NON-PERVERSE PARITY SHEAVES ON THE FLAG VARIETY

PETER J MCNAMARA

Abstract. We give examples of non-perverse parity sheaves on Schubert varieties for all primes.

1. Introduction

The notion of a parity sheaf was introduced in [JMW] and has since become an important object in modular geometric representation theory. An even/odd sheaf on a complex variety X with coefficients in a field k is an object of $D^b(X; k)$ whose star and shriek restrictions to all points only have even/odd cohomology. A parity sheaf is a direct sum of an even and an odd sheaf. (We only consider parity sheaves for the zero pariversity in this paper).

In this paper, we take X to be the variety of all complete flags in \mathbb{C}^N, and only consider sheaves which are constructible with respect to the stratification by Schubert varieties. Then by [JMW, Theorem 4.6], for each $w \in S_n$, there exists a unique indecomposable parity sheaf E_w whose support is the Schubert variety X_w. Up to homological shift, these constitute all Borel-constructible parity sheaves on the flag variety X.

Let p be the characteristic of k. We provide the first examples of parity sheaves on Schubert varieties which are not perverse for primes $p > 2$. Examples for $p = 2$ were recently constructed in [LW]. Our family of examples also includes parity sheaves which are arbitrarily non-perverse. We are not able to provide examples with p greater than the Coxeter number, but we expect that such examples exist. Such examples are of interest thanks to [AR].

Our examples generalise constructions of Kashiwara and Saito [KS], Polo (unpublished), and the author and Williamson [MW].

2. Statement of the result

Let p be a prime. Let d and l be positive integers such that $p^d \geq l \geq 3$. Let $q = p^d$. Define the following permutation $y \in S_{q(l+2)}$:

Date: November 27, 2018.
\[y(j) = \begin{cases}
(l + 1)q & \text{if } j = 1 \\
q + 1 - j & \text{if } 2 \leq j \leq q \\
(l + 2)q & \text{if } j = q + 1 \\
(l + 2)q + 1 - j & \text{if } q + 2 \leq j < (l + 1)q \text{ and } j \not\equiv 0, 1 \pmod{q} \\
(l + 2)q - j & \text{if } q + 2 \leq j < (l + 1)q \text{ and } j \equiv 0 \pmod{q} \\
(l + 2)q + 2 - j & \text{if } q + 2 \leq j < (l + 1)q \text{ and } j \equiv 1 \pmod{q} \\
1 & \text{if } j = (l + 1)q \\
(2l + 3)q - j & \text{if } (l + 1)q < j < (l + 2)q \\
q + 1 & \text{if } j = (l + 2)q.
\end{cases} \]

Let \(\mathcal{E}_y \) be the indecomposable parity sheaf supported on the Schubert variety \(X_y \) with coefficients in \(\mathbb{F}_p \), extending the constant sheaf shifted by \(\dim(X_y) \). Our theorem is:

Theorem 2.1.

\[\mathcal{E}_y \not\cong \mathcal{F} \quad \text{for } \tau \leq l - 3. \]

Here \(\mathcal{F} \) is the perverse truncation operator. Since \(l \geq 3 \), this implies that \(\mathcal{E}_y \) is not perverse.

3. Intersection Forms

If \(A \) is an indecomposable object in a Krull-Schmidt category and \(X \) is any object, write \(m(A, X) \) for the number of times \(A \) appears as a direct summand of \(X \).

Our main tool is the following result which computes the multiplicities of a direct summand via the rank of a bilinear form.

Proposition 3.1. [JMW, Proposition 3.2] Let \(k \) be a local ring. Let \(\pi : \tilde{Y} \to Y \) be a proper resolution of singularities. Let \(y \in Y \), and suppose that the fibre \(F = \pi^{-1}(y) \) is smooth. Write \(i \) for the inclusion of \(y \) in \(Y \). Let \(n \) be the dimension of \(\tilde{Y} \), \(d \) the dimension of \(F \) and \(m \) be an integer. Let \(B \) be the pairing

\[H^{2d-n-m}(F) \times H^{2d-n+m}(F) \to H^{2d}(F) \]

given by \(B(\alpha, \beta) = \alpha \cup \beta \cup e \), where \(e \) is the Euler class of the normal bundle to \(F \) in \(Y \). Then

\[m(i_*k[m], \pi_*k[n]) = \text{rank}(B). \]

Proof. By general results about multiplicities of indecomposable objects in Krull-Schmidt categories, the multiplicity \(m(i_*k[m], \pi_*k[n]) \) is equal to the rank of the pairing

\[\text{Hom}(i_*k[m], \pi_*k_F[n]) \times \text{Hom}(\pi_*k_F[n], i_*k[m]) \to \text{End}(i_*k[m]) \cong k. \] \(\text{(3.1)} \)

The following commutative diagram appears in the proof of [JMW, Lemma 3.4] and arises through applying base change and adjunctions. The pairing \(B' \) arises through composition with the canonical map from \(\omega_F[-n] \) to \(k_F[n] \) (which comes from applying the canonical natural transformation \(i^! \to i^* \) to \(k_F \)).
\[
\text{Hom}(kF[m], \omega F[-n]) \times \text{Hom}(kF[n], \omega F[m]) \xrightarrow{B'} \text{Hom}(kF[m], \omega F[m]) \\
\downarrow \quad \downarrow
\text{Hom}(i_*k[m], \pi_*kFY[n]) \times \text{Hom}(\pi_*kF[n], i_*k[m]) \longrightarrow \text{End}(i_*k[m])
\]

Since \(F \) is smooth, \(\omega F \cong kF[2d] \) and the canonical morphism from \(\omega F[-n] \) to \(kF[n] \) is identified with the Euler class \(e \). Therefore the pairing (3.1) is identified with the one stated in the proposition, completing the proof. \(\square \)

4. Geometry

Let \(x \) be the permutation

\[
\begin{pmatrix}
J & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & J & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & J & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & J
\end{pmatrix}
\]

where \(J \) is the \(q \times q \) antidiagonal matrix.

We compute the slice to the Schubert variety \(X_y \) at the point \(x \). Using the techniques discussed in [W], this is given by matrices of the form

\[
\begin{pmatrix}
0 & A_l \\
A_l & \vdots \\
A_l & A_2 \\
A_1 & A_2 \\
0 & B_1 & B_2 & \cdots & B_l & 0
\end{pmatrix}
\]

subject to the conditions

\(B_i J A_i = 0 \)

for all \(i \).

Let \(Y \) be this slice. Reimagine \(Y \) as the space of representations of the quiver

of dimension vector

\[
\begin{pmatrix}
q \\
q \\
q
\end{pmatrix}
\]
Let
\[\tilde{Y} = \{(h, \ell_1, \ldots, \ell_l, \ell, A_1, \ldots, A_l, B_1', \ldots, B_l') \mid h \in Gr(q-1, q), \]
\[\ell_1, \ldots, \ell_l, \ell \in Gr(1, q), A_i \in \text{Hom}(\mathbb{C}^q/h, \ell_i), B_i \in \text{Hom}(\mathbb{C}^q/\ell_i, \ell) \} \]

Then \(\tilde{Y} \) is the total space of a vector bundle \(E \) on \(Z := (\mathbb{P}^{q-1})^k + 2 \).

We have
\[H^*(Z) \cong \mathbb{Z}[w]/(w^q) \otimes (\bigotimes_{i=1}^l \mathbb{Z}[a_i]/(a_i^q)) \otimes \mathbb{Z}[z]/(z^q) \]
where the variables \(w \) and \(z \) come from the factors of \(Z \) corresponding to the choices of \(h \) and \(\ell \) in \(\tilde{Y} \) respectively, while the \(a_i \) come from the choice of \(\ell_i \).

Lemma 4.1. The Euler class of \(E \) is given by
\[e(E) = \prod_{i=1}^l \left((a_i + w) \sum_{j=0}^{q-1} a_i^j z^{q-1-j} \right). \] (4.1)

Proof. The bundle \(E \) is naturally a direct sum of \(2l \) vector bundles
\[E \cong \bigoplus_{i=1}^l A_i \oplus \bigoplus_{i=1}^l B_i, \]
where the bundles \(A_i \) and \(B_i \) correspond to the choice of \(A_i \) and \(B_i \) in \(\tilde{Y} \). The bundle \(A_i \) is a line bundle with first Chern class \(a_i + w \).

On \(\mathbb{P}^{q-1} \), write \(L \) for the tautological line bundle, and \(T \) for the trivial vector bundle of rank \(q \). Then, restricted to the appropriate \(\mathbb{P}^{q-1} \times \mathbb{P}^{q-1} \), we have
\[B_i \cong p_1^*(T/L)^* \otimes p_2^* L. \]

The total Chern class of \((T/L)^* \) is given by
\[c((T/L)^*) = \sum_{j=1}^\infty a_i^j. \]

The computation of \(e(B_i) \) proceeds via (4.2) below, whose proof follows easily using the splitting principle:

Let \(V \) be a rank \(n \) vector bundle and \(L \) be a line bundle. Then
\[e(V \otimes L) = \sum_{i=0}^n c_i(V) c_1(L)^{n-i}. \] (4.2)

Using this, we obtain
\[e(B_i) = \sum_{j=0}^{q-1} a_i^j z^{q-1-j}. \]

Together with the formula for the Euler class (=first Chern class) of \(A_i \), this implies the formula in the lemma. \(\Box \)
Motivated by Proposition 3.1, we consider the pairing
\[\langle \cdot, \cdot \rangle : H^{2(q-k)}(Z) \times H^{2(q-2)}(Z) \to H^{2(k+2)}(Z) \]
given by
\[\langle \sigma, \tau \rangle = \sigma \cup \tau \cup e(\mathcal{E}) \].

When computing the intersection pairing \(\langle \cdot, \cdot \rangle \) between two monomials in \(H^*(Z) \), one notices that it only depends on the power of \(w \) in their product. If this power is \(j \), then the pairing takes the value \((lq - 1 - j) \), for this is the number of ways of choosing terms in the product formula (4.1) for \(e(\mathcal{E}) \) which produce the right power of \(w \), and once these choices are made, the rest are uniquely determined.

Deleting irrelevant rows, the matrix for our intersection form becomes
\[
M = \begin{pmatrix}
\binom{l}{2} & \binom{l}{3} & \cdots & l & 1 \\
1 & \binom{l}{2} & \binom{l}{3} & \cdots & l & 1 \\
1 & l & \binom{l}{2} & \cdots & \cdots & l & 1 \\
\cdots & \cdots & \cdots & l & 1 \\
1 & l & \binom{l}{2} & \cdots & l & 1 \\
1 & l & \binom{l}{2} & \cdots & l & 1
\end{pmatrix}
\] (4.3)

This matrix has \(q - 1 \) columns and \(q - l + 1 \) rows.

5. FIN

Lemma 5.1. The matrix \(M \) from (4.3) has rank \(q - l + 1 \) over \(\mathbb{Q} \) and \(q - l \) over \(\mathbb{F}_p \).

Proof. Identify the rows of \(M \) with the sequence of polynomials

\[
(1 + x)^l - 1 \\
x(1 + x)^l \\
x^2(1 + x)^l \\
\vdots \\
x^{q-l-1}(1 + x)^l \\
x^{q-l}(1 + x)^l - x^q.
\]

If there is a linear dependence, then \(A + Bx^q \) is divisible by \((1 + x)^l\) for some constants \(A \) and \(B \). Over \(\mathbb{Q} \), this is impossible since \(A + Bx^q \) has distinct roots over \(\mathbb{C} \). This computes the rank over \(\mathbb{Q} \).

Over \(\mathbb{F}_p \), the polynomial \((1 + x)^l\) divides \(x^q + 1 \), which easily leads to a linear dependence amongst the rows of \(M \). It is obvious that the rank is at least \(q - l - 2 \), completing the proof in this case.

We now come to the proof of Theorem 2.1.
Proof. Let $\pi: \tilde{Y} \rightarrow Y$ be the canonical morphism between the spaces \tilde{Y} and Y defined in §4 and let n be their common dimension. Decompose $\pi_*\mathbb{Z}_p[n]$ into indecomposables

$$\pi_*\mathbb{Z}_p[n] \cong \bigoplus_i \mathcal{E}_i^n.$$

Every fiber of π is a product of projective spaces, so has no odd cohomology (thus π is what is known as an even resolution). Therefore each \mathcal{E}_i, and hence each $\mathcal{E}_i \otimes \mathbb{F}_p$ is an indecomposable parity sheaf.

By Proposition 3.1 and Lemma 5.1, the multiplicity of $i_*\mathbb{Z}_p[l - 2]$ in $\pi_*\mathbb{Z}_p[n]$ is $q - l + 1$ when $k = \mathbb{Q}_p$ and $q - l$ when $k = \mathbb{F}_p$. Therefore there exists a unique i such that

$$m(i_*\mathbb{Q}_p[l - 2], \mathcal{E}_i \otimes \mathbb{Q}_p) = 1.$$

This setup is symmetric under the action of the symmetric group S_l. So by uniqueness of i, \mathcal{E}_i is S_l-invariant.

There are only two S_l-invariant intermediate strata in Y. One is where $A_1 = \ldots = A_l = 0$ and the other is $B_1 = \ldots = B_l = 0$. They can be treated similarly.

In each case the stratum has an even resolution by the total space of a vector bundle \mathcal{F} over \mathbb{P}^{q-1}, where the zero section is the fibre over $0 \in Y$, and $e(\mathcal{F})$ is a power of $c_1(\mathcal{O}(1))$.

Thus in computing the intersection form, once irrelevant rows are deleted, one is left with the antidiagonal matrix J, which has the same rank over \mathbb{Q} and \mathbb{F}_p.

By a similar argument to the decomposition of $\pi_*\mathbb{Z}_p[n]$, the parity sheaves supported on these strata cannot be the \mathcal{E}_i above.

Therefore \mathcal{E}_i is the parity extension of the shifted constant sheaf on Y. As the stalk of \mathcal{E}_i at 0 is free over \mathbb{Z}_p and satisfies a parity vanishing property, it is \mathbb{Z}_p in degree $l - 2$. Therefore $\mathcal{E}_i \otimes \mathbb{F}_p$ has nonzero stalk cohomology at 0 in degree $l - 2$. Thus

$$\mathcal{E}_i \otimes \mathbb{F}_p \not\cong p_{\tau \leq l-3}(\mathcal{E}_i \otimes \mathbb{F}_p).$$

Since $\mathcal{E}_i \otimes \mathbb{F}_p$ is the restriction of \mathcal{E}_y to the slice Y, the analogous statement holds for \mathcal{E}_y, completing the proof. □

References

[MW] Peter J. McNamara and Geordie Williamson, Tame Torsion. in preparation.

Email address: maths@petermc.net