NOTES ON R-MATRICES FOR QUIVER HECKE ALGEBRAS

PETER ] MCNAMARA

Notation: £ is the ground field. If the Cartan datum is symmetric, any & will
do. If there are i,j € I withi-¢ > j - j, let p be a prime dividing i - i/j - j and
assume the characteristic of k is p. We need a single possible choice for all pairs
i,7 € I so sometimes this is not possible. However there exists such a prime p for
all irreducible Cartan data of finite or affine type.

Given an integer m, define ¢y, : S, — Spmn BY (W) (im — j) = w(i)m — j for
1<i<n,0<7<m.

The definition of the Quiver Hecke Algebras requires some polynomials Q; ;(u, v)
for any 4, j € I. We make the assumption that Q; j(u + 2"/2, v + 297/2) = Q(u, v).
This includes all Quiver Hecke algebras coming from geometry. In the nonsym-
metric case, this is where we need our assumptions about the characteristic of the
field k.

Therefore there is a homomorphism v, : R(v) — k[z] ® R(v) defined by

P.(e;) = e
b (yjes) = (y; + 2975972
¢Z(Tj) = Tj-

The element z is placed in degree two.
The intertwiners ¢, are defined as in [KKK, §1.3] and [KKK, Lemma 1.3.1]
holds. So we can define

Ruyn:MoN—¢'NoM

as in [KKK] where i = (8,7v) — 2(8,7)» if M is a R(8)-module and N is a R(v)-
module.

For a R(v)-module M, we define M, to be the R(v)-module k[z] ® M with the
action of R(v) twisted by 1.

Now consider two parameters z and w, and the morphism

RJ\IZ,NW :M, o Ny, —>qin oM,

Let Iy v = {f € k[z,w] | f(NoM) C im(Ra. n, )} Thisis an ideal of [z, w]. In
[KKK] it is proved that Iy, v = ((z — w)®) for some s € N in symmetric type. I do
not know any example where I, is not principal.

Let (A, ) be a point of A%\ {(0,0)}. We make the substitution z = A\t and w = ut
to create a morphism

Riy v\ 1) :k[t] @ M o N—q'k[t] ® N o M.
Let s be the largest integer such that the image of s lies in ¢t*¢"k[t] ® N o M. This

exists by the same argument as in [KKK] for a generic choice of A and .
Define the R-matrix rys n (A, pt) : M o N—q*=2*N o M by

N (A ) = (E°Riy v (A 1) li=o-
1
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We've defined a rational map from P! to PHom(M o N, N o M). Since the latter
space is proper and the former space is a smooth curve, this extends to a morphism
from P! to PHom(M o N, N o M). Therefore for any [\ : u] € P!, we have defined
a nonzero morphism from M o N to N o M, well defined up to multiplication by a
nonzero scalar.

It could be convenient to take [A : u] = [1 : 1]. If we want to talk about a
canonical R-matrix when we do not know that I/, is principal then we will use
T"M,N (1v 1) .

Lemma 0.1. Let L, M and N be three modules. Then there is a scalar ¢ such that
(tdprorp N)(rp,m 0dN) = ¢rp MoN

Since the r-morphisms are never zero, if either of rr s or 1y is an isomor-
phism, then the constant c is nonzero.
The version with parameters is

(idpr orr, N (A 1) (ro,m (N, 1) oidn) = erp amon (A, ).
Lemma 0.2. Let L, M and N be three modules. Then
(ranvoidr)(idyorp N)(ro v oidy) = (idy orp ar)(ro, v o ddar)(idr o rar n)
The version with parameters is
(rav, v (p, v)oidy) (idaprorp, v (A, v)) (rp, (A, p)oidn) = (idworr, ar (A, 1)) (ro, v (A, v)oida ) (idporar v (1, v)).
The following key result is [KKKO, Theorem 3.2].

Theorem 0.1. Let X and Y be simple representations at least one of which is real. Then
X oY has a simple socle and a simple head. The socle of X oY is the image of ry, x.

Theorem 0.2. Let X, Y and Z be modules such that X o X, X oY, Y o Zand Z o X
are all irreducible. Then X oY o Z is irreducible.

Proof. The hypotheses that X oY and X o Z are irreducible imply that rx y and
rx,z are isomorphisms. By Lemma 0.1, rx yoz is an isomorphism.

Since X is real and Y o 7 is irreducible, we can apply [KKKO, Theorem 3.2] to
conclude that X oY o Z is irreducible, as required. O

Remark 0.3. This is the Quiver Hecke analogue of a result of Hernandez [H] with
an extra assumption that X is real which would ideally be removed.

Theorem 0.3. Let o be a real root and L a cuspidal representation of R(c) for some convex
order. Then L is a real module.

Proof. In finite type, this is [M1, Lemma 3.4]. The general case is by an unpublished
argument explained to me by Ben Webster that is scheduled to appear in [M2]. O

Remark 0.4. There are other interesting examples of real representations. Eg in
type As, the irreducible representation with character [2132] + [2312] is real (and
is interesting since it categorifies a frozen cluster variable) but does not arise from
the above constructions.

The following theorem is important for understanding imaginary semicuspidal
modules, for example [KM, M2].

I will say that A = 7,1 ® - - - ® v, plus lower order terms if the difference can
be written as a sum of terms of the form 7,,,v] ® - - - ® v/, where {(w’) < {(w). Here
w,w’ are taken to be minimal length coset representatitves.
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Theorem 0.4. Let L be a cuspidal representation of R(J), where § - 6 = 0. The R-
matrix v, 1, (appropriately normalised) induces n — 1 endomorphisms of L°", denoted
1, ..., n—1. Thereis an isomorphism from k[S,| to End (L°™) sending the simple reflec-
tion s; to ;.

Proof. I'm going to prove more and include a proof of the fact that r, 1,(\, p) is
independent of the parameters A and p, when it is appropriately normalised.

The standard Mackey argument shows that End (L°") has dimension at most
n! and is concentrated in degree zero. Therefore the integer s in the construction
of rr, 1, is equal to (9, 6),.

Pick v € L such that y;v = 0 for all . Let d = [5|. Then ¢, (12yvov =
Q(z,w)T,v ® v plus lower order terms for some (explicit) nonzero polynomial
Q(z,w) of degree 2(4,6),,. This computation shows that rz, 1,(), i) is generically
not equal to a multiple of the identity.

Therefore dim End (L o L) = 2. This implies that the Mackey filtration of
Ress,s L o L splits. So there exists an element 7 € End (L o L) with 7(v ® v) =
Ta((12))? ® v. As 1 and 7 form a basis of End (L o L), there exist p,q € k with
™ =pr+gq.

We normalise 7z, 1 (A, ) such that r1, (A, u) = 7 + A(A, 1) for some rational
function A. This is possible from the observations two paragraphs prior.

By [KKK, Lemma 1.3.1(vi)], 71 (A, )7 (1, A) = 1. Therefore A(X, p)+A(u, \) =
—pand A\, w)A(p, A) = 1 — g. Hence A(\, 1) is a constant and so is rp, 1, (A, u).

Thus we know the quadratic relations % ; = 1. The braid relations follow from
Lemma 0.2. Therefore there is a homomorphism f from k[S,,] to End (L°"). It is
injective since f(w)v®" = 7, ()v®" plus lower order terms. It is surjective by a
dimension count. O
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