NON-PERVERSE PARITY SHEAVES ON THE FLAG VARIETY

PETER J MCNAMARA

ABSTRACT. We give examples of non-perverse parity sheaves in Schubert varieties for all primes.

1. Introduction

The notion of a parity sheaf was introduced in [JMW] and has become an important object in modular geometric representation theory. An even/odd sheaf on a complex variety X with coefficients in a field k is an object of $D^b(X;k)$ whose star and shriek restrictions to all points only have even/odd cohomology. A parity sheaf is a direct sum of an even and an odd sheaf. (We only consider parity sheaves for the zero pariversity in this paper).

In this paper, we take X to be the variety of all complete flags in \mathbb{C}^N , and only consider sheaves which are constructible with respect to the stratification by Schubert varieties. Then by [JMW, Theorem 4.6], for each $w \in S_n$, there exists a unique indecomposable parity sheaf \mathcal{P}_w whose support is the Schubert variety X_w . Up to homological shift, these constitute all Borel-constructible parity sheaves on the flag variety X.

Let p be the characteristic of k. We provide the first examples of parity sheaves on Schubert varieties which are not perverse for primes p > 2. Examples for p = 2 were recently constructed in [LW]. Our family of examples also includes parity sheaves which are arbitrarily non-perverse. We are not able to provide examples with p greater than the Coxeter number, but we expect that such examples exist. Such examples are of interest thanks to [AR].

Our examples generalise constructions of Kashiwara and Saito [KS], Polo (unpublished), and the author and Williamson [MW].

2. Statement of the result

Let p be a prime. Let d and l be positive integers such that $p^d \ge l \ge 3$. Let $q = p^d$. Define the following permutation $y \in S_{q(l+2)}$:

Date: November 8, 2018.

$$y(j) = \begin{cases} (l+1)q & \text{if } j = 1 \\ q+1-j & \text{if } 2 \leq j \leq q \\ (l+2)q & \text{if } j = q+1 \\ (l+2)q+1-j & \text{if } q+2 \leq j < (l+1)q \text{ and } j \not\equiv 0, 1 \pmod{q} \\ (l+2)q-j & \text{if } q+2 \leq j < (l+1)q \text{ and } j \equiv 0 \pmod{q} \\ (l+2)q+2-j & \text{if } q+2 \leq j < (l+1)q \text{ and } j \equiv 1 \pmod{q} \\ 1 & \text{if } j = (l+1)q \\ (2l+3)q-j & \text{if } (l+1)q < j < (l+2)q \\ q+1 & \text{if } j = (l+2)q. \end{cases}$$

Let \mathcal{P}_y be the indecomposable parity sheaf supported on the Schubert variety X_y with coefficients in \mathbb{F}_p , extending the constant sheaf shifted by $\dim(X_y)$. Our theorem is:

Theorem 2.1.

$$\mathcal{P}_y \ncong {}^p \tau_{\leq l-3}(\mathcal{P}_y).$$

3. Intersection Forms

Our main tool is the following result which computes the multiplicaties of a direct summand via the rank of a bilinear form. First we make a definition.

If A is an indecomposable object in a Krull-Schmidt category and X is any object, write m(A, X) for the number of times A appears as a direct summand of X.

Proposition 3.1. [JMW, Proposition 3.2] Let k be a local ring. Let $\pi: \widetilde{Y} \longrightarrow Y$ be a proper resolution of singularities. Let $y \in Y$ be a point, and suppose that the fibre $F = \pi^{-1}(y)$ is smooth. Write i for the inclusion of y in Y. Let n be the dimension of \widetilde{Y} , d the dimension of F and F and F and F be the pairing

$$H^{2d-n-m}(F)\times H^{2d-n+m}(F)\to H^{2d}(F)$$

given by $B(\alpha, \beta) = \alpha \cup \beta \cup e$, where e is the Euler class of the normal bundle to F in Y. Then

$$m(i_*\underline{k}[m], \pi_*\underline{k}[n]) = \operatorname{rank}(B).$$

Proof. By general results about multiplicities of indecomposable objects in Krull-Schmidt categories, the multiplicity $m(i_*\underline{k}[m], \pi_*\underline{k}[n])$ is equal to the rank of the pairing

$$\operatorname{Hom}(i_{*}\underline{k}[m], \pi_{*}\underline{k}_{\widetilde{Y}}[n]) \times \operatorname{Hom}(\pi_{*}\underline{k}_{\widetilde{Y}}[n], i_{*}\underline{k}[m]) \to \operatorname{End}(i_{*}\underline{k}[m]) \cong k. \tag{3.1}$$

The following commutative diagram appears in the proof of [JMW, Lemma 3.4] and arises through applying base change and adjunctions. The pairing B' arises through composition with the canonical map from $\omega_F[-n]$ to $\underline{k}_F[n]$ (which comes from applying the canonical natural transformation $i^! \to i^*$ to $\underline{k}_{\widetilde{V}}$).

$$\begin{array}{c} \operatorname{Hom}(\underline{k}_F[m],\omega_F[-n]) \times \operatorname{Hom}(\underline{k}_F[n],\omega_F[m]) \stackrel{B'}{\longrightarrow} \operatorname{Hom}(\underline{k}_F[m],\omega_F[m]) \\ \downarrow & \downarrow \\ \operatorname{Hom}(i_*\underline{k}[m],\pi_*\underline{k}_{\widetilde{Y}}[n]) \times \operatorname{Hom}(\pi_*\underline{k}_{\widetilde{Y}}[n],i_*\underline{k}[m]) \longrightarrow \operatorname{End}(i_*\underline{k}[m]) \end{array}$$

Since F is smooth, $\omega_F \cong \underline{k}_F[2d]$ and the canonical morphism from $\omega_F[-n]$ to $\underline{k}_F[n]$ is identified with the Euler class e. Therefore the pairing (3.1) is identified with the one stated in the proposition, completing the proof.

4. Geometry

Let x be the permutation

$$\begin{pmatrix}
J & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & J & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & J & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & J
\end{pmatrix}$$

where J is the $q \times q$ antidiagonal matrix.

We compute the slice to the Schubert variety X_y at the point x. Using the techniques discussed in [W], this is given by matrices of the form

$$\begin{pmatrix} 0 & & & & & \\ A_{l} & & & & & \\ \vdots & & & & & \\ A_{2} & & & & & \\ A_{1} & & & & & \\ 0 & B_{1} & B_{2} & \cdots & B_{l} & 0 \end{pmatrix}$$

subject to the conditions

$$B_i J A_i = 0.$$

Let Y be this slice. Reimagine Y as the space of representations of the quiver

of dimension vector

Let

$$\widetilde{Y} = \{(h, \ell_1, \dots, \ell_l, \ell, A_1, \dots, A_l, B'_1, \dots, B'_l) \mid h \in Gr(q - 1, q), \ell_1, \dots, \ell_l, \ell \in Gr(1, q), A_i \in \operatorname{Hom}(\mathbb{C}^q/h, \ell_i), B_i \in \operatorname{Hom}(\mathbb{C}^q/\ell_i, \ell)\}$$

Then \widetilde{Y} is the total space of a vector bundle \mathcal{E} on $Z := (\mathbb{P}^{q-1})^{k+2}$. Motivated by Proposition 3.1, we consider the pairing

$$\langle \cdot, \cdot \rangle : H^{2(q-k)}(Z) \times H^{2(q-2)}(Z) \longrightarrow H^{2(k+2)(q-1)}(Z)$$

given by

$$\langle \sigma, \tau \rangle = \sigma \cup \tau \cup e(\mathcal{E}).$$

We have

$$H^*(Z) \cong \mathbb{Z}[w]/(w^q) \otimes (\bigotimes_{i=1}^l \mathbb{Z}[a_i]/(a_i^q)) \otimes \mathbb{Z}[z]/(z^q)$$

where the variables w and z come from the factors of Z corresponding to the choices of h and ℓ in \widetilde{Y} respectively, while the a_i come from the choice of ℓ_i .

Lemma 4.1. The Euler class of \mathcal{E} is given by

$$e(\mathcal{E}) = \prod_{i=1}^{l} \left((a_i + w) \sum_{j=0}^{q-1} a_i^j z^{q-1-j} \right). \tag{4.1}$$

Proof. The bundle \mathcal{E} is naturally a direct sum of 2l vector bundles

$$\mathcal{E} \cong \bigoplus_{i=1}^{l} \mathcal{A}_i \oplus \bigoplus_{i=1}^{l} \mathcal{B}_i,$$

where the bundles A_i and B_i correspond to the choice of A_i and B_i in \widetilde{Y} . The bundle A_i is a line bundle with first Chern class $a_i + w$.

On \mathbb{P}^{q-1} , write \mathcal{L} for the tautological line bundle, and \mathcal{T} for the trivial vector bundle of rank q. Then, restricted to the appropriate $\mathbb{P}^{q-1} \times \mathbb{P}^{q-1}$, we have

$$\mathcal{B}_i \cong p_1^*(\mathcal{T}/\mathcal{L})^* \otimes p_2^*\mathcal{L}.$$

The total Chern class of $(\mathcal{T}/\mathcal{L})^*$ is given by

$$c((\mathcal{T}/\mathcal{L})^*) = \sum_{j=1}^{\infty} a_i^j.$$

The computation of $e(\mathcal{B}_i)$ proceeds via (4.2) below, whose proof follows easily using the splitting principle:

Let V be a rank n vector bundle and L be a line bundle. Then

$$e(V \otimes L) = \sum_{i=0}^{n} c_i(V)c_1(L)^{n-i}.$$
 (4.2)

Using this, we obtain

$$e(\mathcal{B}_i) = \sum_{j=0}^{q-1} a_i^j z^{q-1-j}.$$

Together with the formula for the Euler class (=first Chern class) of \mathcal{A}_i , this implies the formula in the lemma.

When computing the intersection pairing $\langle \cdot, \cdot \rangle$ between two monomials in $H^*(Z)$, one notices that it only depends on the power of w in their product. If this power is j, then the pairing takes the value $\binom{l}{q-1-j}$, for this is the number of ways of choosing terms in the product formula (4.1) for $e(\mathcal{E})$ which produce the right power of w, and once these choices are made, the rest are uniquely determined.

Deleting irrelevant rows, the matrix for our intersection form becomes

$$M = \begin{pmatrix} l & \binom{l}{2} & \binom{l}{3} & \cdots & l & 1 \\ 1 & l & \binom{l}{2} & \binom{l}{3} & \cdots & l & 1 \\ & 1 & l & \binom{l}{2} & & & \ddots & \ddots \\ & & \ddots & \ddots & & & & l & 1 \\ & & & 1 & l & \binom{l}{2} & \cdots & & & l & 1 \\ & & & & 1 & l & \binom{l}{2} & \cdots & & & l \end{pmatrix}$$

$$(4.3)$$

This matrix has q-1 columns and q-l+1 rows.

5. FIN

Lemma 5.1. The matrix M from (4.3) has rank q - l + 1 over \mathbb{Q} and q - l over \mathbb{F}_p .

Proof. Identify the rows of M with the sequence of polynomials

$$(1+x)^{l} - 1$$

$$x(1+x)^{l}$$

$$x^{2}(1+x)^{l}$$

$$\vdots$$

$$x^{q-l-1}(1+x)^{l}$$

$$x^{q-l}(1+x)^{l} - x^{q}$$

If there is a linear dependence, then $A + Bx^q$ is divisible by $(1+x)^l$ for some constants A and B. Over \mathbb{Q} , this is impossible since $A + Bx^q$ has distinct roots over \mathbb{C} . This computes the rank over \mathbb{Q} .

Over \mathbb{F}_p , the polynomial $(1+x)^l$ divides x^q+1 , which easily leads to a linear dependence amongst the rows of M. It is obvious that the rank is at least q-l-2, completing the proof in this case.

We now come to the proof of Theorem 2.1.

Proof. Let $\pi: \widetilde{Y} \longrightarrow \widetilde{Y}$ be the canonial morphism between the spaces \widetilde{Y} and Y defined in §4 and let n be their common dimension. Decompose $\pi_* \underline{\mathbb{Z}}_n[n]$ into indecomposables

$$\pi_* \underline{\mathbb{Z}}_p[n] \cong \bigoplus_i \mathcal{P}_i^{n_i}.$$

Each $\mathcal{P}_i \otimes \mathbb{F}_p$ will be an indecomposable parity sheaf.

By Proposition 3.1 and Lemma 5.1, the multiplicity of $i_*\underline{k}[l-2]$ in $\pi_*\underline{k}[n]$ is q-l+1 when $k=\mathbb{Q}_p$ and q-l when $k=\mathbb{F}_p$. Therefore there exists a unique i such that

$$m(i_*\underline{\mathbb{Q}}_p[l-2], \mathcal{P}_i \otimes \mathbb{Q}_p) = 1.$$

This setup is symmetric under the action of the symmetric group S_l . So by uniqueness of i, \mathcal{P}_i is S_l -invariant.

There are only two S_l -invariant intermediate strata in Y. One is where $A_1 = \cdots = A_l = 0$ and the other is $B_1 = \cdots = B_l = 0$. They can be treated similarly.

In each case the stratum has an even resolution by the total space of a vector bundle \mathcal{F} over \mathbb{P}^{q-1} , where the zero section is the fibre over $0 \in Y$, and $e(\mathcal{F})$ is a power of $c_1(\mathcal{O}(1))$.

Thus in computing the intersection form, once irrelevant rows are deleted, one is left with the antidiagonal matrix J, which has the same rank over \mathbb{Q} and \mathbb{F}_p .

By a similar argument to the decomposition of $\pi_*\underline{\mathbb{Z}}_p[n]$, the parity sheaves supported on these strata cannot be the \mathcal{P}_i above.

Therefore \mathcal{P}_i is the parity extension of the shifted constant sheaf on Y. As the stalk of \mathcal{P}_i at 0 is free over \mathbb{Z}_p and satisfies a parity vanishing peroperty, it is \mathbb{Z}_p in degree l-2. Therefore $\mathcal{P}_i \otimes \mathbb{F}_p$ has nonzero stalk cohomology at 0 in degree l-2. Thus

$$\mathcal{P}_i \otimes \mathbb{F}_p \ncong {}^p \tau_{\leq l-3} (\mathcal{P}_i \otimes \mathbb{F}_p).$$

Since $\mathcal{P}_i \otimes \mathbb{F}_p$ is the restriction of \mathcal{P}_y to the slice Y, the analogous statement holds for \mathcal{P}_y , completing the proof.

References

- [AR] Pramod N. Achar and Simon Riche. Modular perverse sheaves on flag varieties III: Positivity conditions. Trans. Amer. Math. Soc., 370(1):447–485, 2018. arXiv:1408.4189 1
- [JMW] Daniel Juteau, Carl Mautner, and Geordie Williamson. Parity sheaves. J. Amer. Math. Soc., 27(4):1169–1212, 2014. arXiv:0906.2994 1, 2
- [KS] Masaki Kashiwara and Yoshihisa Saito. Geometric construction of crystal bases. *Duke Math. J.*, 89(1):9–36, 1997. arXiv:q-alg/9606009 1
- [LW] Nicolas Libedinsky and Geordie Williamson. A non-perverse Soergel bimodule in type A. C. R. Math. Acad. Sci. Paris, 355(8):853–858, 2017. arXiv:1707.08249 1
- [MW] Peter J. McNamara and Geordie Wiliamson, Tame Torsion. Preprint. 1
- [W] Geordie Williamson. A reducible characteristic variety in type A. In Representations of reductive groups, volume 312 of Progr. Math., pages 517–532. Birkhäuser/Springer, Cham, 2015. arXiv:1405.3479 3

Email address: maths@petermc.net