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Abstract. This paper develops the theory of KLR algebras with a Dynkin diagram auto-
morphism. This is foundational material intended to allow folding techniques in the theory
of KLR algebras.

1. Introduction

In Lie theory, the process of folding by a Dynkin diagram automorphism is a technique
that can be used to extend theorems originally proved for symmetric Cartan data to all Lie
types. This paper develops the theory of folding for KLR algebras.

KLR algebras (named after Khovanov, Lauda and Rouquier) are a family of graded algebras
introduced in [KL1, R1] for the purposes of categorifying quantised enveloping algebras. They
also appear in the literature under the name of quiver Hecke algebras.

While KLR algebras exist for arbitrary symmetrisable Cartan data, it is known that the
KLR algebras in symmetric types have a richer theory with more desirable properties. This is
usually a consequence of the geometric interpretation of symmetric KLR algebras [VV, R2, M]
or through the theory of R-matrices of [KKK]. Thus we believe that incorporating a diagram
automorphism into the narrative and using the technique of folding is an important way to
think about categorified quantum groups in nonsymmetric types, as an alternative to working
with nonsymmetric KLR algebras.

The folding constructions performed in this paper are modelled on those of [L, Chapter
2], where Lusztig constructs the canonical basis using perverse sheaves and a diagram au-
tomorphism. In fact when one considers the geometric interpretation of KLR algebras as
extension algebras and works over the field Ql, the category Pν which we study is equivalent
to Lusztig’s Q̃V .

Our main aim in this paper is to develop the theory of folded KLR algebras, to a depth
comparable to that of [KL1]. Our main theorems are the categorification theorems, Theorems
6.1 and 6.2. Our proof is different from [KL1] in that we do not rely on the quantum Gabber-
Kac theorem. Instead, we first identify an appropriate class of simple objects with the crystal
B(∞), using the Kashiwara-Saito characterisation of B(∞). This identification is Theorem
10.8, and generalises [LV].

We also conclude with a section proving that this categorifcation provides us with a basis
of canonical type. This concept of a basis of canonical type is motivated from the definition
given in [B] and is a strengthening of the notion of a perfect basis.
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An application of this work to the KLR categorification of cluster algebras will appear in
a forthcoming paper [Mc].

2. KLR Algebras

A Cartan datum (I, ·) is a set I together with a symmetric bilinear form on the free abelian
group ZI, denoted i · j such that

(1) i · i ∈ {2, 4, 6, · · · } for all i ∈ I
(2) 2 i·ji·i ∈ {0,−1,−2, . . .} for all distinct i, j ∈ I.

Let di = i · i/2 and cij = i · j/di. Then the matrix C = (cij)i,j∈I is a symmetrisable Cartan
matrix with D = diag (di)i∈I a symmetrising matrix.

Let a be an automorphism of the Cartan datum (I, ·) such that i · j = 0 if i and j are
in the same a-orbit. Let n be the order of a. We assume that n is finite (this is of course
automatic if I is finite).

Out of the data of C and a, we construct another Cartan datum. Let J be the set of orbits
in I. We can embed ZJ inside ZI by sending j ∈ J to

∑
i∈j i. If we restrict the symmetric

form on ZI to ZJ we place the structure of a Cartan datum on J . It is known that any
Cartan datum (J, ·) arises from such a construction where the Cartan datum (I, ·) satisfies
i · i = 2 for all i ∈ I. Such Cartan data (I, ·) are called symmetric.

Define, for any ν ∈ NI,

Seq (ν) = {i = (i1, . . . , i|ν|) ∈ I |ν| |
|ν|∑
j=1

ij = ν}.

This is acted upon by the symmetric group S|ν| in which the adjacent transposition (i, i+ 1)
is denoted si.

Let k be an algebraically closed field whose characteristic does not divide n. In a similar
vein to how simple modules for a KLR algebra over any field are absolutely irreducible, we
expect here that we only need to assume that k contains n n-th roots of unity. But we do
not pursue this question in this paper.

To each i, j ∈ I, we define polynomials Qij(u, v) ∈ k[u, v] such that for all i, j ∈ I,

(1) Qii(u, v) = 0
(2) If u has degree di and v has degree dj then Qij is a homogeneous polynomial of degree
−dicij = −djcji such that the coefficients of u−cij and v−cji are both nonzero.

(3) Qij(u, v) = Qji(v, u).
(4) Qa(i)a(j)(u, v) = Qij(u, v).

The KLR algebras are defined in terms of this family of polynomials Qi,j , though this
dependence is suppressed from the notation. There is a diagrammatic approach to presenting
the following generators and relations, which the reader may find more convenient. These
diagrams can be found in [KL1, KL2, TW].
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Definition 2.1. The KLR algebra R(ν) is the associative k-algebra generated by elements
ei, yj, τk with i ∈ Seq (ν), 1 ≤ j ≤ |ν| and 1 ≤ k < |ν|, subject to the relations

eiej = δi,jei,
∑

i∈Seq(ν)

ei = 1,

ykyl = ylyk, ykei = eiyk,

τlei = esliτl, τkτl = τlτk if |k − l| > 1,

τ2
k ei = Qik,ik+1

(yk, yk+1)ei,

(τkyl − ysk(l)τk)ei =


−ei if l = k, ik = ik+1,

ei if l = k + 1, ik = ik+1,

0 otherwise,

(τk+1τkτk+1 − τkτk+1τk)ei

=


Qik,ik+1

(yk, yk+1)−Qik,ik+1
(yk+2, yk+1)

yk − yk+2
ei if ik = ik+2,

0 otherwise.

(2.1)

If w is a permutation in S|ν|, write w as a reduced product of simple reflections w =
si1 . . . sin and define τw = τi1 . . . τin . In general this depends on the choice of a reduced
product but we will only use it in this paper for those w for which τw is well-defined.

The KLR algebras R(ν) are Z-graded, where ei is of degree zero, yjei is of degree ij · ij
and τkei is of degree −ik · ik+1. All R(ν)-modules will always be assumed to be graded left
modules. If V is any Z-graded vector space, we use Vi to denote its i-th graded piece. Given
a R(ν)-module M , its grading shift is denoted qM , this is the module with (qM)i = Mi−1.

If M and N are two R(ν)-modules and d ∈ Z, we define HomR(ν)(M,N)d to be the space

of graded R(ν)-module homomorphisms from M to qdN .
Because of the condition Qa(i)a(j)(u, v) = Qij(u, v) on the polynomials Qij , the auto-

morphism a of the Cartan datum (I, ·) induces an isomorphism R(aν) ∼= R(ν). The most
important case for us will be when aν = ν, when a induces an automorphism of the algebra
R(ν), which we shall also call a.

Now consider ν such that aν = ν. An R(ν)-module structure on a vector space V is the
same as a homomorphism from R(ν) to Endk(V ). If we precompose with the automorphism a
of R(ν), we get a new R(ν)-module structure on the same vector space. This autoequivalence
of the category of R(ν)-modules is denoted a∗.

Let Cν be the category whose objects are pairs (M,σ) where M is a representation of R(ν)
and σ : a∗M−→M is an isomorphism such that

σ ◦ a∗σ ◦ · · · ◦ (a∗)n−1σ = idM . (2.2)
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A morphism from (M,σ) to (M ′, σ′) in Cν is a R(ν)-module map f :M−→M ′ such that the
following diagram commutes:

a∗M
a∗f−−−−→ a∗M ′yσ yσ′

M
f−−−−→ M ′.

The following easy observation gives an alternative way to think about the category Cν .

Lemma 2.2. The category Cν is equivalent to the category of graded representations of the
smash product R(ν)#Z/n.

Let Pν be the full subcategory of finitely generated projective objects in Cν (an object of
Cν is finitely generated if it is finitely generated as a module for R(ν)#Z/n, equivalently if
the underlying R(ν)-module is finitely generated). The categorically minded reader may wish
to parse this as the category of compact projective objects of Cν .

Let Lν be the full subcategory of Cν whose objects are pairs (M,σ) where M is finite di-
mensional, or equivalently the full subcategory of finite length objects. We have the following
obvious corollary of Lemma 2.2:

Corollary 2.3. The categories Cν and Lν are abelian.

3. The Grothendieck Group Construction

Let ζn be a primitive n-th root of unity in C. Fix once and for all a ring homomorphism
Z[ζn]→ k.

If (M,σ) is an object of Cν , then so is ζn(M,σ) := (M, ζnσ).
An object (A, φ) of Cν is said to be traceless if there is a representation M of R(ν), an

integer t ≥ 2 dividing n such that (a∗)tM ∼= M , and an isomorphism

A ∼= M ⊕ a∗M ⊕ · · · ⊕ (a∗)t−1M

under which φ corresponds to an isomorphism carrying the summand (a∗)jM onto (a∗)jM
for 1 ≤ j < t and the summand (a∗)tM onto M .

The group K(Pν) is defined to be the Z[ζn]-module generated by symbols [(M,σ)] where
(M,σ) is an object of Pν , subject to the relations

[X] = [X ′] + [X ′′] if X ∼= X ′ ⊕X ′′

[(M, ζnσ)] = ζn[(M,σ)]

[X] = 0 if X is traceless

The group K(Lν) is defined similarly from the category Lν , except that in place of the
first relation, we have

[X] = [X ′] + [X ′′]

if there is a short exact sequence 0→ X ′ → X → X ′′ → 0.
Both K(Pν) and K(Lν) are Z[ζn, q, q

−1]-modules, where q acts by a grading shift.
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Given two objects (M,σ) and (N, τ) in Cν , there is an induced automorphism of HomR(ν)(M,N),
namely

f 7→ (a∗)−1(τ−1 ◦ f ◦ σ).

We will call this automorphism aστ . It allows us to define a pairing in the following Lemma,
whose proof is straightforward and omitted.

Lemma 3.1. The form defined by the below displayed equation descends to a semilinear
pairing K(Pν)×K(Lν)→ Z[ζn]((q))

〈[(M,σ)], [(N, τ)]〉 =
∑
d∈Z

tr(aστ ,HomR(ν)(M,N)d)q
d (3.1)

Let ψ be the antiautomorphism of R(ν) which sends each of the generators ei, yj and τk to

themselves. If P is a R(ν)-module, we denote by Pψ the right R(ν)-module whose underlying
space is P and the action of R(ν) is given by p · r = ψ(r)p for p ∈ P and r ∈ R(ν).

Now given isomorphisms σ : a∗P −→P and τ : a∗Q−→Q, there is an induced isomorphism
τ ⊗ σ : a∗Qψ ⊗R(ν) a

∗P −→Qψ ⊗R(ν) P . Since a∗Qψ ⊗R(ν) a
∗P is canonically isomorphic to

Qψ ⊗R(ν) P , we can consider τ ⊗ σ as an automorphism of Qψ ⊗R(ν) P . Using τ ⊗ σ, we also
obtain a pairing of interest, whose existence proof is again straightforward and omitted.

Lemma 3.2. The form defined by the below displayed equation descends to a symmetric
bilinear pairing K(Pν)×K(Pν)→ Z[ζn]((q)).

([(P, σ)], [(Q, τ)]) =
∑
d∈Z

tr(τ ⊗ σ, (Qψ ⊗R(ν) P )d)q
d. (3.2)

Remark 3.3. There is also a semilinear pairing 〈·, ·〉 on K(Pν) defined using the Hom form
using the same formula (3.1). It is related to this bilinear pairing by (x, y) = 〈x, ȳ〉.

Lemma 3.4. Let L be a simple R(ν)-module. Let t be the minimal integer such that (a∗)tL ∼=
L. Then there exists σ such that (L⊕ a∗L⊕ · · · ⊕ (a∗)t−1L, σ) is an object of Cν .

Remark 3.5. As the proof will indicate, this lemma and Theorem 3.6 below are very gen-
eral results about representations of an algebra with an action of a finite cyclic group. In
particular, the same statements hold when R(ν) is replaced by R(λ)⊗R(µ).

Proof. Let σ0 be an isomorphism from (a∗)tL to L. We have the canonical identification

a∗(L⊕ a∗L⊕ · · · ⊕ (a∗)t−1L) ∼= a∗L⊕ (a∗)2L⊕ · · · ⊕ (a∗)tL.

In block form, choose σ to be of the form
0 0 · · · 0 λσ0

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


where λ ∈ k. In order for (2.2) to hold, we must have

λn/tσ0 ◦ (a∗)tσ0 ◦ · · · ◦ (a∗)n−tσ0 = idL.
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By Schur’s Lemma σ0 ◦ (a∗)tσ0 ◦ · · · ◦ (a∗)n−tσ0 is a nonzero scalar. Since k is algebraically
closed, there exists λ satisfying this equation, completing the proof. �

It is clear that all modules formed in this way are simple in Cν and for different choices of
λ that they produce pairwise nonisomorphic simples.

Theorem 3.6. The construction of Lemma 3.4 provides a classification of all simple objects
in Cν . In particular, a simple object of Cν is either traceless or of the form (L, σ) with L a
simple R(ν)-module.

Proof. We use the Induction-Restriction adjunction for the inclusion of algebras R(ν) ↪→
R(ν)#Z/n. Suppose that (S, σ) is a simple object in Cν . Let L be a simple R(ν)-submodule

of S. Then by adjunction, there is a morphism in Cν from IndCνR(ν) L to (S, σ), which is

surjective as (S, σ) is simple.

The module IndCνR(ν)(L) is

(L⊕ a∗L⊕ · · · ⊕ (a∗)n−1L, φ)

where φ is the obvious permutation matrix.
Now suppose that t is the minimal integer such that (a∗)tL ∼= L. Let σ0 and λ be as in

the proof of Lemma 3.4 and write X(L, λ, σ0) for the corresponding module constructed in

the proof. Define φ : IndCνR(ν)(L)−→X(L, λ, σ0) by

φ|(a∗)rt+sL = λrσ0a
∗σ0 · · · (a∗)r−1σ0 : (a∗)rt+sL−→(a∗)sL.

It is easy to see that this does indeed define a morphism in Cν . As λ varies amongst all
possible choices, we get different nonisomorphic simple quotients of IndCνR(ν)(L). A dimension

count shows that there is a direct sum decomposition

IndCνR(ν)(L) ∼=
⊕
λ

X(L, λ, σ0).

Therefore (S, σ) is one of these direct summands, completing the proof. �

4. Induction and Restriction

For λ, µ ∈ NJ , the automorphisms a of R(λ) and R(µ) induce an automorphism a of
R(λ)⊗R(µ) by a(v⊗w) = av⊗ aw. Let Cλtµ denote the category of graded representations
of (R(λ)⊗R(µ))#Z/n. We define Pλtµ and Lλtµ in an analogous fashion.

Given (M,σ) and (N, τ) in Cλ and Cµ respectively, we can form the induced module

M ◦N := R(λ+ µ)
⊗

R(λ)⊗R(µ)

M ⊗N.

The isomorphisms σ and τ induce an isomorphism a∗M ◦a∗N →M ◦N . When precomposed
with the natural isomorphism a∗(M ◦N) ∼= a∗M ◦ a∗N , we obtain an isomorphism

σ ◦ τ : a∗(M ◦N)→M ◦N.
The object

(M,σ) ◦ (N, τ) := (M ◦N, σ ◦ τ)
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is an element of Cλ+µ.
For λ, µ ∈ NJ , let eλµ be the image of the identity under the inclusion R(λ) ⊗ R(µ) →

R(λ+ µ). Given a R(λ+ µ)-module M , its restriction is defined by

Resλ,µM := eλµM.

It is a R(λ)⊗R(µ)-module.
Since eλµ is invariant under a, there is a canonical isomorphism a∗(ResM) ∼= Res(a∗M).

Thus we obtain a restriction functor from Cλ+µ to Cλtµ.
Given objects (M,σ) and (N, τ) of Cλ and Cµ respectively, there is a tensor product object

(M ⊗N, σ ⊗ τ) of Cλtµ.

Proposition 4.1. The tensor product induces isomorphisms of Z[ζn, q, q
−1]-modules

K(Pλ)⊗Z[ζn] K(Pµ) ∼= K(Pλtµ),

K(Lλ)⊗Z[ζn] K(Lµ) ∼= K(Lλtµ).

Proof. Since k is algebraically closed, every indecomposable projective module for R(λ)⊗R(µ)
is a tensor product of projective modules over R(λ) and R(µ). Furthermore, every simple
module for R(λ)⊗R(µ) is a tensor product of simple modules over R(λ) and R(µ). Theorem
3.6 now completes the proof. �

Corollary 4.2. The restriction functor from Cλ+µ to Cλtµ induces a coassociative coproduct
on the direct sums ⊕

ν∈NJ
K(Pν) and

⊕
ν∈NJ

K(Lν).

Theorem 4.3. The functors of induction and restriction form an adjoint pair of exact func-
tors between Cλtµ and Cλ+µ.

Proof. The adjunction follows from the usual tensor-hom adjunction. Exactness follows from
exactness in the situation where there is no automorphism a. For restriction, this is obvious
and for induction, exactness follows from [KL1, Proposition 2.16]. �

Definition 4.4. A functor is said to be traceless if its image lies in the full subcategory of
traceless objects.

We refer to the filtration appearing in the below theorem as the Mackey filtration. This
important Theorem in the unfolded case is [KL1, Proposition 2.18]

Theorem 4.5. Let λ1, . . . , λk, µ1 . . . , µl ∈ NJ be such that
∑

i λi =
∑

j µj. Consider the
exact functor

Resµ1,...,µl ◦ Indλ1,...,λk

from Cλ1t···tλk to Cµ1t···tµl This composite functor has a natural filtration by exact functors.
The subquotient functors in this filtration which are not traceless are indexed by tuples νij
satisfying λi =

∑
j νij and µj =

∑
i νij, and are isomorphic, up to a grading shift, to the

composition

Indµν ◦τ ◦ Resλν .
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Here Resλν : ⊗i R(λi)-mod−→⊗i(⊗jR(νij))-mod is the tensor product of the Resνi•, τ : ⊗i
(⊗jR(νij))-mod−→⊗j(⊗iR(νij))-mod is given by permuting the tensor factors and Indµν : ⊗j
(⊗iR(νij))-mod−→⊗jR(µj)-mod is the tensor product of the Indν•i.

Proof. For simplicity we give the proof for the case where k = l = 2, from which the general
case follows. Write B for the (R(µ1) ⊗ R(µ2), R(λ1) ⊗ R(λ2))-bimodule R(λ1 + λ2). Then
tensoring with B is the usual composition Resµ1,µ2 ⊗ Indλ1,λ2 without the automorphism a
considered. We now describe the filtration of B as in the proof of [KL1, Proposition 2.18].

Let η• = (η11, η12, η21, η22) be a quadruple of elements in NI such that ηi1 + ηi2 = λi and
η1j + η2j = µj for i, j ∈ {1, 2}. Let w(η•) be the involutive permutation where w(i) = i
if i ≤ |η11| or i > |λ1 + η21| and w(i) = i + |η12| if |η11| < i ≤ |λ1|. Define the element
u(η•) = τw(η•) ∈ R(λ1 + λ2).

Then B is generated as a bimodule by the elements u(η•). Define a partial order on the
set of all quadruples η• by η• ≥ η′• if η21 − η′21 ∈ NI. Let B(≤ η•), respectively B(< η•)
be the subbimodule of B generated by all u(ζ•) with ζ• ≤ η•, respectively ζ• < η•. Let
B(η•) = B(≤ η•)/B(< η•).

The functor of tensoring with the subquotient B(η•) is the composition Indµν ◦τ ◦Resλν . In
particular it is exact, so we indeed have a filtration by exact subfunctors. We now need to
understand how this filtration interacts with the automorphism a.

If aη• = η•, then the functor B(η•)⊗− coincides with the composite functor Indµν ◦τ ◦Resλν
from Cλ1tλ2 to Cµ1tµ2 .

If aη• 6= η•, consider B(η•) ⊕ B(aη•) ⊕ · · ·B(at−1η•) where t is the minimal positive
integer such that atη• = η•. Grouping the subquotients in orbits in this manner produces
a subquotient functor which is tensoring with the direct sum bimodule. Furthermore, this
subquotient functor is traceless, because the a-action comes from the a-action on the bimodule
which is permuting the summands. �

Theorem 4.6. The induction and restriction functors send projective objects to projective
objects.

Proof. The induction and restriction functors have right adjoints restriction and coinduction
respectively. This coinduction functor is discussed in [LV, §2.3] in the unfolded case with a
straightforward generalisation to the folded case. The restriction functor is clearly exact and
the coinduction functor is exact since R(λ+ µ) is a free R(λ)⊗ R(µ)-module. The theorem
follows since a functor sends projectives to projectives if it has an exact right adjoint. �

5. Duality

Let P be a finitely generated projective R(ν)-module. Then we can define a dual module

DP = Hom(P,R(ν)).

This is the direct sum of all homogeneous homomorphisms between P and R(ν), not
necessarily of zero degree. It is a graded k-vector space where (DP )m = Hom(qmP,R(ν))0,
where we are referring to degree zero homomorphisms only.

This is also a R(ν)-module, where the action of R(ν) is by

r(λ)(m) = λ(ψ(r)m) (5.1)
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for all r ∈ R(ν), λ ∈ D(P ) and m ∈ P .
Let M be a finite dimensional R(ν)-module. Then its dual D(M) := Homk(M,k) is also

an R(ν)-module by the same formula (5.1) for all r ∈ R(ν), λ ∈ D(M) and m ∈ M . The
module DM is also naturally graded.

For any morphism f :M−→N between finitely generated projective, or finite dimensional
R(ν)-modules, there is then an induced morphism Df :DN−→DM .

Now we define the dual of an object (M,σ) in Lν or Pν by the formula

D(M,σ) = (DM, (Dσ)−1)

where the appropriate duality is taken depending on which category we are in. It is clear
that D is a contravariant functor from Lν to itself. To show that D sends Pν to Pν , since
projective modules are direct summands of free modules, it suffices to show that dual of a
free R(ν)#Z/n-module is free. The free R(ν)#Z/n-module of rank one is

(R(ν)⊕ a∗R(ν)⊕ · · · ⊕ (a∗)n−1R(ν), φ)

where, φ is the obvious permutation matrix. It is straightforward to compute that this is
isomorphic to its dual.

An object M of Lν or P of Pν is said to be self-dual if there is an isomorphism DM ∼= M
in Lν , respectively DP ∼= P in Pν .

Lemma 5.1. If P and Q are projective then D(P ◦Q) ∼= DP ◦ DQ.

Proof. Since projective modules are all direct summands of free modules, it suffices to consider
the case where P and Q are free. This computation is similar to the one which shows that D
sends Pν to Pν . �

6. The Statement of the Categorification Theorems

The algebra fQ(q) is the Q(q)-algebra as defined in [L] generated by elements {θj | j ∈ J}.
Lusztig defines it as the quotient of a free algebra by the radical of a bilinear form. By
the quantum Gabber-Kac theorem, it has a presentation as the quotient of a free algebra
by the quantum Serre relations. Morally, fQ(q) should be thought of as the positive part of
the quantised enveloping algebra Uq(g). There is only a slight difference in the coproduct,
necessary as the coproduct of Uq(g) does not map Uq(g)+ into Uq(g)+ ⊗ Uq(g)+.

There is a Z[q, q−1]-form of fQ(q), which we denote simply by f . It is the Z[q, q−1]-subalgebra

of fQ(q) generated by the divided powers θ
(n)
j = θnj /[n]qj !, where [n]q! =

∏n
i=1(qi − q−i)/(q −

q−1) is the q-factorial and qj = qdj .
The algebra f is graded by NJ where θj has degree j for all j ∈ J . We write f = ⊕ν∈NJ fν for

its decomposition into graded components. Of significant importance for us is the dimension
formula from [L, Theorem 33.1.3].∑

ν∈NJ
dim fνt

ν =
∏
α∈Φ+

(1− tα)−mult(α).

where Φ+ is the set of positive roots in the root system defined by (J, ·).
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The tensor product f ⊗ f has an algebra structure given by

(x1 ⊗ y1)(x2 ⊗ y2) = qβ1·α2x1x2 ⊗ y1y2 (6.1)

where y1 and x2 are homogeneous of degree β1 and α2 respectively.
Given any bilinear form (·, ·) on f , we obtain a bilinear form (·, ·) on f ⊗ f by

(x1 ⊗ x2, y1 ⊗ y2) = (x1, x2)(y1, y2).

There is a unique algebra homomorphism r : f −→ f ⊗ f such that r(θj) = θj ⊗ 1 + 1 ⊗ θj
for all j ∈ J . For each x ∈ fν , define jr(x) and rj(x) where r(x) = jr(x) ⊗ θj plus terms in
other bidegrees and r(x) = θj ⊗ rj(x) plus terms in other bidegrees.

The algebra f has a symmetric bilinear form 〈·, ·〉 satisfying

〈θj , θj〉 = (1− qj·j)−1

〈x, yz〉 = 〈r(x), y ⊗ z〉.

The form 〈·, ·〉 is nondegenerate. Indeed, in the definition of f in [L], fQ(q) is defined to
be the quotient of a free algebra by the radical of this bilinear form. It is known that f is
a free Z[q, q−1]-module. Let f∗ be the graded dual of f with respect to 〈·, ·〉. By definition,
f∗ = ⊕ν∈NIf∗ν . As twisted bialgebras over Q(q), fQ(q) and f∗Q(q) are isomorphic, though there

is no such isomorphism between their integral forms.
There is a bar involution on f which is the algebra automorphism of f sending q to q−1

and fixing the generators θj . It induces a bar involution on f∗ by λ(x) = λ(x) for all λ ∈ f∗

and x ∈ f .
Let A denote the smallest subring of Z[ζn] such that the structure constants for multipli-

cation in K(P), with respect to the self-dual indecomposable projectives, lie in A[q, q−1]. We
show later in Lemma 11.3 that A ⊂ Z[ζn + ζ−1

n ] and in the most favourable circumstances,
A = Z. This implies that if A 6∼= Z then n ≥ 5 and it is known that every irreducible Cartan
datum of finite or affine type can be obtained via a folding with n < 5.

Let kν denote the A[q, q−1]-span of the classes of self-dual indecomposable projectives
inside K(Pν). Similarly, let k∗ν denote the A[q, q−1]-span of the classes of self-dual simple
modules inside K(Lν). Write k = ⊕ν∈NJkν and k∗ = ⊕ν∈NJk∗ν for the decomposition of k
and k∗ into their graded pieces.

We are now able to state the main categorification theorems of this paper. They will be
proved at the end of Section 11.

Theorem 6.1. There is a unique A[q, q−1]-linear grading preserving isomorphism γ : f⊗A−→
k such that

(1) γ(θ
(m)
j ) = [P

(m)
j ] for all j ∈ J and m ∈ N.

(2) Under the isomorphism γ, the multiplication fλ⊗fµ → fλ+µ corresponds to the product
on k induced by Indλ,µ.

(3) Under the the isomorphism γ, the comultiplication fλ+µ → fλ ⊗ fµ corresponds to the
coproduct on k induced by Resλ,µ.

(4) Under the isomorphism γ, the bar involution on f corresponds to the anti-linear in-
volutive automorphism on k induced by the duality D.
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(5) The isomorphism γ intertwines the pairings 〈·, ·〉 and (·, ·) defined on f and k respec-
tively.

Theorem 6.2. There is a unique A[q, q−1]-linear grading preserving isomorphism γ∗ : k∗−→
f∗ ⊗A such that

(1) γ∗([L(j)]) = θ∗j for all j ∈ J .

(2) Under the isomorphism γ∗, the multiplication f∗λ ⊗ f∗µ → f∗λ+µ corresponds to the
product on k∗ induced by Indλ,µ.

(3) Under the the isomorphism γ∗, the comultiplication f∗λ+µ → f∗λ⊗ f∗µ corresponds to the
coproduct on k∗ induced by Resλ,µ.

(4) Under the isomorphism γ∗, the bar involution on f∗ corresponds to the anti-linear
antiautomorphism on k∗ induced by the duality D.

(5) The isomorphism γ∗ is the graded dual of the isomorphism γ in Theorem 6.1.

7. One Colour Folded KLR Algebras

Let j ∈ J . Let the elements of the orbit j be i1, i2, . . . , it.
The algebra R(i1 + · · ·+ it) has a unique irreducible representation Lj . This representation

has a basis [w] where w runs over all permutations of {i1, . . . , it}. The idempotent ei acts on
[w] by 1 if i = w and by 0 otherwise. The yi all act by zero. The τi act by the symmetric
group action on the set of all permutations.

The module a∗Lj has by construction the same underlying vector space but the action is
twisted by the automorphism a. We define σ : a∗Lj−→Lj by σ[w] = [aw]. Define

L(j) = (Lj , σ).

Let P (j) be the projective cover of L(j) in Cj . We can explicitly construct P (j) in a
similar fashion to the construction of L(j). It is of the form P (j) = (Pj , σ) where Pj =
⊕w∈Stk[x1, . . . xt][w].

Lemma 7.1. For all j ∈ J , we have (P (j), P (j)) = (1− qj·j)−1.

Proof. Let t = |j|. Recall that as a vector space, Pj = ⊕w∈Stk[x1, . . . , xt][w]. There is an
isomorphism

Pψj ⊗R(ν) Pj ∼= k[z1, . . . , zt]

given by
f(x)[w]⊗ g(y)[u] 7→ δwuf(z)g(z).

The automorphism σ ⊗ σ acts by permuting the zi’s. In the monomial basis, this action is
by a permutation matrix, so the trace is the number of fixed points, which consists only of
powers of z1z2 · · · zt. The statement of the lemma follows. �

Lemma 7.2. The object L(jn) := q
(n2)
j L(j)◦n is a self-dual simple object of Cnj.

Proof. The object L(jn) is irreducible because L◦nj is an irreducible R(n(i1+· · ·+it))-module.
The self-duality appears later in a more general form in Lemma 9.3. We don’t bother to prove
it here as it is not yet important. �

Let P (j)(n) be the projective cover of L(jn) in Cj
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Theorem 7.3. In

∞⊕
n=0

K(Pnj), we have the identity

[P (j)(m)][P (j)(n)] =

[
m+ n

n

]
j

[P (j)(m+n)].

Proof. It suffices to prove the dual version, namely

r([L(jn)]) =
∑
a+b=n

[
n

a

]
j

[L(ja)]⊗ [L(jb)]. (7.1)

Consider Resmj,nj L(jm+n) under the Mackey filtration. All terms either come from per-
mutations or are trivially traceless by the a-action on the Mackey filtration. �

8. Some Important Lemmas

This section is modelled on [KL1, §3.2], the technical heart of that paper, which in turn is
modelled on [G], which [Kl, Ch 5] is an exposition of in the case of graded Hecke algebras.
We provide all proofs for the sake of completeness.

For any j ∈ J and any object M of Cν , define

εj(M) = {maxn ∈ N | Resnj,ν−njM 6= 0}. (8.1)

Lemma 8.1. Let N be an irreducible object in Cν and j ∈ J such that εj(N) = 0. Let
M = L(j)◦n ◦N . Then

(1) Resnj,ν−nj ∼= L(jn)⊗N .
(2) The head of M is irreducible and εj(hdM) = n
(3) All other composition factors L of M have εj(L) < εj(M).

Proof. Since εj(N) = 0, (1) is a consequence of the Mackey filtration.
If Q is a quotient of M , then by adjunction there is a morphism from L(jn) ⊗ N to

Resnj,ν−nj Q, which is injective as N is irreducible. Now suppose that Q1 ⊕Q2 is a quotient
of M with Q1 and Q2 nonzero. As restriction is exact, we get a surjection from Resnj,ν−njM
to Resnj,ν−nj Q1 ⊕ Resnj,ν−nj Q2. By (1) this is a contradition, hence the head of M is
irreducible. Furthermore this argument also shows that εj(hd(M)) = n.

Now consider the short exact sequence 0→ K →M → hd(M)→ 0 and apply Resnj,ν−nj .
We have shown above that there is an induced isomorphism Resnj,ν−njM ∼= Resnj,ν−nj hd(M).
Therefore Resnj,ν−njK = 0 which proves (3). �

Lemma 8.2. Let M be irreducible in Cν and j ∈ J . Let m = εj(M). Then there exists a
simple object X in Cν−mj such that

Resmj,ν−mj(M) ∼= L(jm)⊗X.

Proof. Since L(j)◦m is the only simple R(mj)-module, there exists a simple X such that
L(jm)⊗X is a submodule of Resmj,ν−mj(M). Since m = εj(M) it must be that εj(X) = 0.
The inclusion of L(jm) ⊗ X into Resmj,ν−mj(M) factors through the adjunction morphism
in the following diagram:
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L(jm)⊗X //

a
))

Resmj,ν−mj(M)

Resmj,ν−mj(L(jm) ◦X)

f

44

Since εj(X) = 0, the Mackey filtration shows that the adjunction morphism a is an iso-
morphism. The inclusion of L(jm)⊗X into Resmj,ν−mj(M) yields by adjunction a morphism
from L(jm) ◦X to M which is surjective as M is simple. The map f is obtained by applying
the restriction functor to this surjection. Since the restriction functor is exact, f is surjective.

Therefore f ◦ a is a surjective map from a simple source to a target which is nonzero as
εj(M) = m. Thus it is an isomorphism. �

Lemma 8.3. Let N be irreducible in Cν , m ∈ N and j ∈ J . Let M = L(jm) ◦N . Then the
head of M is irreducible, εj(hd(M)) = εj(N) +m and all other composition factors L of M
have εj(L) < εj(N) +m.

Proof. Let n = ε(N). By Lemma 8.2, there exists a simple object X such that

Resnj,ν−nj(N) ∼= L(jn)⊗X.
This object X satisfies εj(X) = 0.

By adjunction, there is a nonzero morphism from L(jn) ◦X to N , which is surjective as
X is simple. Applying the exact functor L(jm) ◦−, we obtain a surjection from L(jm+n) ◦X
to M . Therefore all composition factors of M are composition factors of L(jm+n) ◦X. The
statement of this lemma now follows from Lemma 8.1(2) and (3). �

9. Crystal Operators

Recall the definition of εj(M) from (8.1). We similarly define

ε∗j (M) = {maxn ∈ N | Resν−nj,njM 6= 0}.

For any two modules M and N , define M �N = hd(M ◦N).
Let Bν be set of all self-dual (L, σ) in Cν where L is simple. Let B = tν∈NJBν . We now

construct some crystal operators on B.
For M ∈ Bν , define

ẽjM = q
1−εj(M)
j soc HomR(j)(L(j),Resj,ν−jM)

ẽ∗jM = q
1−ε∗j (M)

j soc HomR(j)(L(j),Resν−j,jM)

f̃jM = q
εj(M)
j L(j) �M

f̃∗jM = q
ε∗j (M)

j M � L(j)

wt(M) = ν.

Since L(j) is the unique simple object in Cj , the following identities hold:

εj(M) = max{n ∈ N | ẽnjM 6= 0}
ε∗j (M) = max{n ∈ N | (ẽ∗j )nM 6= 0}
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Lemma 9.1. Assume that ẽj and f̃j send B to B t {0}. Then for b, b′ ∈ B, b = f̃jb if and
only if b′ = ẽjb.

Proof. This is immediate from the adjunction isomorphism

HomCν+j (L(j) ◦N,M) ∼= HomCν (HomR(j)(L(j),Resj,ν−jM).

�

The rest of this section is dedicated to showing that the operators ẽj and f̃j send B to
B t {0}.

The KLR algebra R(j) is symmetric in the sense of [KKKO1, Definition 1.3]. In particular
there is a R-matrix rLj ,M :Lj◦M−→M ◦Lj for every R(ν)-module M . This is a homogeneous
morphism whose degree is given by the following lemma:

Lemma 9.2. If M is simple, then the degree of rLj ,M is (ν − εj(M)j) · j.

Proof. If εj(M) = 0, then this is [KKKO2, Proposition 10.1.3]. To deal with the general case,
we induct on εj(M). So suppose that εj(M) > 0. Then we can write M = hd(Lj ◦ N) for
some simple N . By Lemma 8.3, εj(N) < εj(M) so by induction we can assume the result
known for N . Consider the diagram

Lj ◦M ←−−−− Lj ◦ Lj ◦NyrLj,M yid◦rLj,N

M ◦ Lj ←−−−− Lj ◦N ◦ Lj .
This diagram commutes and the degrees of the horizontal maps are zero so the degrees of
the vertical maps must agree. �

Lemma 9.3. If (M,σ) ∈ Bν then f̃j(M,σ) ∈ Bν+j.

Proof. By [KKKO1, Theorem 3.2], if M is simple, then the image of the R-matrix can be
identified with both the head of L(j) ◦M and the socle of M ◦ L(j), and furthermore this
image is simple. Consider the diagram:

Lj ◦M

rLj,M

++
// // Lj �M

X // D(Lj �M) �
�
// D(Lj ◦M) // DM ◦ DLj // M ◦ Lj

a∗(Lj ◦M) // //

OO

a∗rLj,M

22
a∗(Lj �M) //

OO

a∗D(Lj �M) �
�
//

OO

a∗D(Lj ◦M) //

OO

a∗DM ◦ a∗DLj //

OO

a∗(M ◦ Lj)

OO

The unlabelled morphisms in the top row are, from left to right, the canonical surjection,
the canonical inclusion, the canonical isomorphism, and the circle product of the morphisms
f :DM −→M and g :DLj −→ Lj which exhibit isomorphisms (M,σ) ∼= (DM, (Dσ)−1) and
(Lj , σj) ∼= (D(Lj), (Dσj)−1). There exists a unique morphism X :Lj � M −→ D(Lj � M)
making the top row commute. Each morphism on the bottom row is the pullback of the
morphism on the top row under a∗.
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We have to show the commutativity of the square

Lj �M
X−−−−→ D(Lj �M)xσ′ xD(σ′)−1

a∗(Lj �M)
a∗X−−−−→ a∗D(Lj �M).

This square commutes because all other squares in the large diagram above are already known
to commute.

To check the grading shift, note that the degree of the isomorphism D(Lj ◦M) ∼= DM ◦DLj
is ν · j. The degree of rLj ,M is (ν − εj(M)j) · j by Lemma 9.2. Therefore the degree of the

isomorphism D(Lj �M) ∼= Lj �M is εj(M)j · j. Thus a degree shift of q
εj(M)
j is required to

get a self-dual object. �

Lemma 9.4. If M ∈ Bν then ẽj(M) ∈ Bν−j ∪ {0}.

Proof. Assume that εj(M) 6= 0, so in particular e∗j (M) > 0. Let N be a simple direct

summand of εj(M). Then by adjunction, M is a quotient of L(j) ◦N . Let m = εj(M). Then
Lemma 8.2 finds a simple X such that

Resmj,ν−mj(M) ∼= L(jm)⊗X.
As the restriction functor is exact, this is a quotient of Resmj,ν−mj(L(j) ◦N).

By Lemma 8.3, εj(N) = m−1. Therefore in the Mackey filtration of Resmj,ν−mj(L(j)◦N),
there is only one nonzero term, which involves considering Res(m−1)j,ν−mj N . From Lemma
8.2, we have

Res(m−1)j,ν−mj N ∼= L(jm−1)⊗ Y
for some simple Y .

We therefore have X ∼= Y . Since N can be recovered as the head of L(jm−1) ◦ Y , this
means that N is uniquely determined by M .

To show that this simple summand N has multiplicity one in ẽj(M) follows from the
adjunction formula

HomCν+j (L(j) ◦N,M) ∼= HomCν (HomR(j)(L(j),Resj,ν−jM).

Therefore ẽj(M) is simple. We hereafter denote it by N .
By the classification of irreducibles in Theorem 3.6, there exists an isomorphism N ∼= ζDN

for some root of unity ζ. The large commutative diagram in the proof of the previous Lemma
now shows that as M ∼= f̃iN , we have M ∼= ζDM . Since M is assumed self-dual, ζ = ±1,
completing the proof. �

10. The Crystal

We define a crystal for the Cartan datum (J, ·) to be a setB together with maps ẽi, f̃i :B−→
B t {0}, εi, φi :B−→Z for all i ∈ J , and wt :B−→ZJ , satisfying the conditions

(1) φi(b) = εi(b) + 〈hi,wt(b)〉
(2) If b ∈ B and ẽi(b) ∈ B then wt(ẽi(b)) = wt(b) + αi, εi(ẽib) = εi(b)− 1 and φi(ẽib) =

φi(b) + 1.
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(3) If b ∈ B and f̃i(b) ∈ B then wt(f̃i(b)) = wt(b)− αi, εi(f̃ib) = εi(b) + 1 and φi(f̃ib) =
φi(b)− 1.

(4) If b, b′ ∈ B, then b′ = ẽib if and only if b = f̃ib
′.

There are more general notions of a crystal in the literature which allow εi and φi to take
the value −∞. Also the image of wt is usually allowed to land in the entire weight lattice,
as opposed to ZJ . Since we do not come across these crystals here, we shall ignore them.

Definition 10.1. A crystal B is highest weight if

(1) It has a distinguished element b0 such that every b ∈ B can be reached from b0 by

applying the operators f̃j for j ∈ J .
(2) For all b ∈ B and j ∈ J , εj(b) = max{n | ẽnj (b) 6= 0}.

The following result allows us to identify a crystal as B(∞) (the crystal which is a com-
binatorial skeleton of a Verma module). It is equivalent to the criterion of Kashiwara and
Saito [KS, Proposition 3.2.3], and we sketch a proof of this equivalence later in this section.

Theorem 10.2. [TW, Proposition 1.4] Assume (B, ẽi, f̃i) and (B, ẽ∗i , f̃
∗
i ) are highest weight

crystals with the same highest weight element b0 of weight 0. Suppose that the following
conditions are satisfied for all b ∈ B and all distinct pairs i, j ∈ J :

(1) f̃i(b) 6= 0, f̃∗i (b) 6= 0,

(2) f̃if̃
∗
j (b) = f̃∗j f̃i(b),

(3) εi(b) + ε∗i (b) + 〈wt(b), α∨i 〉 ≥ 0,

(4) If εi(b) + ε∗i (b) + 〈wt(b), α∨i 〉 = 0, then f̃i(b) = f̃∗i (b).

(5) If εi(b) + ε∗i (b) + 〈wt(b), α∨i 〉 ≥ 1, then ε∗i (f̃i(b)) = ε∗i (b) and εi(f̃
∗
i (b)) = εi(b).

(6) If εi(b) + ε∗i (b) + 〈wt(b), α∨i 〉 ≥ 2, then f̃if̃
∗
i (b) = f̃∗i f̃i(b).

Then (B, ẽi, f̃i) ∼= (B, ẽ∗i , f̃
∗
i ) ∼= B(∞). Furthermore, if ∗ is the Kashiwara involution, then

ẽ∗i = ∗ẽi∗ under these identifications.

Let t be a natural number. We define a highest weight sl2 bicrystal Bt. Let

Bt = {(a, b, c) ∈ N3 | a+ b+ c = t} ∪ {(a, b, 0) ∈ N3 | t− |a− b| ∈ 2N}
The operators f̃ and f̃∗ act on Bt by the formulae

f̃(a, b, c) =

{
(a+ 1, b, c− 1) if c > 0

(a+ 1, b+ 1, 0) if c = 0

f̃∗(a, b, c) =

{
(a, b+ 1, c− 1) if c > 0

(a+ 1, b+ 1, 0) if c = 0

In this crystal, ε(a, b, c) = a, ε∗(a, b, c) = b and the weight is given by

ε(a, b, c) + ε∗(a, b, c) + 〈wt(a, b, c), α∨i 〉 = c.

The following lemma is straightforward:

Lemma 10.3. Suppose (B, ẽj , f̃i, ẽ
∗
i , f̃
∗
i ) satisfies the conditions of Theorem 10.2. Fix j ∈ J .

Then any subset of B generated by a single b ∈ B and the operators ẽj, f̃j, ẽ
∗
j and f̃∗j is

isomorphic to Bt for some natural number t.
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Proof of Theorem 10.2. The criterion of [KS, Proposition 3.2.3] is in terms of a strict embed-
ding of crystals Φi :B −→B ⊗ Bi. It is straightforward from Lemma 10.3 to compute that
such a strict embedding exists and satisfies the necessary properties to allow us to apply the
Kashiwara-Saito criterion and complete the proof. �

The following lemma is the folded version of [LV, Proposition 7.1(ii)] and has the same
proof.

Lemma 10.4. Suppose that M ∈ B is such that ε∗i (f̃iM) = ε∗i (M) = c. Then (ẽi)
cf̃iM =

f̃i(ẽi)
cM .

Proof. Let N = (ẽi)
cM . Then f̃iM is a quotient of L(i) ◦ N ◦ L(ic). Applying the exact

functor Resν+i,ci yields a surjection

Resν+i,ci L(i) ◦N ◦ L(ic) � Resν+i,ci f̃iM.

Since ε∗i (f̃iM) = c, the object Resν+i,ci f̃iM is nonzero and every simple subquotient is of the

form (ẽi)
cf̃iM ⊗ L(ic). Therefore there is a surjection

Resν+i,ci L(i) ◦N ◦ L(ic) � (ẽi)
cf̃iM ⊗ L(ic).

Note that ε∗i (N) = 0. Therefore in the Mackey filtration of Resν+i,ci L(i) ◦N ◦ L(ic), the
only possible subquotients which are not traceless are L(i) ◦N ⊗ L(ic) and N ◦ L(i)⊗ L(ic).

By the induction-restriction adjunction and the fact that ε∗i ((ẽi)
cf̃iM) = 0, there are no

homomorphisms from N ◦ L(i) to (ẽi)
cf̃iM . Therefore there must be a surjection

L(i) ◦N � (ẽi)
cf̃iM.

Since f̃iN is the unique irreducible quotient of L(i) ◦N , it must be that we have our desired

isomorphism f̃iN ∼= (ẽi)
cf̃iM . �

Proposition 10.5. Conditions (1)-(6) in Theorem 10.2 are satisfied by the crystal B.

Proof. That condition (1) is satisfied is obvious.

For (2), note that f̃if̃
∗
j (M) and f̃∗j f̃i(M) are both simple quotients of Li◦M ◦Lj . It suffices

to prove that the underlying R-module of Li ◦M ◦ Lj has a simple head, which then forces
these two quotients to be identical. This follows from the classification of irreducible modules
in terms of semicuspidal decompositions in [TW, §2], where we consider a convex order with
all simple roots in i at one extreme and all simple roots in j at the other extreme.

The condition (3) does not involve the diagram automorphism, so follows from the corre-
sponding result in the unfolded case, namely [LV, Proposition 6.7(v)].

We now turn our attention to (4). SupposeM is such that εi(M)+ε∗i (M)+〈wt(M), α∨i 〉 = 0.

We apply the inequality (3) to f̃i(M) as well as the obvious inequalities εi(f̃i(M))−εi(M) ≤ 1

and ε∗i (f̃i(M))− ε∗i (M) ≤ 1 to deduce that ε∗i (f̃i(M)) = εi(M) + 1.

Now consider M ◦ Li. The object f̃∗(M) is both the head and the unique subquotient
with maximal ε∗i . Taking duals shows that the socle of Li ◦M is the unique subquotient

with maximal ε∗i . But the identity ε∗i (f̃i(M)) = εi(M) + 1 shows that the head, f̃i(M), is
the unique subquotient with maximal ε∗i . Therefore Li ◦M is irreducible, so the R-matrix
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induces an isomorphism (in C) between M ◦Li and Li ◦M . This is an isomorphism between

f̃∗i (M) and f̃i(M), as desired.
The condition (5) also does not involve the diagram automorphism, so also follows from

the corresponding result in the unfolded case in [LV].

For condition (6), first apply condition (5) to deduce ε∗i (f̃iM) = ε∗i (M). This implies

that f̃iM also satisfies the condition (5). Now applying (5) to both M and f̃iM yields

εi(f̃
∗
iM) = εiM and εi(f̃

∗
i f̃iM) = εi(f̃iM). With these two equations, we apply Lemma 10.4

twice to reach the desired conclusion. �

Lemma 10.6. Suppose i, j ∈ J and b ∈ B. Then ẽif̃
∗
j b is either equal to f̃∗j ẽib or b.

Proof. If i = j then this is an immediate consequence of Lemma 10.3 and Proposition 10.5
since this result holds in the crystal Bt. So now suppose that i 6= j. Then εi(b) = εi(f̃

∗
j b) so

either ẽif̃
∗
j b and f̃∗j ẽib are both zero, or both nonzero. In the latter case, applying condition

(3) to ẽif̃
∗
j b implies the result. �

Let [1] be the object (k, id) in C0. It lies in B. If n is odd this is the only element of B
of weight zero. If n is even, there is exactly one other weight zero element of B, which we
denote [−1].

Lemma 10.7. Let BL be the subset of B consisting of all elements of the form f̃i1 · · · f̃ik [1].

Let BR be the subset of B consisting of all elements of the form f̃∗i1 · · · f̃
∗
ik

[1]. Then BL = BR.

Proof. What we have to prove is that it is impossible to have an equation of the form.

f̃i1 · · · f̃ik [1] = f̃∗j1 · · · f̃
∗
jk

[−1]

Suppose for want of a contradiction that such an equation holds. We apply ẽi1 to this
equation and repeatedly use Lemma 10.6 on the right hand side to either arrive at a smaller
counterexample or a direct contradiction. �

Theorem 10.8. The bicrystal BL = BR is isomorphic to B(∞).

Proof. It is clear that BL = BR is highest weight. It is a bicrystal by Lemma 10.7. Proposition
10.5 shows that it satisfies the conditions (1)-(6) in the statement of Theorem 10.2. Applying
Theorem 10.2 completes the proof. �

We will now write B+ for the bicrystal BL = BR.

Remark 10.9. Our use of [LV, Proposition 6.7(v)] is the only place in this paper where we
use the necessary fact that the leading coefficients of Qij(u, v) are nonzero.

Corollary 10.10. The Grothendieck group K(Pν) has dimension∑
ν∈NJ

dimK(Pν)tν =
∏
α∈Φ+

(1− tα)−mult(α).
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11. Proof of the Main Theorem

We have natural bases B and B∗ of K(P) and K(L). Specifically B∗ consists of the classes
of objects of B+. This is a basis by Theorem 3.6, together with the fact that every irreducible
R(ν)-module is isomorphic to its dual up to a grading shift. The basis B consists of the
classes of projective covers of elements of B+.

Theorem 11.1. The bases B and B∗ are dual to each other.

Proof. Since k is algebraically closed, Schur’s Lemma implies that the endomorphism algebra
of any simple object is k. Therefore Hom(P,L) is either 0 or k when P is indecomposable
projective and L is simple. As the pairing between K(P) and K(L) is realised by the Hom
pairing (3.1), this implies that B and B∗ are dual to each other. �

It is natural to ask the following question

Question 11.2. Do the structure constants for multiplication in K(P) with respect to the
basis B lie in Z[q, q−1]?

We remark that existing proofs of similar facts in the literature [E, L] require as input deep
inputs from geometry that we do not have access to. They imply that if char k = 0 and R(ν)
is of geometric type (which means that Qij(u, v) = ±(u− v)d for all i, j) then the answer to
Question 11.2 is yes. We are only able to prove the following weaker version, which answers
Question 11.2 in the affirmative in most interesting cases.

Lemma 11.3. The structure constants for multiplication in K(P) with respect to the basis
B are in Z[ζn + ζ−1

n , q, q−1].

Proof. Write [P ][Q] =
∑

R∈B a
R
PQ[R] where a priori the aRPQ lie in Z[ζn, q, q

−1]. On the

Grothendieck group, the duality D sends ζn to ζ−1
n , which we will denote by a bar involution

on Z[ζn, q, q
−1] fixing q.

Since D(P ◦Q) ∼= (DP ) ◦ (DQ) by Lemma 5.1, we have∑
R∈B

aRPQ[R] = [P ][Q] = [DP ][DQ] = [D(P ◦Q)] =
∑
R

aRPQ[DR] = aRPQ[R].

This implies that each coefficient aRPQ is invariant under the bar involution so lies in Z[ζn +

ζ−1
n , q, q−1] as desired. �

Let j = (j1, j2, . . .) be a sequence of elements of J in which each element occurs infinitely
often. Let N∞ be the set of sequences {cm}∞m=1 of natural numbers such that ci = 0 for all
but finitely many i.

Suppose b ∈ B(∞). Define a sequence {cm}∞m=1 of natural numbers by

cm = εjm(ẽ
cm−1

jm−1
(· · · ẽc1j1(b) · · · )).

This defines a function ι :B(∞)−→N∞ which is known to be injective by [Ka, Theorem
2.2.1]. Since B+

∼= B(∞), we can view ι as an inclusion from B+ to N∞.

If c ∈ N∞, we define P (c) = P
(c1)
j1
◦ P (c2)

j2
◦ · · · .
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Lemma 11.4. For c ∈ N∞ and L ∈ B+, Hom(P (c), L) = 0 unless ι(L) ≥ c in lexicographical

order. If ι(L) = c then Hom(P (c), L) ∼= k.

Proof. Write P (c) = P
(c1)
j1
◦Q. By adjunction,

Hom(P (c), L) ∼= Hom(P
(c1)
j1
⊗Q,Resc1j1,ν−c1j1 L).

If εj1(L) < c1, this is zero. If εj1(L) = c1, then by Lemma 8.2, Resc1j1,ν−c1j1 L
∼= L(jc11 )⊗ẽc1j1L.

Therefore

Hom(P (c), L) ∼= Hom(Q, ẽc1j1L).

So unless ι(L) > c in lexicographical order, we have either computed Hom(P (c), L) or are in
a position where we can proceed by induction. �

Lemma 11.5. The structure constants for comultiplication in K(P) with respect to the basis
B are in Z[q, q−1].

Proof. By Lemma 11.4, the set {[P (ι(b))]} is a basis of K(P). Since the objects P (ι(b)) are all

self-dual, these also form a basis of k. We will now compute r([P (c)]) to prove the result.

From Theorem 7.3, [c]!q[P
(c)] = [P c] so it suffices to compute r([P c]). Theorem 4.5 tells

us that modulo traceless subquotients (which are zero in the Grothendieck group), all sub-

quotients of ResP c are a grading shift of P c
′ ⊗P c′′ . Thus all structure constants lie in Q(q).

This is enough to complete the proof since Q(q) ∩ Z[ζn, q, q
−1] = Z[q, q−1]. �

Proposition 11.6. The twisted bialgebra structures on ⊕ν∈NJK(Pν) and ⊕ν∈NJK(Lν) re-
strict to twisted bialgebra structures on k and k∗ respectively. The corresponding twisted
bialgebras k and k∗ are graded duals of each other.

Proof. That k is a bialgebra is Lemmas 11.3 and 11.5. Since k is algebraically closed, the
endomorphism algebra of any simple object is k. Therefore the Hom pairing is a perfect
pairing between k and k∗. Hence the statement for k∗ follows from that for k. �

Let ′fQ(q) be the free Q(q)-algebra generated by θj . Let ′f be the Z[q, q−1]-subalgebra

generated by the divided powers θ
(n)
j . There is a canonical surjection from ′f to f .

Define χ : ′f ⊗ A−→k to be the unique algebra homomorphism such that χ(θj) = [Pj ] for
all j ∈ J .

Lemma 11.7. χ is a homomorphism of coalgebras.

Proof. To show that χ is a coalgebra homomorphism, we have to show that the coproduct
on k satisfies the properties

(1) r([Pj ]) = [Pj ]⊗ 1 + 1⊗ [Pj ]
(2) r(xy) = r(x)r(y) where the multiplication on the right hand side is the twisted one

given in (6.1).

The first of these facts is straightforward, while the second follows from Theorem 4.5 (the
Mackey filtration). �

Recall the ring A of coefficients introduced in §6.
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Lemma 11.8. The homomorphism χ⊗A : ′f ⊗A−→k is surjective.

Proof. Since [P
(c)
j ] = χ(θ

(c)
j ), the elements {P (ι(b))} for b ∈ B(∞) all lie in the image of χ.

Lemma 11.4 shows that if we expand {P (ι(b))} in the basis B of classes of indecomposable
projectives, the coefficients that appear form a unitriangular matrix. In particular this matrix
is invertible over A[q, q−1] which implies the surjectivity of χ⊗A. �

Lemma 11.9. χ is an isometry.

Proof. To show that χ is an isometry it suffices to show that the pairing (·, ·) on k defined
by (3.2) satisfies the properties

(1) ([Pj ], [Pj ]) = (1− qj·j)−1,
(2) (x, yz) = (r(x), y ⊗ z),
(3) (xy, z) = (x⊗ y, r(z)).

The first of these conditions is Lemma 7.1. The third follows from the Induction-Restriction
adjunction. The second follows from the third since the form (·, ·) is symmetric. �

Proof of Theorem 6.1. Recall that f is the quotient of ′f by the radical of 〈·, ·〉. Let R be
the radical of (·, ·) in k. Since χ is an isometry, it induces an injective homomorphism
γ : f −→ k/R. Theorem 10.8 and [L, Theorem 33.1.3] compute the graded ranks of the free
modules k and f respectively. These ranks are the same, so it must be that R is zero. and
γ is an injective homomorphism from f to k. Surjectivity follows from Lemma 11.8 and the
rest is straightforward. �

Theorem 6.2 follows immediately from Theorem 6.1.

12. Bases of Canonical Type

Let σ be the antiautomorphism of f that fixes the Chevalley generators θj . This is induced
from an automorphism σ of each R(ν) which sends ei1,...,in to ein,...,i1 , yj to yn+1−j and τk to
−τn−k. The bar involution of f is the automorphism fixing the generators θj and sending q
to q−1. Both σ and the bar involution induce corresponding involutions on f∗, which we will
also call σ or the bar involution respectively.

The following definition is lifted from [B] where it appears in the special case where q is
specialised to 1.

Definition 12.1. A basis B of f is said to be of canonical type if it satisfies the conditions (1)–
(6) below:

(1) The elements of B are weight vectors.
(2) 1 ∈ B.
(3) Each right ideal (θpj f ⊗Q(q)) ∩ f is spanned by a subset of B.

(4) In the bases induced by B, the left multiplication by θ
(p)
j from f/θjf onto θ

(p)
j f/θ

(p+1)
j f

is given by a permutation matrix.
(5) B is stable by σ.
(6) B is stable under the bar involution.

There is a dual notion. Here we let rjp be the adjoint of left multiplication by θ
(p)
j .
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Definition 12.2. A basis B∗ of f∗ is said to be of dual canonical type if it satisfies the
conditions (1)–(6) below:

(1) The elements of B∗ are weight vectors.
(2) 1 ∈ B∗.
(3) Each ker(rjp) is spanned by a subset of B∗.
(4) In the bases induced by B∗, the map

rjp : ker(rjp+1)/ ker(rjp)−→ker(rj)

is given by a permutation matrix.
(5) B∗ is stable by σ.
(6) B∗ is stable under the bar involution.

The algebra f acts on f∗ where θj acts by the endomorphism rj . If B∗ is a basis of
dual canonical type, then the specialisation of B∗ at q = 1 is a perfect basis of the unipotent
coordinate ring Z[N ] (which is the specialisation of f∗ at q = 1) in the sense of [BK, Definition
5.30]. The other results of [BK, §5] then prove that the crystal obtained from any basis of
dual canonical type is isomorphic to B(∞).

Theorem 12.3. A basis B of Uq(n) is of canonical type if and only if its dual basis B∗ of
Aq(n) is of dual canonical type.

Proof. Let A be the matrix representing the linear transformation from fν to fν+pj that is

left-multiplication by θ
(p)
j with respect to the basis B. Condition (3) in Definition 12.1 is

equivalent to A being in block form
(

0
X

)
where the subset of B spanning the right ideal

θpi f ⊗Q(q)∩ f corresponds to the rows in X. Furthermore X is invertible over Q(q) since this
linear transformation is injective.

Let B be the matrix representing the linear transformation rjp from f∗ν+pj to f∗ν with respect

to the basis B∗. Condition (3) in Definition 12.2 is equivalent to B being in block form ( 0 Y )
with Y invertible over Q(q) where the subset of B∗ spanning ker(rjp) corresponds to the
columns not part of Y .

Since passing between the matrices representing adjoint operators corresponds to taking
the transpose of a matrix, the two conditions labelled (3) in Definitions 12.1 and 12.2 are
equivalent. The equivalence of the other conditions is obvious. �

Theorem 12.4. [B, §2.3] Let λ ∈ P+. Let V (λ) be a highest weight module of the quantum
group Uq(g) constructed from (J, ·) with highest weight λ and let vλ be a highest weight vector.
Let B be a basis of canonical type. Then the set

{bvλ | b ∈ B, bvλ 6= 0}
is a basis of V (λ).

Proof. By [L, Corollary 6.2.3(a)], the map x 7→ x−vλ is a surjective map from f to V (λ) with
kernel the left ideal

K =
∑
j∈J

fθ
〈α∨j ,λ〉+1

j .

By conditions (3) and (5) in the definition of a basis of canonical type, K is spanned by
elements of B. Hence B induces a basis of the quotient V (λ). �
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Theorem 12.5. Let M ∈ B+ and p ≤ εj(M) be a natural number. Then

rjp([M ]) =

[
εj(M)

p

]
j

[ẽpjM ] +
∑
N∈B+

εj(N)<εj(M)−p

aN [N ] (12.1)

for some aN ∈ Z[q, q−1].

Proof. Let m = εj(M). By Lemma 8.2, Resmj,ν−mj(M) ∼= L(jm) ⊗ X for some irreducible
object X of Cν−mj .

Now suppose that L(ip) ⊗ Y is a simple composition factor of Respm,ν−pmM . Note that
εj(Y ) ≤ m− p. If εj(Y ) < m− p then this term contributes in an allowable way to the sum
in (12.1). If εj(Y ) = m− p then again by Lemma 8.2, Res(m−p)j,ν−(m−p)j Y ∼= L(jm−p)⊗ Z
for some irreducible object Z. Since the restriction functor is exact we must have X ∼= Z.

As X ∼= ẽmj (M), this identifies Y as f̃m−pj ẽmj (M) = ẽpj (M).

It remains to compute the coefficient of [ẽpjM ] in the expansion (12.1), which follows from

(7.1). �

Theorem 12.6. The set B∗ ∩ ker(rip) is a basis of ker(rip).

Proof. It suffices to show that rip is injective on

span〈[M ] |M ∈ B+ and εi(M) ≥ p〉.
Since the crystal operator ẽpi is injective on the set of b ∈ B+

∼= B(∞) satisfying εi(b) ≥ p,
this injectivity follows from Theorem 12.5 above. �

Theorem 12.7. The basis B∗ is a basis of dual canonical type.

Proof. Conditions (1) and (2) in Definition 12.2 are obvious. Condition (3) is Theorem
12.6. Condition (4) follows from Theorem 12.5, noting that if [M ] ∈ ker(rjp+1) \ ker(rpj ),

then εj(M) = p. The stability under σ is because σ is induced by the automorphism σ of
R(ν). The stability under the bar involution is because B∗ consists of the classes of self-dual
objects. �

Corollary 12.8. The KLR basis B is a basis of canonical type.

Proof. This is a consequence of Theorems 12.8, 12.3 and 11.1. �

From Theorem 12.4, we obtain in addition the following Corollary.

Corollary 12.9. The KLR basis B induces a basis in any irreducible highest weight module.

Remark 12.10. When there is no diagram automorphism, a categorified version of Corollary
12.9 is proved in [KK] and [W].

When C is a symmetric Cartan matrix, the field k is of characteristic zero and the polyno-
mials Qij(u, v) are all of the form ±(u−v)−cij , the basis B is the same as Lusztig’s canonical
basis, or equivalently Kashiwara’s lower global basis. This follows from comparing the geo-
metric interpretation of the KLR algebras as Ext algebras due to [VV, R2] and Lusztig’s
construction of the canonical basis in terms of perverse sheaves in [L]. A relevant discussion
for how to geometrically construct projective modules in this situation can be found in [CG,
§8.7].
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