NON-PERVERSE PARITY SHEAVES ON THE FLAG VARIETY

PETER J MCNAMARA

ABSTRACT. We give examples of non-perverse parity sheaves in Schubert varieties for all
primes.

1. INTRODUCTION

The notion of a parity sheaf was introduced in [JMW] and has become an important object
in modular geometric representation theory. An even/odd sheaf on a complex variety X with
coefficients in a field k is an object of D°(X; k) whose star and shriek restrictions to all points
only have even/odd cohomology. A parity sheaf is a direct sum of an even and an odd sheaf.
(We only consider parity sheaves for the zero pariversity in this paper).

In this paper, we take X to be the variety of all complete flags in C, and only consider
sheaves which are constructible with respect to the stratification by Schubert varieties. Then
by [JMW, Theorem 4.6], for each w € S,,, there exists a unique indecomposable parity sheaf
‘P, whose support is the Schubert variety X,,. Up to homological shift, these constitute all
Borel-constructible parity sheaves on the flag variety X.

Let p be the characteristic of k. We provide the first examples of parity sheaves on Schu-
bert varieties which are not perverse for primes p > 2. Examples for p = 2 were recently
constructed in [LW]. Our family of examples also includes parity sheaves which are arbitrarily
non-perverse. We are not able to provide examples with p greater than the Coxeter number,
but we expect that such examples exist. Such examples are of interest thanks to [AR].

Our examples generalise constructions of Kashiwara and Saito [KS], Polo (unpublished),
and the author and Williamson [MW].

2. STATEMENT OF THE RESULT

Let p be a prime. Let d and [ be positive integers such that p? > [ > 3. Let ¢ = p%. Define
the following permutation y € Sy42):
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((1+1)g if j =1

qg+1—3j f2<j<gq

(I +2)q ifj=q+1

(l+2)g+1—5 ifg+2<j<(l+1)gand j #0,1 (mod q)
y(j) =< (1+2)q—j ifg+2<j<(l+1)gand j=0 (mod q)

(1+2)g+2—j ifg+2<j<(+1)gandj=1 (mod q)

1 if j = (1+1)q

(204+3)g—3j if(l+1)g<j<(l+2)q

g+1 if j = (1 +2)q.

Let Py, be the indecomposable parity sheaf supported on the Schubert variety X, with
coefficients in F, extending the constant sheaf shifted by dim(X,). Our theorem is:

Theorem 2.1.
Py # Pr<1-3(Py).

3. INTERSECTION FORMS

Our main tool is the following result which computes the multiplicities of a direct summand
via the rank of a bilinear form. First we make a definition.

If A is an indecomposable object in a Krull-Schmidt category and X is any object, write
m(A, X) for the number of times A appears as a direct summand of X.

Proposition 3.1. [JMW, Proposition 3.2] Let k be a local ring. Let m:Y —Y be a proper
resolution of singularities. Let y € Y be a point, and suppose that the fibre F = 771 (y) is
smooth. Write i for the inclusion of y in Y. Let n be the dimension of 17, d the dimension
of F and m be an integer. Let B be the pairing

H2dfnfm(F) % H2dfn+m(F) N H2d(F)

given by B(a, ) = a U B Ue, where e is the Euler class of the normal bundle to F in Y.
Then

m(ik[m], mk[n]) = rank(B).

Proof. By general results about multiplicities of indecomposable objects in Krull-Schmidt
categories, the multiplicity m(i.k[m], m.k[n]) is equal to the rank of the pairing

Hom(i.k[m], m.kg[n]) x Hom(m.ky[n], ixk[m]) — End(i.k[m]) = k. (3.1)

Y

The following commutative diagram appears in the proof of [JMW, Lemma 3.4] and arises
through applying base change and adjunctions. The pairing B’ arises through composition
with the canonical map from wp[—n]| to kpr[n] (which comes from applying the canonical
natural transformation i' — i* to k).
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Hom(k - [m], wr[~n]) x Hom(kp[n], wrm]) = Hom (ky [m], wr[m])

l l

Hom (ixk[m], miky[n]) x Hom(m.ky[n], ixk[m]) —— End(i.k[m])

Since F' is smooth, wr = kp[2d] and the canonical morphism from wg[—n] to kp[n] is
identified with the Euler class e. Therefore the pairing (3.1) is identified with the one stated
in the proposition, completing the proof. O

4. GEOMETRY

Let = be the permutation

J 0 -~ 0 0
o o0 - JO0
o J -~ 00
o0 - 0 J

where J is the ¢ X ¢ antidiagonal matrix.
We compute the slice to the Schubert variety X, at the point z. Using the techniques
discussed in [W], this is given by matrices of the form

subject to the conditions

B;JA; =0.
Let Y be this slice. Reimagine Y as the space of representations of the quiver

/
\
/
\
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Let
Y ={(h,l1,.... 0,0, Ay,..., A, B,,...,B) | heGrig—1,q),
by,..., 0,1 € GT(l,q),Ai S Hom((Cq/h,Ei),Bi S Hom(Cq/&,é)}

Then'Y is the total space of a vector bundle £ on Z := (P9~1)**+2, Motivated by Proposition
3.1, we consider the pairing

(-,-y: HX7R) (7)) x H24=2) (7) — g2E+2)a=1)(7)
given by
(o,7y =0 UTUe(€).
We have

l
H*(Z) = Zlw]/(w?) @ (® Zlai]/(a})) © Z[2]/ (=)

where the variables w and z come from the factors of Z corresponding to the choices of h
and ¢ in Y respectively, while the a; come from the choice of ¢;.

Lemma 4.1. The Fuler class of £ is given by

l

e(€) = H (a; +w) Z al 271 (4.1)
j=0

=1

Proof. The bundle £ is naturally a direct sum of 2/ vector bundles

where the bundles A; and B; correspond to the choice of A; and B; in Y. The bundle A; is
a line bundle with first Chern class a; + w.

On P91, write £ for the tautological line bundle, and 7 for the trivial vector bundle of
rank g. Then, restricted to the appropriate P4~ x P9~ we have

Bi = pi(T/L)" @ paL.
The total Chern class of (7 /L£)* is given by

o0

c((T/L)) = al.
j=1

The computation of e(B;) proceeds via (4.2) below, whose proof follows easily using the
splitting principle:
Let V be a rank n vector bundle and L be a line bundle. Then
n
e(VRL) =) ci(V)er(L)" . (4.2)
i=0
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Using this, we obtain
qg—1
e(B;) = Zagzq_l_j.
§=0

Together with the formula for the Euler class (=first Chern class) of A;, this implies the
formula in the lemma. O

When computing the intersection pairing (-,-) between two monomials in H*(Z), one
notices that it only depends on the power of w in their product. If this power is j, then
the pairing takes the value (q_i_j), for this is the number of ways of choosing terms in the
product formula (4.1) for e(€) which produce the right power of w, and once these choices
are made, the rest are uniquely determined.

Deleting irrelevant rows, the matrix for our intersection form becomes

L (o) G Lol
M- 11 () SRS (43)
RIS I 1
IR A ) B 11
1o () - l

This matrix has ¢ — 1 columns and ¢ — [ 4+ 1 rows.

5. FIN
Lemma 5.1. The matriz M from (4.3) has rank ¢ — 1+ 1 over Q and q — 1 over F).
Proof. Identify the rows of M with the sequence of polynomials
(1+xz)l—-1
z(1+ )
(1 + z)!

xq_l_l(l + iL')l
297N (1 4 2)! — 29,

If there is a linear dependence, then A + B9 is divisible by (1 + x)! for some constants A
and B. Over Q, this is impossible since A + Bx? has distinct roots over C. This computes
the rank over Q.

Over F), the polynomial (1 + x)! divides 29 + 1, which easily leads to a linear dependence
amongst the rows of M. It is obvious that the rank is at least ¢ — [ — 2, completing the proof
in this case. O

We now come to the proof of Theorem 2.1.
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Proof. Let m: Y —Y be the canonial morphism between the spaces Y and Y defined in 84
and let n be their common dimension. Decompose 7.Z,[n] into indecomposables

m.Z,ln] = @ P

Each P; ® F), will be an indecomposable parity sheaf.
By Proposition 3.1 and Lemma 5.1, the multiplicity of i.k[l — 2] in 7.k[n] is ¢ — [+ 1 when
k =Q, and g — | when k = [F),. Therefore there exists a unique ¢ such that

m(iQ [l 2P0 Q) = 1.

This setup is symmetric under the action of the symmetric group S;. So by uniqueness of
i, P; is Sj-invariant.

There are only two Sj-invariant intermediate strata in Y. One is where A1 =--- = A4; =0
and the other is By = --- = B; = 0. They can be treated similarly.

In each case the stratum has an even resolution by the total space of a vector bundle F
over P41 where the zero section is the fibre over 0 € Y, and e(F) is a power of ¢1(O(1)).

Thus in computing the intersection form, once irrelevant rows are deleted, one is left with
the antidiagonal matrix J, which has the same rank over Q and IF,,.

By a similar argument to the decomposition of m.Z, [n], the parity sheaves supported on
these strata cannot be the P; above.

Therefore P; is the parity extension of the shifted constant sheaf on Y. As the stalk of
P; at 0 is free over Z, and satisfies a parity vanishing peroperty, it is Z, in degree | — 2.
Therefore P; ® ), has nonzero stalk cohomology at 0 in degree [ — 2. Thus

P ® ]Fp % pTgl_g(Pi ® Fp).

Since P; ® I, is the restriction of P, to the slice Y, the analogous statement holds for P,
completing the proof. O
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