > 0,

By Lemma 2.17, this contradicts the assumption that M was cuspidal. �

3.2. The projective P .

Theorem 3.5. Let i1, . . . , in ∈ ∆F . Then ∆(i1) ◦ · · · ◦∆(in) is projective in C.

Proof. By Lemma 3.1, ∆(i1) ◦ · · · ◦∆(in) ∈ C. To show projectivity, it is equivalent
to show that

Ext1(∆(i1) ◦ · · · ◦∆(in),M) = 0

for all M ∈ C. By the adjunction (2.2), this is equivalent to showing

Ext1(∆(i1)⊗ · · · ⊗∆(in),Resi1,...,inM) = 0.

By Lemma 3.4, it suffices to prove

Ext1(∆(i1)⊗ · · · ⊗∆(in), L(i1)⊗ · · · ⊗ L(in)) = 0.

Since Ext1(∆(ik), L(ik)) = 0, this is true. �

Definition 3.6. Let P be the direct sum of all modules of the form ∆(i1) ◦ · · · ◦∆(in) for
i1, . . . , in ∈ ∆F . The indexing set for these direct summands is

∐
ν SeqF (ν) where

SeqF (ν) = {(i1, . . . , in) : ik ∈ ∆F , i1 + · · ·+ in = ν}.
For i = (i1, . . . , in) ∈ SeqF (ν), we write ∆(i) for ∆(i1) ◦ · · · ◦∆(in).

Theorem 3.7. If Φ is of finite or affine type and ΦF is of finite type, then P , together with
its grading shifts, is a projective generator of C.

Proof. By Theorem 3.5, ∆(i1)◦· · ·◦∆(in) is projective. It suffices to show that every
simple module L in C is a quotient of a module of the form ∆(i1) ◦ · · · ◦∆(in). By
[TW, Corollary 3.29], every non-trivial simple in C is of the form hd(L(i) ◦X) for
some i ∈ ∆F and some simple X in C, so by induction is a quotient of a module of
the form ∆(i1) ◦ · · · ◦∆(in). �

Remark 3.8. A counterexample to Theorem 3.7 when Φ and ΦF are both of affine
type is given in §5.4. A counterexample when Φ is of hyperbolic type and ΦF is
finite type is provided in [TW, §3.7]. There ΦF is of type sl2, but there are also
imaginary cuspidal modules, contradicting the statement.

Fix i = (i1, · · · , in), j = (j1, · · · , jn) ∈ SeqF (ν). Let jSi be the subset of the
symmetric group Sn consisting of permutations taking i to j. For each w ∈ jSi,
pick a reduced decomposition w = si1 · · · sin . Set

τw(i) = τi1(si2 · · · sin i) · · · τin(i).

Define degi(w) to be deg τw(i), which clearly does not depend on the reduced de-
composition.

Lemma 3.9. Fix i, j ∈ SeqF (ν). Then Resj ∆(i) ∼=
⊕
w∈jSi

qdegi(w)∆(j1)⊗ · · · ⊗∆(jn).
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Proof. By Lemma 3.3 there is a filtration of Resj ∆(i) with these subquotients. This
filtration splits since Ext1(∆(ji),∆(ji)) = 0. �

3.3. Generators of End(P ). Write P = ⊕νPν where Pν is a R(ν)-module. Given a
sequence i = (i1, . . . , in) of elements in ∆F , let

ei ∈ End(P )

be the projection onto the summand ∆(i1) ◦ · · · ◦∆(in).
For m,n ∈ N, let w[m,n] be the element of the symmetric group Sm+n given by

w[m,n](i) =

{
i+ n if i ≤ m
i−m otherwise.

There is a unique reduced expression si1 · · · sil for w[m,n] up to two-term braid
moves (since it has a unique descent). Thus we can unambiguously define an
element ψw[m,n] = ψi1 · · ·ψil ∈ R.

For each positive real root α, fix a nonzero vector vα ∈ ∆(α) of minimal degree.

Lemma 3.10. Fix i, k ∈ ∆F . There is a unique homomorphism

τ : q−i·k∆(i) ◦∆(k)−→∆(k) ◦∆(i)

such that τ(1⊗ (vi ⊗ vk)) = ψw[ht(i),ht(k)] ⊗ (vk ⊗ vi).

Proof. If i = k, this is [BKM, Lemma 3.6] (there it is assumed that Φ is finite type,
but the same proof works in general). Now assume that i 6= k. By adjunction,

Hom(q−i·k∆(i) ◦∆(k),∆(k) ◦∆(i)) ∼= Hom(q−i·k∆(i)⊗∆(k),Resi,k ∆(k) ◦∆(i)).

By Lemma 3.3, the Mackey filtration of Resi,k ∆(k) ◦∆(i) from Theorem 2.12 has
a unique nonzero layer, resulting in an isomorphism

Resi,k ∆(k) ◦∆(i) ∼= q−i·k∆(i)⊗∆(k).

Thus

Hom(q−i·k∆(i) ◦∆(k),∆(k) ◦∆(i)) ∼= Hom(q−i·k∆(i)⊗∆(k), q−i·k∆(i)⊗∆(k)).

Tracing the identity map through the isomorphisms gives the desired τ . Unique-
ness follows because 1⊗ (vi ⊗ vk) generates ∆(i) ◦∆(k). �

For a sequence i of elements in ∆F , Define

τk(i) ∈ End(P ).

to act by id ◦ · · · ◦ id ◦ τ ◦ id ◦ · · · ◦ id on ∆(i1) ◦ · · · ◦ ∆(in), where the τ is the
homomorphism from Lemma 3.10 acting in the k-th and (1 + k)-th place.

For α ∈ Φ consider the restrictionRsup(α) ofR to the sub-Dynkin diagram where
α is supported. From now on we make the following assumption about faces F .

Assumption 3.11. For every α ∈ ∆F , Rsup(α) satisfies Assumption 1.1.

The following is [BKM, Theorem 3.3(4)] if Rsup(α) is of finite type, and [M, The-
orem 18.3] if it is of geometric symmetric affine type over a field of characteristic
0, together with [BKM, Lemma 3.9].
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Theorem 3.12. For each α ∈ ∆F , End(∆(α)) ∼= k[xα], where xα has degree α · α, and
∆(α) is a free k[xα]-module. Furthermore, there is a unique such isomorphism satisfying
the following relations in End(∆(α) ◦∆(α)): τx2 = x1τ + 1 and x2τ = τx1 + 1, where
x1 and x2 are the endomorphisms xα ◦ id and id ◦ xα respectively. �

Definition 3.13. xk(i) ∈ End(P ) is the element which acts by id ◦ · · · ◦ id ◦x ◦ id · · · ◦ id
on ∆(i1) ◦ · · · ◦ ∆(in) and by zero on all other summands, where x is the element from
Lemma 3.12 acting on ∆(ik).

Theorem 3.14. Let i, j ∈ SeqF (ν). Then

{τw(i)x1(i)a1 · · ·xn(i)an | w ∈ jSi, a1, . . . , an ∈ N}

is a basis of Hom(∆(j),∆(i)).

Proof. By Theorem 3.12 each ∆(ik) is a free module for k[xk]. Using this and
Lemma 3.10, the endomorphisms in the statement produce linearly independent
vectors when applied to the element vi1 ⊗ · · · ⊗ vin , where as above vi is a chosen
vector in ∆(i) of minimal degree. Hence they are linearly independent.

By adjunction and Lemma 3.9,

Hom(∆(j),∆(i)) ∼= Hom(∆(j1)⊗ · · · ⊗∆(jn),Resj ∆(i))

∼=
⊕
w∈jSi

qdeg τw(i) End(∆(j1)⊗ · · · ⊗∆(jn))

∼=
⊕
w∈jSi

qdeg τw(i)
n⊗
i=1

End(∆(ji)).

Therefore

dimq Hom(∆(j),∆(i)) =
∑
w∈jSi

qdeg τw(i)
n∏
i=1

(1− qji·ji)−1.

This dimension count shows that our linearly independent set is a basis. �

Corollary 3.15. If i and k are distinct roots in ∆F , then

End(∆(i) ◦∆(k)) ∼= k[xi, xk].

�

3.4. Relations in End(P ). For distinct i, j ∈ ∆F , define Qij(u, v) ∈ k[u, v] by

(3.1) τ1(ji)τ1(ij) = Qij(x1(ij), x2(ij)).

These exist by Corollary 3.15 and are homogeneous of degree −2 i · j by Theorem
3.12. For i = j, define Qii = 0. Then τ1(ii)τ1(ii) = Qii(x1(ii), x2(ii)) = 0, since by
Theorem 3.14 the degree −2i · i Hom space is zero.

Lemma 3.16. If i 6= j, then x1τ1(ij) = τ1(ij)x2 and x2τ1(ij) = τ1(ij)x1.

Proof. The module ∆(j) is generated by vj so there exists a ∈ R such that xvj =
avj . We now compute

(x1τ1 − τ1x2)(vi ⊗ vj) = x1ψw[ht(j),ht(i)]vj ⊗ vi − τ1(1⊗ a)vi ⊗ vj
= ψw[ht(j),ht(i)]x1vj ⊗ vi − (1⊗ a)τ1vi ⊗ vj
= (ψw[ht(j),ht(i)](a⊗ 1)− (1⊗ a)ψw[ht(j),ht(i)])vj ⊗ vi.
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Apply the straightening relations in the KLR algebra to put ψw[ht(j),ht(i)](a ⊗ 1) −
(1 ⊗ a)ψw[ht(j),ht(i)] in the standard form as a sum of elements of the form ψwP
where w is a permutation and P is a polynomial in the yi. Each term that appears
has w not greater than or equal to w[ht(j),ht(i)] in Bruhat order.

On the other hand x1τ1 − τ1x2 is a module homomorphism, so Theorem 3.14
shows that

x1τ1 − τ1x2 = ψw[ht(j),ht(i)](Ax1 +Bx2)(vj ⊗ vi)
for some A,B ∈ k, giving a contradiction unless A = B = 0. �

Lemma 3.17. Qij(u, v) = Qji(v, u).

Proof. By the definition of Qij ,

τ1(ij)τ1(ji)τ1(ij) = τ1(ij)Qij(x1, x2).

On the other hand, using the definition of Qji and the relation in Lemma 3.16,

τ1(ij)τ1(ji)τ1(ij) = Qji(x1, x2)τ1(ij)

= τ1(ij)Qji(x2, x1).

The result follows by using the basis of Hom(∆(i) ◦∆(j),∆(j) ◦∆(i)) from The-
orem 3.14. �

Lemma 3.18. The following relations hold:

τ1(jki)τ2(jik)τ1(ijk)−τ2(kij)τ1(ikj)τ2(ijk) =

{
Qij(x1,x2)−Qij(x3,x2)

x1−x3
if i = k

0 otherwise.

Proof. Apply τ1τ2τ1 − τ2τ1τ2 to vi ⊗ vj ⊗ vk. By the straightening relations in the
KLR algebra, only terms of the form Tψw(vk ⊗ vj ⊗ vi) can appear, where T is a
polynomial in the yi and w is a permutation strictly less than w1w2w1 in Bruhat
order. Here wi is the permutation that acts as w[ht(ik),ht(ik+1)] on the i, i + 1
factors, and trivially on the other factor.

On the other hand τ1τ2τ1−τ2τ1τ2 is a module homomorphism, so Theorem 3.14
severely restricts its possibilities: By the observations of the previous paragraph,
this difference must be a composition of at most two τi followed by some xi. If i,
j and k are all distinct, this difference must be zero. If i = j 6= k, the only terms
which perform the right permutation on the factors are of the form τ1τ2 composed
with some xi, but these are all of higher degree, so the difference again is zero. The
i 6= j = k case is similar. If i = j = k, there are no possibilities of the right degree
(i.e. −3i · i), so the difference is zero.

It remains to consider i = k 6= j. Considerations as above show that τ1τ2τ1 −
τ2τ1τ2 = P (x1, x2, x3) for some polynomial P . Multiplying on the left by τ1 gives

τ2
1 τ2τ1 − τ1τ2τ1τ2 = τ1P.

Apply the case of this Lemma which we have already proven to get

τ2
1 τ2τ1 − τ2τ1τ2τ2 = τ1P.

Simplifying the τ2
i terms gives

(3.2) Qjk(x1, x2)τ2τ1 − τ2τ1Qjk(x2, x3) = τ1P.

Applying the relations from Lemma 3.16 (pushing a dot past a crossing in dia-
grammatic notation) and using Theorem 3.14, (3.2) uniquely determines P . But
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the stated P does satisfy the equation, since this is true in the standard KLR alge-
bra. �

Proposition 3.19. End(P ) is a pseudo-KLR algebra.

Remark 3.20. We will prove that End(P ) is actually a KLR algebra in Theorem 3.23.

Proof. Let A be the pseudo-KLR algebra defined using the root system ΦF and the
polynomials Qi′j′(u, v) defined in (3.1) for i′, j′ ∈ ∆F . The above results show that
there is a homomorphism from A to End(P ). This is surjective by Theorem 3.14.
To show it is an isomorphism, it suffices to show that dimq A ≤ dimq End(P ). The
latter dimension is known by Theorem 3.14. The former dimension is bounded
above by this since we can use the usual straightening relations to put each ele-
ment of A in a standard form. �

Lemma 3.21. Let A be a Z-graded algebra with dimAn finite for all n and zero for
sufficiently negative n. Let P be a finitely generated projective A-module and let B =
EndA(P ). Then the number of irreducible modules for B is equal to the number of irre-
ducible quotients of P , where both counts are taken up to grading shift and isomorphism.

Proof. Write P = ⊕iP⊕dii where the Pi are pairwise non-isomorphic indecompos-
able projectives and the di are positive integers. Then End(P ) = ⊕i,j Hom(P dii , P

dj
j ).

The radical of End(P ) is generated by the radicals of each End(P dii ) as well as
all of Hom(Pi, Pj) for i 6= j. The maximal semisimple quotient of End(P ) is
⊕i End(hd(Pi)

⊕di), which is a direct sum of matrix algebras. Therefore the num-
ber of irreducible representations of End(P ) is equal to the number of irreducible
quotients of P . �

Lemma 3.22. For all i 6= j ∈ ∆F , the coefficient of u−aij in Qij(u, v) is nonzero. Here
ai,j is the entry in the Cartan matrix for ΦF .

Proof. Let P(1−aij)i+j be the component of P of weight (1−aij)i+j. By Proposition
3.19, EndP(1−aij)i+j is a pseudo-KLR algebra. Suppose instead that the coefficient
of u−aij in Qij(u, v) was zero. By Theorem 2.16 and Lemma 3.21, P(1−aij)i+j must
have at least 2− aij pairwise non-isomorphic irreducible quotients.

Pick a convex order≺ on Φ+ such that i and j span a compatible face. If the face
is of finite type then by Theorem 2.25 the number of cuspidal modules for this face
is the number of elements of the corresponding rank two crystal, which is 1− aij ,
so, this is a contradiction.

Since Φ is either of finite or symmetric affine type, it remains to consider the case
where i and j span a root system of type ŝl2. Then the minimal imaginary root is
δ = i+j, and P3i+j has at least four pairwise non-isomorphic irreducible quotients.
Without loss of generality, j � i. In terms of the classification in Theorem 2.19, at
least two of them are of the form hd(L ◦L(2i)) where L is a cuspidal R(δ)-module.

Since P3i+j is projective, there is a nonzero morphism

P3i+j → L ◦ L(2i)→ L ◦ L(i) ◦ L(i).

The restriction-coinduction adjunction (2.4) gives a corresponding nonzero mor-
phism

Resi,i,δ P3i+j → L(i)⊗ L(i)⊗ L.
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The same argument as in the proof of Lemma 3.3 shows that Resi,i,δ P3i+j is a
direct sum of modules of the form

∆(i)⊗∆(i)⊗ (∆(i) ◦∆(j)) or ∆(i)⊗∆(i)⊗ (∆(j) ◦∆(i)).

By the cuspidality of L, there is no non-zero morphism from ∆(j) ◦ ∆(i) to L.
Therefore there must be a nonzero morphism from ∆(i) ◦∆(j) to L.

By Corollary 3.15 the algebra End(∆(i) ◦ ∆(j)) is isomorphic to k[x, y], which
has a unique irreducible quotient, so by Lemma 3.21, ∆(i) ◦ ∆(j) has a unique
irreducible quotient. But we have two non-isomorphic modules L which are both
quotients of ∆(i) ◦∆(j), so this is a contradiction. �

Theorem 3.23. The algebra End(P ) is a KLR algebra for the root system ΦF .

Proof. This is immediate from Proposition 3.19 and Lemma 3.22. �

4. FACE FUNCTORS

4.1. Definition. Fix a face F . Let RF be the graded algebra End(P )op, where P is
the projective object in CF from §3.2. Theorem 3.23 shows thatRop

F is a KLR algebra
for the root system ΦF . The existence of the anti-automorphism † (see §2.2) implies
that RF is an isomorphic KLR algebra.

Definition 4.1. The face functor is the functor F : X → P ⊗RF X from RF -mod to CF .

The image of F lies in CF since F sends a free rank one RF -module to P , F is
right exact and CF is closed under taking quotients.

Remark 4.2. In finite type, this face functor is an example of the functors con-
structed by Kashiwara and Park [KP] in terms of duality data (see [KP, Proposition
3.5]). In affine type, we expect that this is also the case, but we do not have a proof.

4.2. Categorical properties.

Theorem 4.3. If Φ is of finite or affine type and F is of finite type, thenF is an equivalence
of categories.

Proof. This is immediate from Theorem 3.7 which shows that P is a projective
generator. �

Lemma 4.4. For any face F , the face functor F is fully faithful.

Proof. We use the criterion that a left adjoint is fully faithful if and only if the unit
of adjunction is a natural isomorphism. The functorF is left adjoint to Hom(P,−).
The unit of this adjunction is an isomorphism on free modules by the construction
of the face KLR algebra as an endomorphism algebra. The general case follows by
considering a free resolution since tensoring is right exact and the Hom functor is
exact since P is projective. �

Lemma 4.5. For all RF modules A and B there is a natural isomorphism

F(A) ◦ F(B) ∼= F(A ◦B).

Proof. WriteRF (λ) for End(Pλ)op. Let eFλµ the image of the unit under the inclusion
RF (λ)⊗RF (µ)→ RF (λ+ µ). The two functors A⊗B 7→ F(A ◦B) and A⊗B 7→
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F(A) ◦ F(B) from RF (λ) ⊗ RF (µ)-mod to R(λ + µ)-mod are given by tensoring
with the bimodules

Pλ+µ

⊗
RF (λ+µ)

RF (λ+ µ)eFλµ

and
R(λ+ µ)eλµ

⊗
R(λ)⊗R(µ)

(Pλ ⊗ Pµ)

respectively. These are both canonically isomorphic to the direct sum over all
i1, . . . , in ∈ ∆F with i1 + · · ·+ il = λ and il+1 + · · ·+ in = µ of

∆(i1) ◦ · · · ◦∆(in).

Therefore the functors are equivalent. �

4.3. Compatibility with standard modules. Results in this section hold under as-
sumption 1.1, which gives us access to the theory of standard modules introduced
in [BKM] and [M]. These depend on the convex order ≺ and are built out of root
modules. The root modules corresponding to real roots have already been intro-
duced, these are the modules ∆(α). For the indivisible imaginary root δ, we will
call the modules denoted ∆(ω) in [M] root modules. These are the projective mod-
ules in the category of cuspidal R(δ)-modules.

Standard modules are naturally indexed by root partitions. A root partition is a
sequence λ = (αn1

1 , · · · , αnll ) where α1 � · · · � αl are indivisible roots, each ni is a
positive integer unless αi = δ, in which case it is a collection of partitions. To each
term αnii a standard module ∆(αi)

(ni) is constructed. If αi is real then ∆(αi)
◦ni

is a direct sum of ni! copies of the module ∆(αi)
(ni) with grading shifts. If αi is

imaginary then ∆(αi)
(ni) is a summand of a product of certain modules ∆(ω) of

weight δ in CF ; see [M] for the details (where this module is denoted ∆(λ)). The
standard module is then defined to be the indecomposable module

∆(λ) = ∆(α1)(n1) ◦ · · · ◦∆(αl)
(nl).

In [BKM] and [M] homological properties of these modules are developed which
justify the name standard in the setting of affine quasi-hereditary algebras.

Definition 4.6. Fix a convex order ≺ and a root α. A minimal pair for α is an ordered
pair of roots (β, γ) such that α = β + γ, γ ≺ β, and there is no pair of roots (β′, γ′)
satisfying α = β′ + γ′ and γ ≺ γ′ ≺ β′ ≺ β.

Lemma 4.7. Fix a convex order≺. Let ∆ be a root module with wt(∆) = α and let (β, γ)
be a minimal pair for α. Then there exist root modules ∆β and ∆γ with wt(∆β) = β and
wt(∆γ) = γ such that there is a short exact sequence

0→ q−β·γ∆β ◦∆γ
fβγ−−→ ∆γ ◦∆β → ∆⊕m → 0

for some nonzero m ∈ N[q, q−1]. Furthermore the homomorphism fβγ spans the degree
zero part of Hom(q−β·γ∆β ◦∆γ ,∆γ ◦∆β).

Conversely suppose that ∆β and ∆γ are root modules with wt(∆β) = β and wt(∆γ) =
γ. Then the degree zero part of Hom(q−β·γ∆β ◦∆γ ,∆γ ◦∆β) is one dimensional. If f is
any nonzero degree zero homomorphism, then f is injective and coker f is a direct sum of
root modules.

Remark 4.8. The notation e.g. ∆β , as opposed to ∆(β), is because, if β = δ, then ∆δ

can be any of the modules ∆(ω) of weight δ.
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Proof. In finite type, this is [BKM, Theorem 4.10], and in symmetric affine type it
is [M, Lemma 16.1] for real roots and [M, Theorem 17.1] for imaginary roots. The
statement about the space of degree zero homomorphisms being one-dimensional
is not explicitly mentioned, but is clear from the proofs. �

Given a face F and a convex order ≺ compatible with F , we naturally get a
convex order≺F on the face root system ΦF . Thus we can talk about root modules
for both R and RF .

Lemma 4.9. The face functor F sends root modules to root modules.

Proof. Let ∆ be a root module for RF and let α = wt(∆). Proceed by induction on
the height of α, the case wt(∆) ∈ ∆F being trivial. If α 6∈ ∆F there is a minimal
pair (β, γ) for α, and by Lemma 4.7 there is a short exact sequence

0→ q−β·γ∆β ◦∆γ → ∆γ ◦∆β → ∆⊕m → 0

where ∆β and ∆γ are root modules with wt(∆β) = β and wt(∆γ) = γ.
By Lemma 4.5 and the fact that F is right exact, the following is exact:

q−β·γF(∆β) ◦ F(∆γ)→ F(∆γ) ◦ F(∆β)→ F(∆)⊕m → 0.

By the inductive hypothesis, F(∆β) and F(∆γ) are root modules. Since (β, γ) is
a minimal pair, Lemma 4.7 implies that F(∆)⊕m is a direct sum of root modules.
Since root modules are indecomposable, the Krull-Schmidt theorem implies that
F(∆) is a root module, as required. �

Proposition 4.10. The face functor F takes standard modules to standard modules.

Proof. Standard modules are built from root modules from a process of inducing
and taking direct summands. By Lemma 4.9, F takes root modules to root mod-
ules. The functor F commutes with induction by Lemma 4.5. Since F is fully
faithful it takes indecomposables to indecomposables, and clearly commutes with
taking direct sums. �

4.4. Compatibility with nesting.

Proposition 4.11. Let E ⊂ F be nested faces, both satisfying Assumption 3.11. Assume
further thatE satisfies Assumption 3.11 with respect to the KLR algebraRF . Then (RF )E
is isomorphic to RE . Furthermore, FE and FF ◦ FFE are naturally isomorphic, where
FFE : RE-mod→ RF -mod is the face functor for E considered as a face of ΦF .

Proof. Let PF , PE and PFE be the modules used to define the functors FF and FE
and FFE respectively. Then

PE =
⊕

i∈SeqE

∆(i1) ◦ · · · ◦∆(in) and PFE =
⊕

i∈SeqE

∆F (i1) ◦ · · · ◦∆F (in),

where ∆(α) and ∆F (α) refer to the root modules for the KLR algebras R and
RF respectively. For any i ∈ ∆E , Rsup(i) satisfies Assumption 1.1, so, by Lemma
4.9, FF (∆F (i)) = ∆(i). By Lemma 4.5 we see FF (PFE ) = PE , so by Lemma 4.4
End(PFE ) ∼= End(PE), and hence (RF )E ' RE by definition.

Since FF (PFE ) = PE and RE ∼= End(PE)op ∼= End(PFE )op, we obtain an isomor-
phism of (R,RE)-bimodules

PFE ⊗RF PF ∼= PE .

This completes the proof. �
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4.5. Compatibility with crystal operators. In this section we work under assump-
tion 1.1. Recall BF from Definition 2.22. Let BF be the set of self-dual simple mod-
ules for the KLR algebra RF . Recall also the crystal operators on BF and BF from
§2.4. Theorem 4.3 immediately implies that, in finite type, the face functor gives
a bijection BF 7→ BF , and this intertwines the crystal operators for BF and the
face crystal operators on BF . We now prove a weaker version of this that holds in
affine type (see Corollary 4.15).

Lemma 4.12. If L is simple then F(L) has simple head.

Proof. Every simple module L is the head of a standard module ∆. As F is right
exact, F(L) is a quotient of F(∆). But F(∆) is standard by Proposition 4.10, so has
a simple head. By Lemma 4.4, F(L) 6= 0, so this completes the proof. �

Proposition 4.13. Let ∆′F be the set of simple roots of ΦF thought of as its own root
system, not as a sub-root system of ∆. For all simple modules L of RF and i′ ∈ ∆′F ,

hd(F(hd(L ◦ L(i′)))) ∼= hd(hdF(L) ◦ F(L(i′))),

up to a grading shift, and this is a nonzero simple module.

Remark 4.14. We expect that the grading shift in Proposition 4.13 is unnecessary.

Proof. Since F is right exact, F(L ◦ L(i′)) surjects onto F(hd(L ◦ L(i′))) and hence
onto hd(F(hd(L ◦ L(i′)))). This is simple by Lemma 4.12, since by [KL, Lemma
3.9] hd(L ◦ L(i′)) is simple.

On the other hand, by Lemma 4.5 we have F(L ◦L(i′)) ∼= F(L) ◦ F(L(i′)). This
surjects onto hdF(L)◦F(L(i′)) and hence onto hd(hdF(L)◦F(L(i′))). This last is
simple by [TW, Proposition 3.22] since F sends L(i′) to a simple cuspidal module.
Thus both sides of the equation are simple quotients of F(L ◦ L(i′)).

Choose a convex order on ΦF with i′ minimal, and a compatible convex order
on Φ. The module L ◦ L(i′) is a quotient of ∆(L) ◦∆(i′), and it is immediate from
the definition of standard modules (see [M, §24]) that this last is isomorphic to a
direct sum of copies of ∆(fi′(L)). Here ∆(L), ∆(fi′(L)) and ∆(i′) are the standard
modules corresponding to L, fi′(L) and L(i′). Since F sends standard modules to
standard modules, we see that F(L ◦ L(i′)) can only have one isomorphism class
of simple quotient up to a grading shift, which completes the proof. �

Corollary 4.15. The injection BF → BF defined byL 7→ hdF(L) intertwines the crystal
operators for BF and the face crystal operators on BF from [TW]. �

Remark 4.16. If F is of finite type then, by [KP, Theorem 4.4(ii)(a)], F takes a simple
module either to a simple module or zero (their construction is more general, and
by Lemma 4.4 the latter is not possible in our case). This is not true in affine type,
as we discuss in §5.4. Thus taking the head is necessary in Corollary 4.15.

4.6. Example. Let Φ be a root system of type A(1)
2 with simple roots α0, α1 and α2.

Fix the polynomials defining the KLR algebra to be Qi,i+1(u, v) = siu+ tiv where
all indices are read modulo 3. Let π be the standard projection from affine roots to
finite type roots which sends δ to zero. Consider

F+ = π−1{α2, α1 + α2},
F = π−1{α1,−α1, 0},

F− = π−1{−α2,−α1 − α2}.
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Then (F+, F, F−) is a face according to Definition 2.1. Notice that F = {mδ,mδ ±
α1}, so ΦF is of type ŝl2 with simple roots β = α1 and γ = α0 +α2. The support of
both these roots is finite type, so Assumption 3.11 holds, regardless of where the
original KLR algebra was of geometric type, and the face functor is defined.

The cuspidalR(γ)-module has character [02]. Let vγ be a lowest degree element
of ∆(γ). The endomorphism xγ of ∆(γ) (normalized as in Theorem 3.12) satisfies

xγvγ = −s−1
2 y1vγ = t−1

2 y2vγ .

Explicit computation shows that

Qβγ(u, v) = s1t0u
2 + (t0t1t2 − s0s1s2)uv − s0s2t1t2v

2.

Note that

• The coefficient of uv is zero if and only if s0s1s2 = t0t1t2.
• The discriminant of Q is zero if and only if s0s1s2 + t0t1t2 = 0.

These observations imply that

• Examples 3.3 and 3.4 of [K] are related by a face functor.
• By Lemma 2.14, R is of geometric type if and only if RF is.

5. IMAGINARY CUSPIDAL REPRESENTATIONS AND AFFINE FACES

For this section Φ is of symmetric affine type and, unless otherwise stated, the
KLR algebra R is of geometric type. Fix a convex order ≺ on Φ+. Let δ be the
minimal imaginary root. We study the category of cuspidal R(δ)-modules. In
particular, we show that the endomorphism algebra of a projective generator of the
category of cuspidal R(δ)-modules is isomorphic to k[z]⊗Z where Z is the zigzag
algebra from [HK] corresponding to the underlying finite type Dynkin diagram.
We show this by using face functors to reduce to the ŝl3 case. We also show that, if
R is of geometric type, so is any face KLR algebra RF (see Theorem 5.10).

Let S(δ) be the quotient ofR(δ) by the two sided ideal generated by all ei where
i has a proper prefix i′ with wt(i′) a sum of roots � δ. Then, as discussed in
§2.3, the category of S(δ)-modules is equivalent to the category of cuspidal R(δ)-
modules, so this agrees with the algebra S(δ) from [M, §12]. By [M, §17], the
simple S(δ)-modules are naturally parametrized by a set Ω of chamber coweights
for an underlying finite type Cartan matrix. For each ω ∈ Ω, let L(ω) be the self-
dual irreducible module parametrized by ω and let ∆(ω) be its projective cover in
the category of cuspidal R(δ)-modules. Additionally, to each ω ∈ Ω, consider the
positive real roots (ω−, ω+), defined in [M, §12] (see also [TW, §3.4], where ω− is
called β0) which have the following properties:

• ω− ≺ δ and ω+ � δ,
• L(ω) = hd(L(w−) ◦ L(w+)), and
• {π(β) : β � δ} is a positive system for the underlying finite type root

system, and {π(ω+) : ω ∈ Ω} is the corresponding set of simple roots.
Here π is the standard projection from §4.6.

For each positive real root α let Eα and E∗α be the PBW and dual PBW basis
vectors for the PBW basis associated to ≺, as defined in [M, §9] (see also [BCP,
BN]). When the Grothendieck group of R-modules is identified with U+

q (g) we
have [M, Theorems 9.1 and 18.2] which say that [L(α)] = E∗α and [∆(α)] = Eα.
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5.1. The Cartan matrix for S(δ). The following is immediate from [TW, Proposi-
tion 3.31 and Lemma 3.44], but for completeness we provide an alternative proof.

Lemma 5.1. For all x 6= ω in Ω, we have L(x) ◦ L(ω−) ∼= L(ω−) ◦ L(x).

Proof. By Theorem 2.19 there is a short exact sequence

0→ X → L(x) ◦ L(ω−)→ L(x, ω−)→ 0,

where L(x, ω−) is the irreducible module associated to the root partition (x, ω−)
and, by [M, Theorem 10.1(3)],X is a successive extension of grading shifts of mod-
ules whose cuspidal decomposition only involves roots between ω− and δ. Since
π(ω−) is a negative simple root for the positive system π(F+), there is no way to
write δ + ω− as a non-trivial sum of roots ≺ δ, so X is in fact a successive exten-
sion of grading shifts of L(δ + ω−). By [M, Lemma 7.5] and [M, Theorem 9.1], we
have [X] ∈ qN[q]E∗δ+ω− in the Grothendieck group of R-modules, identified with
U+
q (g).

By (2.4),

Hom(L(δ + ω−), L(x) ◦ L(ω−)) ∼= Hom(Resω−,δ L(δ + ω−), L(ω−)⊗ L(x)).

The proof of [M, Lemma 21.8] shows that Resω−,δ L(δ + ω−) has L(ω−) ⊗ L(x)
appearing with graded multiplicity 1 or 0. Therefore the only possible homomor-
phisms between L(δ + ω−) and L(x) ◦ L(ω−) are in degree zero. Combined with
[X] ∈ qN[q]E∗δ+ω− , the only option is X = 0.

Therefore L(x)◦L(ω−) ∼= L(x, ω−). Taking duals gives L(ω−)◦L(x) ∼= L(x, ω−),
and the Lemma follows. �

Lemma 5.2. [M, Lemma 21.7] For any ω ∈ Ω there is a short exact sequence

0→ qL(δ + ω−)→ L(ω) ◦ L(ω−)→ L(ω, ω−)→ 0.

By Lemmas 5.2 and 5.1,

[L(x)]E∗ω− =

{
[L(ω, ω−)] + qE∗δ+ω− if x = ω

E∗ω− [L(x)] otherwise.

In the first case, apply the bar involution and use (2.5) to obtain

E∗ω− [L(ω)] = [L(ω, ω−)] + q−1E∗δ+ω− .

Thus we have the commutator formula

(5.1) [E∗ω− , [L(x)]] =

{
(q−1 − q)E∗δ+ω− if x = ω

0 otherwise.

Lemma 5.3. Let x and ω be two chamber coweights. Then

(5.2) [Eω− , [∆(x)]] =


(q + q−1)Eδ+ω− if x = ω

0 if x and ω are orthogonal
Eδ+ω− otherwise.

Proof. The ideas of this proof are in [M, Lemma 21.8]. Indeed, when x = ω, this
lemma is the decategorification of the n = 0 case of [M, Lemma 21.8].

Now suppose that x 6= ω. By [M, Lemma 16.1], there is a short exact sequence

0→ ∆(x) ◦∆(ω−)→ ∆(ω−) ◦∆(x)→ C → 0
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where C is a direct sum of f(q) copies of ∆(δ + ω−) for some f(q) ∈ N[q, q−1].
Passing to the Grothendieck group, this decategorifies to

(5.3) [Eω− , [∆(x)]] = f(q)Eδ+ω− .

When specialized to q = 1, Eω− and Eδ+ω− become the root vectors ew− and
ew− ⊗ t respectively in the Lie algebra and [∆(x)] becomes hx ⊗ t by [M, Corollary
17.2]. There is

(5.4) [eω− , hx ⊗ t] = 〈x, ω−〉eω− ⊗ t.

Since f(q) ∈ N[q, q−1], equations (5.3) and (5.4) complete the proof when x and
ω are orthogonal. In the one remaining case, they imply that f(q) = qn for some
n ∈ Z. Now compute

f(q) = 〈[C], [L(δ + ω−)]〉
= 〈Eω−Ex − ExEω− , [L(δ + ω−)]〉
= 〈Eω−Ex, [L(δ + ω−)]〉
= 〈Eω− ⊗ Ex, [Resω−,δ L(δ + ω−)]〉,

where the third equality holds by the cuspidality of L(δ + ω−). By [M, Lemma
12.3], Resω−,δ L(δ + ω−) is a successive self-extension of grading shifts of simples
of the form L(ω−) ⊗ L(y) for y ∈ Ω. The above equations imply that f(q) is the
multiplicity of L(ω−) ⊗ L(x) in the Jordan-Holder filtration of Resω−,δ L(δ + ω−).
Since L(δ + ω−) is self-dual and restriction commutes with duality, we obtain
f(q) = f(q−1). Since f(q) = qn, this forces n = 0, completing the proof. �

Proposition 5.4. Fix x, ω in Ω. The multiplicity of L(x) in ∆(ω) is

[∆(ω) : L(x)] =


1+q2

1−q2 if x = ω

0 if x and ω are orthogonal
q

1−q2 otherwise.

Proof. Write [∆(y)] =
∑
x py,x[L(x)]. By (5.1),

(q−1 − q)py,ωE∗δ+ω− = [E∗ω− , [∆(y)]].

The formula (5.2) along with E∗α = (1− qα·α)Eα completes the proof. �

Corollary 5.5. Suppose x, ω ∈ Ω. Then

dimq Hom(∆(ω),∆(x)) =


1+q2

1−q2 if x = ω

0 if x and ω are orthogonal
q

1−q2 otherwise.

5.2. Faces in geometric type. The following is immediate from [M, Lemma 15.1].

Lemma 5.6. Assume R has the standard choice of parameters from [M]. Let S′(δ) be the
subalgebra of S(δ) generated by the ei, yj−yj+1 and ψk. Then S(δ) ∼= k[z]⊗S′(δ) where
z has degree 2. �

Theorem 5.7. Let ω be a chamber coweight. Then End(∆(ω)) ∼= k[z, ε]/(ε2) where z
and ε are in degree 2.
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Proof. We can assume R has the standard choice of parameters from [M]. Then

EndR(δ) ∆(ω) ∼= EndS(δ) ∆(ω)

∼= k[z]⊗ EndS′(δ)(∆(ω)/z∆(ω))

∼= k[z]⊗ k[ε]/(ε2).

The second isomorphism holds by Lemma 5.6 and the fact that ∆(ω) is a projective
S(δ)-module. The third holds by Corollary 5.5. �

Lemma 5.8. If R is a geometric KLR algebra of symmetric affine type and F is a face with
root system ΦF of type ŝl2, then RF is of geometric type.

Proof. Consider the face functor F : RF -mod → R-mod. Let Q0′1′(u, v) be the
quadratic polynomial defining the KLR algebra RF . Use the convex order where
1′ � 0′, and let ∆ be the unique indecomposable projective in the category of
cuspidal RF (δ) modules. Direct computation shows End(∆) ∼= k[u, v]/Q0′1′(u, v)
and that there is a short exact sequence

0→ q2∆(1′) ◦∆(0′)→ ∆(0′) ◦∆(1′)→ ∆→ 0.

The argument in the proof of Lemma 4.9 then shows that F(∆) is a root module
for R so, by Theorem 5.7, End(F(∆)) ∼= k[z, ε]/ε2. Since face functors are fully
faithful,

k[u, v]/Q0′1′(u, v) ∼= k[z, ε]/ε2,

which implies that Q0′1′(u, v) has discriminant zero. Then RF is of geometric type
by Lemma 2.14. �

Any face of type ŝl2 faces inside ŝln satisfies Assumption 3.11, so the face functor
is defined, regardless of whether the original KLR algebra was of geometric type.

Lemma 5.9. Let R be a KLR algebra of type ŝln. Let F be the face of type ŝl2 defined by

F+ = π−1{Φ+
0 \{α1}},

F = π−1{α1,−α1, 0},
F− = π−1{Φ−0 \{−α1}},

where Φ0 is the underlying finite type root system, and π is the standard projection sending
δ to 0. If RF is of geometric type, then R is also of geometric type.

Proof. We can take I = Z/nZ. Let the polynomials defining R be Qi,i+1(u, v) =
siu+ tiv for some si, ti ∈ k×.

The simple roots of Φ+
F are 0 = 1 and 1 = 2 + · · · + n. The corresponding sim-

ple cuspidal modules are both one dimensional, with characters [1] and [n · · · 32]
respectively. Let i = (n, . . . , 3, 2). By cuspidality, for each 1 < j < n, ψn−j acts by
zero on ∆(1), so ∆(1) is a cyclic module over k[y1, . . . , yn−1]. Since

ψ2
n−jei = Qj+1,j(yn−j , yn−j+1)ei = (tjyn−j + sjyn−j+1)ei,

the elements tjyn−j and −sjyn−j+1 act the same on ∆(1). Since ∆(1) is infinite di-
mensional and finitely generated, some yj must act non-nilpotently, and the above
relation implies all do. Thus

(5.5) (t2t3 · · · tn−1)y1, (−1)n(s2s3 · · · sn−1)yn−1 and λx1

act the same on ∆(1) for some λ ∈ k×, where x1 is as in Theorem 3.12.
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By the definitions of Q0,1 and τ and the fact that τ is a homomorphism, for any
v ∈ ∆(0) and w ∈ ∆(1),

Q0,1(x0, x1)(v ⊗ w) = τ1(1, 0)τ1(0, 1)(v ⊗ w)

= τ1(1, 0)(ψ1ψ2 · · ·ψn−1)(w ⊗ v)

= (ψ1ψ2 · · ·ψn−1)τ1(1, 0)(w ⊗ v)

= (ψ1ψ2 · · ·ψn−1)(ψn−1ψn−2 · · ·ψ1)(v ⊗ w).

Each ψk acts on strands of colors 1 and n− k+ 1, so the KLR algebra relations give

Q0,1(x0, x1)(v ⊗ w) = Q1n(y1, y2)Q12(y1, yn)(v ⊗ w)

= (tny1 + sny2)(s1y1 + t1yn)(v ⊗ w).

By definition x0 acts on ∆(0) as y1, and x1 acts on ∆(1) as in (5.5) (with a shift in
index of the yi due to the tensor factor ∆(0) on the left), so, for some λ ∈ k×,

Q0,1(u, v) =

(
tnu+

λsn
t2t3 · · · tn−1

v

)(
s1u+

λt1
(−1)ns2s3 · · · sn−1

v

)
.

This has discriminant zero if and only if s1s2 · · · sn = (−1)nt1t2 · · · tn. The lemma
follows from Lemma 2.14, which characterizes geometric type KLR algebras. �

Theorem 5.10. Suppose Φ is symmetric and of either finite or affine type. Fix a KLR
algebra R of geometric type for Φ, and, if Φ is affine, assume R is defined over a field of
characteristic 0. Then, for any face F , the KLR algebra RF is also of geometric type.

Proof. Without loss of generality, F is irreducible. The statement is trivial unless
RF is of type ŝln for some n, since otherwise by Lemma 2.14 all KLR algebras are
geometric. So assume RF is type ŝln. Consider the standard face E of type ŝl2
inside F (i.e. the sub-face as defined in Lemma 5.9) and the face functors

RE-mod→ RF -mod→ R-mod.

These are well defined since the two simple roots of E both have support in a
finite type sub-Dynkin-diagram of ΦF . By Proposition 4.11 this composition of
face functors agrees with the one-step face functor, so by Lemma 5.8, RE is of
geometric type. But then, by Lemma 5.9, RF is also of geometric type. �

5.3. The zigzag algebra. Let Γ be a connected graph (the most important case for
us is an ADE Dynkin diagram). The zigzag algebra ZΓ associated to Γ, as defined
in [HK], is a graded algebra with basis elements ei for each vertex i, hij for each
ordered pair i, j of vertices with an edge from i to j, and wi for each vertex i. The
elements ei are in degree zero, hij are in degree one and wi are in degree two.
Multiplication is given by

eiej = δijej

eihjk = δijhjk

hijek = δjkhij

eiwj = wjei = δijwi

hijhkl = δjkδilwi,

and all other products of basis elements are zero.
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Example 5.11. If Γ is a single vertex then ZΓ = span{e, w} ' k[w]/w2, where w has
degree two. If Γ has no isolated points then ZΓ is generated by the idempotents ei and the
degree 1 elements hij .

Lemma 5.12. Let R be a geometric KLR algebra for ŝl3. Then S(δ) is isomorphic to the
tensor product of k[z] and the sl3-zigzag algebra, where z has degree two.

Proof. We can take I = Z/3, and the defining polynomials forR to beQi,i+1(u, v) =

u − v. By applying an outer automorphism of the Dynkin diagram of ŝl3 we can
assume without loss of generality that the two cuspidal simple modules of R(δ)
have characters [012] and [021] or [120] and [210]. We consider only the first case,
since the second follows by a symmetric argument.

Consider S′(δ) from Lemma 5.6. The irreducible representations are one dimen-
sional, so the Cartan matrix computed in Proposition 5.4 tells us its dimension.
Specifically e012S

′(δ)e012 has dimension 1 + q2 and e012S
′(δ)e021 has dimension q.

It is now straightforward to see that {e012, ψ2e012, (y2 − y3)e012, e021, ψ2e021, (y2 −
y3)e021} is a basis of S′(δ), and that this is isomorphic to theA2 zigzag algebra. �

Theorem 5.13. Consider a geometric KLR algebra of symmetric affine type. Let δ be the
smallest imaginary root and fix a convex order ≺. The category of cuspidal R(δ)-modules
is equivalent to the category of modules over the algebra k[z] ⊗ Z where Z is the zigzag
algebra corresponding to the underlying finite type Dynkin diagram.

Proof. The direct sum of the modules ∆(ω) and their grading shifts is a projective
generator of the category of S(δ)-modules, so by Morita theory it suffices to show

End

(⊕
ω∈Ω

∆(ω)

)
∼= Z ⊗ k[z].

For the case of ŝl2 this is immediate from Lemma 5.6.
Otherwise, Corollary 5.5 shows the endomorphism algebra has the right di-

mension. Let x and y be two elements of Ω connected by an edge. By Corollary 5.5
there is a unique up to scalar nonzero degree 1 morphism hxy : ∆(x)−→∆(y). By
Theorem 5.7, for all x ∈ Ω there is unique up to scalar nonzero degree 2 morphism
εx : ∆(x)−→∆(x) which squares to zero. If we can show that hxy ◦hyx is a nonzero
multiple of εx, then we can rescale the hxy to ensure that this scalar is one, which
will complete the proof.

Choose a linear function c such that c(x+) = c(y+) = c(δ) = 0, and c(α) > 0
for all α such that π(α) is another simple root in the positive system π({β : β �
δ}). The construction in §2.1 gives a convex pre-order such that the span of x±,
y± and δ is a face F , and by [TW, Lemma 1.14] this can be refined to a convex
total order with the same positive system. By [M, Theorem 13.1 and Theorem
17.3], the category of S(δ)-modules only depends on this system, so without loss
of generality we can use the new order.

Consider the face functor

RF -mod→ R-mod.

This is fully faithful and sends standard modules to standard modules, so, to prove
that hxy ◦ hyx is a nonzero multiple of εx, it suffices to prove this for RF . But RF
is of type ŝl3 and by Theorem 5.10 is of geometric type, so this is immediate from
Lemma 5.12. �
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Remark 5.14. Kleshchev and Muth [KM] have independently proven Theorem 5.13
for balanced convex orders. Their methods rely on case by case computations
which we have avoided. They also discuss analogues for R(nδ) with n > 1, where
they show that the category of cuspidal modules is equivalent to the category of
modules for an “affine zig-zag algebra.” In [CL] the affine zig-zag algebra (with
some minor sign differences) appears in the categorification of the Heisenberg al-
gebra (as EndHΓ(Pn)). Together, these results could perhaps be interpreted as a
type of imaginary face functor, with the Heisenberg algebra playing the role of the
Kac-Moody (or Borcherds) algebra of the face.

5.4. Example. Continue the example from §4.6, which considers a face F of type
ŝl2 inside ŝl3. Let 0′, 1′, δ′ denote the simple roots and the minimal imaginary root
for ŝl2. Choose the convex order with 0′ ≺ 1′ and let ∆(δ′) be the projective cover
of L(δ′) in the cuspidal category. Then L(δ′) is one dimensional. There is only one
indecomposable projective, so the graded dimension of ∆(δ′) agrees with that of
S(δ′), which by Lemma 5.6 is 1+q2

1−q2 . Thus there is an exact sequence

(5.6) 2q2∆(δ′)→ ∆(δ′)→ L(δ′)→ 0.

Choose a convex order on Φ+ compatible with the ŝl2 convex order on F . The
corresponding chamber coweights are the fundamental coweights ω1 and ω2. Let
F be the face functor associated to F which sends ∆(0′) to ∆(α2 + α0), so that
F(∆(δ′)) = ∆(ω2). Since F is right exact, Lemma 4.9 implies that (5.6) is sent to
an exact sequence

2q2∆(ω2)→ ∆(ω2)→ F(L(δ′))→ 0.

By Theorem 5.13 (or Lemma 5.12 in this case) the category of cuspidal R(δ)
modules is equivalent to the category of ZΓ ⊗ k[z] modules. The zig-zag algebra
ZΓ = span{e1, e2, h12, h21, w1, w2} has two simples S1, S2, and the corresponding
projective covers are of the form ZΓe1 and ZΓe2. Then h12e2 corresponds to a copy
of qS1 in ZΓe2. Under the equivalence of categories, ZΓe2 is sent to ∆(ω2) and S1

to L(ω1), so we see that ∆(ω2) has a copy of L(ω1) in degree 1. This cannot be in
the image of 2q2∆(ω2), so it survives inF(L(δ′)), and henceF(L(δ′)) is not simple.

Here F is not an equivalence of categories and Theorem 3.7 does not hold as
stated for faces not of finite type.
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