
NON-PERVERSE PARITY SHEAVES ON THE FLAG VARIETY

PETER J MCNAMARA

Abstract. We give examples of non-perverse parity sheaves on Schubert varieties for all
primes.

1. Introduction

The notion of a parity sheaf was introduced in [JMW] and has since become an important
object in modular geometric representation theory. An even/odd sheaf on a complex variety
X with coefficients in a field k is an object of Db

c(X; k)1 whose star and shriek restrictions to
all points only have even/odd cohomology. A parity sheaf is a direct sum of an even and an
odd sheaf. (We only consider parity sheaves for the zero pariversity in this paper).

In this paper, we take X to be the variety of all complete flags in Cn, and only consider
sheaves which are constructible with respect to the stratification by Schubert varieties. Then
by [JMW, Theorem 4.6], for each w ∈ Sn, there exists a unique indecomposable parity sheaf
Ew whose support is the Schubert variety Xw, up to an overall homological shift. Up to
homological shift, these constitute all indecomposable Borel-constructible parity sheaves on
the flag variety X. We normalise this shift such that when restricted to the Schubert cell,
Ew is the constant sheaf shifted by dim(Xw). This ensures that when the characteristic of k
is zero, that Ew is isomorphic to the intersection cohomology sheaf IC(Xw; k). We call such
parity sheaves normalised.

Let p be the characteristic of k. We provide the first examples of normalised parity sheaves
on Schubert varieties which are not perverse for primes p > 2. Examples for p = 2 were
recently constructed in [LW]. Our family of examples also includes parity sheaves which
are arbitrarily non-perverse. We are not able to provide examples with p greater than the
Coxeter number, but we expect that such examples exist. One geometric consequence is that
by Theorem 5.1, the non-perverseness of these sheaves proves that these Schubert varieties
do not have any semi-small resolutions. Examples of non-perverse parity sheaves are also of
representation-theoretic interest thanks to [AR].

Our examples generalise constructions of Kashiwara and Saito [KS], Polo (unpublished),
and the author and Williamson [MW]. We have phrased things in terms of parity sheaves as
that is the more traditional formulation, although the construction of Theorem 5.1 is more
general. Despite this more general construction, we rely on some of the theory of parity
sheaves in our proof.
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c(X; k) is the bounded derived category of constructible sheaves on X with coefficients in k. We always
work with the classical metric topology on X.
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We would like to thank an anonymous referee whose diligent reading of this manuscript
has resulted in a much improved exposition.

2. Statement of the result

Let p be a prime. Let d and l be positive integers such that pd ≥ l ≥ 3. Let q = pd. Define
the following permutation y ∈ Sq(l+2):

y(j) =



(l + 1)q if j = 1

q + 2− j if 2 ≤ j ≤ q
(l + 2)q if j = q + 1

(l + 2)q + 1− j if q + 2 ≤ j < (l + 1)q and j 6≡ 0, 1 (mod q)

(l + 2)q − j if q + 2 ≤ j < (l + 1)q and j ≡ 0 (mod q)

(l + 2)q + 2− j if q + 2 ≤ j < (l + 1)q and j ≡ 1 (mod q)

1 if j = (l + 1)q

(2l + 3)q − j if (l + 1)q < j < (l + 2)q

q + 1 if j = (l + 2)q.

Let Ey be the indecomposable parity sheaf supported on the Schubert variety Xy with
coefficients in Fp, extending the constant sheaf shifted by dim(Xy). Our theorem is:

Theorem 2.1.

Ey 6∼= pτ≤l−3(Ey).

Here pτ≤l−3 is the perverse truncation operator. Since l ≥ 3, this implies that Ey is not
perverse.

3. Intersection Forms

If A is an indecomposable object in a Krull-Schmidt category and X is any object, write
m(A,X) for the number of times A appears as a direct summand of X.

Our main tool is the following result which computes the multiplicities of a direct summand
via the rank of a bilinear form.

Proposition 3.1. [JMW, Proposition 3.2] Let k be a local ring. Let π : Ỹ −→Y be a proper
resolution of singularities. Let y ∈ Y , and suppose that the fibre F = π−1(y) is smooth.

Write i for the inclusion of y in Y . Let n be the dimension of Ỹ , d the dimension of F and
m be an integer. Let B be the pairing

H2d−n−m(F )×H2d−n+m(F )→ H2d(F ) (3.1)

given by B(α, β) = α ∪ β ∪ e, where e is the Euler class of the normal bundle to F in Y .
Then

m(i∗k[m], π∗k[n]) = rank(B).
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Proof. By general results about multiplicities of indecomposable objects in Krull-Schmidt
categories, the multiplicity m(i∗k[m], π∗k[n]) is equal to the rank of the pairing

Hom(i∗k[m], π∗kỸ [n])×Hom(π∗kỸ [n], i∗k[m])→ End(i∗k[m]) ∼= k. (3.2)

The following commutative diagram appears in the proof of [JMW, Lemma 3.4] and arises
through applying base change and adjunctions. The pairing B′ arises through composition
with the canonical map from ωF [−n] to kF [n] (which comes from applying the canonical
natural transformation i! → i∗ to k

Ỹ
), while the pairing (3.2) appears along the bottom row.

Hom(kF [m], ωF [−n])×Hom(kF [n], ωF [m])
B′
//

∼=
��

Hom(kF [m], ωF [m])
∼=
��

Hom(i∗k[m], π∗kỸ [n])×Hom(π∗kỸ [n], i∗k[m]) // End(i∗k[m])

Since F is smooth, ωF ∼= kF [2d] and the canonical morphism from ωF [−n] to kF [n] is
identified with the Euler class e. Therefore the pairing (3.2) is identified with the one stated
in the proposition, completing the proof. �

4. Geometry

Let x be the permutation 
J 0 · · · 0 0
0 0 · · · J 0
...

...
...

...
...

0 J · · · 0 0
0 0 · · · 0 J


where J is the q × q antidiagonal matrix.

We compute the slice to the Schubert variety Xx in Xy through the point x. Using the
techniques discussed in the proof of [W, Proposition 3.2], this is given by matrices of the form

J 0 0 · · · 0 0
Al 0 0 · · · J 0
...

...
...

...
...

...
A2 0 J · · · 0 0
A1 J 0 · · · 0 0
0 B1 B2 · · · Bl J


subject to the conditions

BiJAi = 0, rank

Al...
A1

 ≤ 1, rank
(
B1 · · · Bl

)
≤ 1 (4.1)

for all i. Here, each Ai and Bi is a q × q matrix. Let Y be this slice. So Y is the space of all
(2l)-tuples of q × q matrices A1, . . . , Al, B1, . . . Bl subject to the conditions (4.1) above.
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Let

Ỹ = {(h, `1, . . . , `l, `, A1, . . . , Al, C1, . . . , Cl) | h ∈ Gr(q − 1, q),

`1, . . . , `l, ` ∈ Gr(1, q), Ai ∈ Hom(Cq/h, `i), Bi ∈ Hom(Cq/`i, `)}

and π : Ỹ −→Y be defined by

π(h, `1, . . . , `l, `, A1, . . . , Al, C1, . . . , Cl) = (A1, . . . , Al, C1J, . . . , ClJ). (4.2)

This is a resolution of singularities of Y and Ỹ is the total space of a vector bundle E on
Z := (Pq−1)l+2.

We have

H∗(Z) ∼= Z[w]/(wq)⊗ (
l⊗

i=1

Z[ai]/(a
q
i ))⊗ Z[z]/(zq)

where the variables w and z come from the factors of Z corresponding to the choices of h

and ` in Ỹ respectively, while the ai come from the choice of `i.

Lemma 4.1. The Euler class of E is given by

e(E) =

l∏
i=1

(ai + w)

q−1∑
j=0

ajiz
q−1−j

 . (4.3)

Proof. The bundle E is naturally a direct sum of 2l vector bundles

E ∼=
l⊕

i=1

Ai ⊕
l⊕

i=1

Ci,

where the bundles Ai and Ci correspond to the choice of Ai and Ci in Ỹ . The bundle Ai is
a line bundle with first Chern class ai + w.

On Pq−1, write L for the tautological line bundle, and T for the trivial vector bundle of
rank q. Then, restricted to the appropriate Pq−1 × Pq−1, we have

Ci ∼= p∗1(T /L)∗ ⊗ p∗2L.
The total Chern class of (T /L)∗ is given by

c((T /L)∗) =
∞∑
j=1

aji .

The computation of e(Ci) proceeds via (4.4) below, whose proof follows easily using the
splitting principle:

Let V be a rank n vector bundle and L be a line bundle. Then

e(V ⊗ L) =

n∑
i=0

ci(V )c1(L)n−i. (4.4)

Using this, we obtain

e(Ci) =

q−1∑
j=0

ajiz
q−1−j .
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Together with the formula for the Euler class (=first Chern class) of Ai, this implies the
formula in the lemma. �

Motivated by Proposition 3.1, we consider the pairing

〈·, ·〉 :H2(q−l)(Z)×H2(q−2)(Z)−→H2(l+2)(q−1)(Z)

given by

〈σ, τ〉 = σ ∪ τ ∪ e(E).

The ring H∗(Z) has a basis consisting of monomials in the variables w, ai, z, where the
exponent of each variable is less than q. When computing the intersection pairing 〈·, ·〉
between two of these monomials in H∗(Z), one notices that it only depends on the power of

w in their product. If this power is j, then the pairing takes the value
(

l
q−1−j

)
, for this is the

number of ways of choosing terms in the product formula (4.3) for e(E) which produce the
right power of w, and once these choices are made, the rest are uniquely determined.

Deleting duplicate rows that are irrelevant for computing the rank, the matrix for our
intersection form with respect to the monomial basis becomes

M =



l
(
l
2

) (
l
3

)
· · · l 1

1 l
(
l
2

) (
l
3

)
· · · l 1

1 l
(
l
2

) . . .
. . .

. . .
. . .

. . . l 1

1 l
(
l
2

)
· · · l 1

1 l
(
l
2

)
· · · l


(4.5)

This matrix has q − 1 columns, corresponding to the powers of w between 0 and q − 2
inclusive that appear in H2(q−2)(Z) and q − l + 1 rows, corresponding to the powers of w

between 0 and q − l inclusive that appear in H2(q−l)(Z).

5. Reduction to the slice

This section is likely to be of independent interest. We require the following result about
direct summands of a pushforward sheaf. The same proof works when k is a local ring, but
for simplicity we assume k is a field.

Theorem 5.1. Let X be an irreducible complex analytic space. Let k be a field. Then there
exists a unique indecomposable object E(X; k) ∈ Db

c(X; k) which restricts to the constant sheaf
shifted by dimX on an open subset of X, and is a direct summand of σ∗kY [dimX] for any
proper resolution of singularities σ : Y → X.

Proof. Let σ : Y → X and π : Z → X be two proper resolutions of singularities. Consider
Hom(σ∗kY , π∗kZ) ∼= HBM

2d (Y ×X Z), where HBM
∗ stands for Borel-Moore homology and d =

dimC(X). Let U be a connected open dense subset of X such that σ and π are isomorphisms
over U . Write j : U → X for the inclusion. As σ and π are isomorphisms over U , there is
a canonical inclusion of U into Y ×X Z. The closure U of U in Y ×X Z is an irreducible
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component of Y ×X Z, hence defines a fundamental class2 α := [U ] ∈ HBM
2d (Y ×X Z) ∼=

Hom(σ∗kY , π∗kZ). This class satisfies j∗α = id ∈ Hom(kU , kU ).
Similarly we define β ∈ Hom(π∗kZ , σ∗kY ) with j∗β = id ∈ Hom(kU , kU ).
The category Db

c(X; k) is Krull-Schmidt. Therefore, since kU is indecomposable and
j∗(σ∗kY ) ∼= kU , we can write σ∗kY

∼= A ⊕ C where A is indecomposable and j∗C = 0.
Similarly we have π∗kZ

∼= B ⊕D with B indecomposable and j∗D = 0. Using these direct
sum decompositions, consider the components of α and β. They induce morphisms which by
abuse of notation we call α : A→ B and β : B → A.

Consider βα ∈ End(A). Under the ring homomorphism j∗ : End(A) → End(kU ) ∼= k, we
have j∗(βα) = 1. As A is indecomposable, End(A) is local. This implies that βα is a unit
in End(A). Similarly αβ is a unit in End(B). We thus have two indecomposable objects
A and B, with morphisms between them α and β, whose compositions in each direction
are isomorphisms. This is enough to conclude A ∼= B. This completes the proof, with
E(X; k) = A[dimX]. Note that E(X; k) always exists because a resolution of singularities
always exists. �

Remark 5.2. For a Schubert variety Xy, the sheaf E(Xy;Fp) is the same as the parity sheaf
Ey, by considering a Bott-Samelson resolution of Xy [JMW, Prop 4.11].

Now we show how to use this result to restrict our attention to slices. Let X be an
irreducible complex analytic space. Let Z ⊂ X be a closed analytic subset. Let Y be a slice
to Z in X. This implies that there exists an open subset U ⊂ X and smooth V such that
U ∼= Y × V and under this isomorphism the copy of Y in X gets sent to Y × {v} for some
v ∈ V .

Let Y ′ → Y be a resolution of Y . Then Y ′ × V → U is a resolution of U . The sheaf
E(Y ; k) � kV [dimV ] on U is an indecomposable direct summand of the pushforward of the
shifted constant sheaf under this resolution which is generically constant, hence by the above
theorem is isomorphic to E(U ; k).

Let j :U−→X denote the inclusion. Pulling back a resolution of X to U via j shows that
E(U ; k) is a direct summand of j∗E(X; k).

Therefore E(Y ; k) � kV [dimV ] is a direct summand of j∗E(X; k). So if we can show that
E(Y ; k) 6∼= pτ≤l−3(E(Y ; k)), then that will imply that E(X; k) 6∼= pτ≤l−3(E(X; k)). This is the
method by which we can restrict our attention to the slice.

6. Fin

Lemma 6.1. The matrix M from (4.5) has rank q − l + 1 over Q and q − l over Fp.

2The definition of fundamental class is the same as in the algebraic case [CG, §2.6.12], using the fact that
the singular locus is of real codimension at least two.
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Proof. Identify the rows of M with the sequence of polynomials

(1 + x)l − 1

x(1 + x)l

x2(1 + x)l

...

xq−l−1(1 + x)l

xq−l(1 + x)l − xq.

If there is a linear dependence, then A + Bxq is divisible by (1 + x)l for some constants A
and B. Over Q, this is impossible since A + Bxq has distinct roots over C. This computes
the rank over Q.

Over Fp, the polynomial (1 + x)l divides xq + 1, which easily leads to a linear dependence
amongst the rows of M . It is obvious that the rank is at least q − l, completing the proof in
this case. �

Recall the resolution π : Ỹ −→Y defined in §4. Let Z = Ỹ ×Y Ỹ .

Lemma 6.2. The Borel-Moore homology groups HBM
i (Z;Z) are free over Z and vanish when

i is odd.

Proof. The variety Z is

Z = {(A1, . . . , Al, B1, . . . , Bl, h, h
′, `1, . . . , `l, `

′
1 . . . `

′
l, `, `

′) |
Ai, Bi ∈ Hom(Cq,Cq); h, h′ ∈ Gr(q − 1, q); `1, . . . , `l, `

′
1 . . . `

′
l, `, `

′ ∈ Gr(1, q);
h, h′ ⊂ ker(Ai); im(Ai) ⊂ `i, `′i ⊂ kerBi; im(Bi) ⊂ `, `′}.

We now construct a stratification of Z. For each I ⊂ {1, 2, . . . , l} t {s, t}, we define
a stratum ZI consisting of tuples (A1, . . . , Al, B1, . . . , Bl, h, h

′, `1, . . . , `l, `
′
1 . . . `

′
l, `, `

′) ∈ Z
subject to the conditions `i = `′i if i ∈ I, h = h′ if s ∈ I, ` = `′ if t ∈ I, `i 6= `′i if i /∈ I, h 6= h′

if s /∈ I and ` 6= `′ if t /∈ I.
Each stratum ZI is a vector bundle over a product of spaces that are either Pq−1 or

(Pq−1×Pq−1)\∆, where ∆ is the diagonal. Therefore HBM
i (ZI ;Z) is free over Z and vanishes

when i is odd. Since the ZI stratify Z, the same is true for the Borel-Moore homology of
Z. �

Reimagine Y as a subspace of the space of representations of the following quiver Q, where
there are l vertices in the central column.

The representations have dimension vector
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q q

q
q

q

The group G = GLq(C)l+2 acts on Y in a manner such that [Y/G] is a substack of the moduli
stack of representations of Q.

Lemma 6.3. The map π : Ỹ −→ Y defined in (4.2) is a proper even3 G-equivariant resolu-
tion of singularities, stratified with respect to a stratification Y = tYλ such that H∗G(Yλ;L)
vanishes in odd degrees for all G-equivariant local systems L on Yλ.

Remark 6.4. This lemma allows us to have access to the parity sheaf machinery from [JMW]
for G-equivariant sheaves on Y .

Proof. Let I and J be two subsets of {1, 2, . . . , l}. Let

YI,J = {(A1, . . . , Al, B1, . . . , Bl) ∈ Y | Ai = 0 ⇐⇒ i ∈ I, Bj = 0 ⇐⇒ j ∈ J}. (6.1)

This is the stratification of Y into G-orbits. We will show that this gives the desired strat-
ification of Y . In the moduli interpretation of Y , inside each G-orbit there is a unique
representation MIJ of Q, up to isomorphism.

The module MIJ decomposes as a direct sum MIJ = XI⊕YJ⊕Z, where XI is an indecom-
posable with dimension 1 at the leftmost vertex, YJ is an indecomposable with dimension 1 at
the rightmost vertex, and Z is a direct sum of simple modules, except when I = {1, 2, . . . , l}
or J = {1, 2, . . . , l}, when XI or YJ respectively do not appear in the decomposition.

Put an order on these indecomposables where the simple at the leftmost vertex comes
earliest in the order, then XI , then the simples at the middle vertices, then YJ , then the simple
at the rightmost vertex. With this ordering, we can decompose MIJ into indecomposables,
MIJ = ⊕mi=1M

⊕ni
i where HomQ(Mi,Mj) = 0 if i < j.

Therefore EndQ(MIJ)× surjects onto
∏
i Matni(EndQ(Mi))

× with unipotent kernel. Each
EndQ(Mi) is isomorphic to C.

The quotient stack [YIJ/G] is isomorphic to [pt/EndQ(MIJ)×]. This shows thatH∗G(YIJ ;L)
is a free k-module and vanishes in odd degrees since these properties hold for the stack
[pt/GLn(C)].

It is clear that π is a proper G-equivariant resolution of singularities, and thus is stratified
for the stratification into G-orbits. It is even because every fibre of π is a product of projective
spaces. �

We now come to the proof of Theorem 2.1.

Proof. Let n = (q− 1)(l+ 2) + ql be the common dimension of Y and Ỹ . Decompose π∗Zp[n]
into indecomposables

π∗Zp[n] ∼=
⊕
t

Ent
t .

3The definition of an even morphism is given in [JMW, Definition 2.33]. A sufficient condition that implies
evenness is that each fibre is equivariantly simply connected with no odd cohomology.
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The endomorphism ring of π∗Zp[n] is End(π∗Zp[n]) ∼= HBM
2n (Z;Zp), which governs the de-

composition into irreducibles.
The spectral sequence with Ep,q2 = Hp(BG;HBM

−q (Z)) converges to the G-equivariant

Borel-Moore homology HG
∗ (Z). This spectral sequence is concentrated in even degrees by

Lemma 6.2 and hence degenerates at the E2 page. Therefore HG
2n(Z) surjects onto HBM

2n (Z).
As a consequence, each Et is the deequivariantisation of an indecomposable G-equivariant
sheaf, which is an equivariant parity sheaf by Lemma 6.3.

Again by Lemma 6.2, the convolution algebra HBM
2n (Z;Zp) surjects onto HBM

2n (Z;Fp).
Therefore each Et ⊗ Fp is also indecomposable.

Let i be the inclusion of {0} in Y . By Proposition 3.2 and Lemma 6.1, the multiplicity of
i∗k[l− 2] in π∗k[n] is q − l+ 1 when k = Qp and q − l when k = Fp. Therefore there exists a
unique t such that

m(i∗Qp
[l − 2], Et ⊗Qp) = 1 (6.2)

and Et is not a skyscraper sheaf at 0.
This setup is symmetric under the action of the symmetric group Sl which permutes the

indices {1, 2, . . . , l} of elements of Y . So by uniqueness of t, Et is Sl-invariant. From the
classification of equivariant parity sheaves in [JMW], Et is up to homological shift the parity
extension of a constant sheaf on a Sl-invariant G-orbit on Y .

There are only two Sl-invariant intermediate G-orbits in Y . They are Y{1,2,...,l},∅ and
Y∅,{1,2,...,l} in the notation of (6.1).

Let W be the closure of Y{1,2,...,l},∅. Let us assume that Et has support W . Define

W̃ = {(`, B1, B2, . . . Bl) | ` ∈ Gr(1, q), Bi ∈ Hom(Cq, `)}.

Write σ for the map from W̃ to W . This is a G-equivariant even resolution of singulari-
ties. Therefore, in the G-equivariant derived category, Et must appear as a direct summand
of σ∗Zp (up to homological shift) as it is the unique indecomposable G-equivariant parity
sheaf extending the constant sheaf and thus the same statement holds when we forget the
equivariant structure.

The space W̃ is the total space of a vector bundle F ∼= O(1)⊕lq over Pq−1, where the zero
section is the fibre over 0 ∈ Y . The Euler class e(F) is a power of the Chern class c1(O(1)).
In computing the intersection form (3.1) for the resolution σ, once irrelevant rows are deleted,
one is left with the antidiagonal matrix J , which has the same rank over Q and Fp.

Since the rank doesn’t change, we deduce that m(i∗Qp
[l − 2], Et ⊗ Qp) = 0, contradicting

(6.2). Therefore Et cannot have support equal to W .
Similarly Et cannot have support equal to the closure of the other Sl-equivariant interme-

diate stratum Y∅,{1,2,...,l}.
Therefore Et is an extension of the shifted constant sheaf on the open stratum in Y . As

the stalk of Et at 0 is free over Zp and satisfies a parity vanishing property, it is nonzero in
degree l− 2 using (6.2). Therefore Et⊗Fp has nonzero stalk cohomology at 0 in degree l− 2.
Thus

Et ⊗ Fp 6∼= pτ≤l−3(Et ⊗ Fp).
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Since Et ⊗ Fp is an indecomposable extension of the shifted constant sheaf on the open
stratum on Y and occurs as a summand of π∗Fp[n], by Theorem 5.1, Et ⊗ Fp ∼= E(Y ;Fp). By

the reduction to the slice argument made in the previous section, this completes the proof of
Theorem 2.1. �
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