
THE SPIN BRAUER CATEGORY

PETER J. MCNAMARA AND ALISTAIR SAVAGE

Abstract. We introduce a diagrammatic monoidal category, the spin Brauer category, that plays
the same role for the spin and pin groups as the Brauer category does for the orthogonal groups. In
particular, there is a full functor from the spin Brauer category to the category of finite-dimensional
modules for the spin and pin groups. This functor becomes essentially surjective after passing to
the Karoubi envelope, and its kernel is the tensor ideal of negligible morphisms. In this way, the
spin Brauer category can be thought of as an interpolating category for the spin and pin groups.
We also define an affine version of the spin Brauer category, which acts on categories of modules
for the pin and spin groups via translation functors.

1. Introduction

One of the most classical results in representation theory is Schur–Weyl duality, one half of which
is the statement that the algebra homomorphism

CSr → EndGL(V )(V
⊗r)

is surjective, where Sr is the symmetric group on r letters, acting on V ⊗r by permutation of the
factors. If one replaces the general linear group by the orthogonal group, the analogous statement
is that one has a surjective algebra homomorphism

Brr → EndO(V )(V
⊗r),

where Brr is the Brauer algebra.
A more modern approach to the above involves considering morphisms between different powers

of the natural module V to rephrase the results in terms of monoidal categories. More precisely,
there is a full and essentially surjective functor

OB(N) → GL(V )-mod

from the oriented Brauer category to the category of finite-dimensional rational GL(V )-modules,
where N = dimV . Similarly, one has a full and essentially surjective functor

B(N) → O(V )-mod

where B(N) is the Brauer category. The categories OB(N) and B(N) are defined for any choice of
parameter N ∈ C. Their additive Karoubi envelopes are Deligne’s interpolating categories for the
general linear and orthogonal groups [Del07].

Since the orthogonal group is not simply connected, it is natural to want to extend the above
picture to its double cover, the pin group Pin(V ), or the identity component, the spin group Spin(V ).
This desire is further underlined by the importance of the spin group in other areas of representation
theory and physics. A first step in this direction is the recent work of Wenzl [Wen20] describing
the endomorphism algebra of S⊗r, where S is the spin module. (In fact, [Wen20] works with
representations of quantized enveloping algebra.) Other partial results were obtained in [OW02,
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Wen12]. In type D, see also [Abo22, Th. 3.6] for similar results. The goal of the current paper is to
develop the monoidal category approach and find a spin analogue of the Brauer category, allowing
one to describe morphisms between all tensor products of the spin and vector modules.

After recalling and developing, in Sections 2 to 4, some of the representation theory of the spin
and pin groups, we introduce the spin Brauer category SB(d,D;κ) in Section 5. Here d,D are
elements of the ground field and κ ∈ {±1}. Our definition of this strict monoidal category is
diagrammatic, given via a presentation in terms of generators and relations. Whereas the Brauer
category has one generating object, which should be thought of as a formal version of the natural
module, the spin Brauer category has an additional generating object corresponding to the spin
module. The parameters d and D are the categorical dimensions of the two generating objects. We
then describe, in Theorem 6.1, a functor

F : SB(N, σN2
n;κN ) → G(V )-mod

where N = dimV , n = ⌊N2 ⌋, σN , κN ∈ {±1} depend on N (see (6.1)), and

G(V ) :=

{
Pin(V ) if N is even,
Spin(V ) if N is odd.

(See Remarks 2.5 and 4.8 for an explanation of why we split into these cases.)
We prove that the functor F is essentially surjective after passing to the Karoubi envelope (Theo-

rem 7.5), full (Theorem 8.9), and that its kernel is precisely the tensor ideal of negligible morphisms
(Theorem 8.10). This implies that the category G(V )-mod is equivalent to the semisimplification of
the Karoubi envelope of SB(N, σN2

n;κN ). The Karoubi envelope of SB(d,D;κ) should be thought
of as an interpolating category for the spin and pin groups, in the spirit of Deligne’s interpolating
categories [Del07].

Both the oriented Brauer category and the Brauer category have affine analogues, defined in
[BCNR17, RS19]. In Section 9, we define an affine version ASB(d,D;κ) of the spin Brauer category,
together with affine incarnation functors (Theorem 9.8)

ASB(N, σN2
n;κN ) → End C(G(V )-mod) and ASB(N, σN2

n;κN ) → End C(so(V )-Mod)

where End C(C) denotes the monoidal category of C-linear endofunctors of a C-linear category C,
with natural transformations as morphisms, and so(V )-Mod denotes the category of all so(V )-
modules. This functor yields tools for studying the translation functors given by tensoring with
the spin and vector modules. Such translation functors have proved to be extremely useful in
representation theory. Finally, in Theorem 10.1, we show that the image of the induced algebra
homomorphism

EndASB(N,σN2n;κN )(1) → End C(so(V )-Mod) ∼= Z(so(V ))

is Z(so(V ))G(V ), where Z(so(V )) is the centre of the universal enveloping algebra U(so(V )).
The results of the current paper bring the power of diagrammatic techniques to the study of the

representation theory of the spin and pin groups. As such, they lead to many natural directions of
future research. We plan to develop a quantum analogue of our results, replacing the spin group
by the quantized enveloping algebra Uq(so(n)). Such a quantum version would also suggest an
approach to webs of types B and D, and so should be related to recent work of Bodish and Wu
[BW23].
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Natural Sciences and Engineering Research Council of Canada. The second author is also grateful
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2. The spin representation

In this section, we recall the explicit construction of the most important representation theoretic
ingredient in the current paper: the spin representation. Throughout this section we work over the
field C of complex numbers.

2.1. The Clifford algebra. Let V be a vector space of finite dimension N and let ΦV : V ×V → C
be a nondegenerate symmetric bilinear form. Let

(2.1) Cl = Cl(V ) := T (V )/ (vw + wv − 2ΦV (v, w) : v, w ∈ V )

denote the Clifford algebra associated to V . Here T (V ) is the tensor algebra on V . The algebra
Cl is (Z/2Z)-graded by declaring that elements of V are odd (that is, have degree 1̄). We let
deg x ∈ Z/2Z denote the degree of a homogeneous element x ∈ Cl.

Fix an orthonormal basis e1, . . . , eN of V . Then, in Cl, we have

(2.2) eiej + ejei = 2δij .

Let

(2.3) n =

⌊
N

2

⌋
∈ N, so that N =

{
2n if N is even,
2n+ 1 if N is odd.

Now define

(2.4) ψj :=
1
2

(
e2j−1 +

√
−1e2j

)
, ψ†

j :=
1
2

(
e2j−1 −

√
−1e2j

)
, 1 ≤ j ≤ n.

Then we have

ΦV (ψi, ψj) = 0, ΦV (ψ
†
i , ψ

†
j) = 0, ΦV (ψi, ψ

†
j) =

1
2δij , 1 ≤ i, j ≤ n,

and so

(2.5) ψiψj + ψjψi = 0 = ψ†
iψ

†
j + ψ†

jψ
†
i , ψiψ

†
j + ψ†

jψi = δij , 1 ≤ i, j ≤ n.

When N is even, (2.5) gives a presentation of Cl. When N is odd, we need to include the
additional relations

(2.6) ψieN + eNψi = 0 = ψ†
i eN + eNψ

†
i , e2N = 1, 1 ≤ i ≤ n,

to obtain a presentation of Cl.

2.2. Clifford modules. The algebra Cl is semisimple. If N is even, then the algebra Cl has a
unique simple module up to isomorphism. If N is odd, then Cl has exactly two simple modules.
We will now describe these.

Let

S := Λ(W ) =

n⊕
r=0

Λr(W ), where W = spanC{ψ
†
i : 1 ≤ i ≤ n}.

As a C-module, S has basis

(2.7)
xI := ψ†

i1
∧ ψ†

i2
∧ · · · ∧ ψ†

ik
,

I = {i1, . . . , ik} ⊆ [n], i1 < i2 < . . . < ik, 0 ≤ k ≤ n,

where
[n] = {1, 2, . . . , n},
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a notation we use throughout. In particular,

(2.8) dimC(S) = 2n.

We will now construct a Cl-module structure on S. If N is even, we turn S into a Cl-module by
defining

(2.9) ψ†
ixI = ψ†

i ∧ xI , ψixI =

{
(−1)|{j∈I:j<i}|xI\{i} if i ∈ I,

0 if i /∈ I,
I ⊆ [n], 1 ≤ i ≤ n.

It is straightforward to verify that the relations (2.5) are satisfied.
If N is odd, then we define two Cl-module structures on S, depending on a choice of ε ∈ {±1}.

We again use the action defined in (2.9), and additionally define

(2.10) e2n+1xI = ε(−1)|I|xI .

It is straightforward to verify that relations (2.6) are satisfied.
For both even and odd N , the Cl-modules defined above are called the spin modules. If N is

even, then S is the unique simple Cl-module. If N is odd, then the two modules constructed above
are the two nonisomorphic simple Cl-modules. In both cases, Cl is semisimple.

Remark 2.1. An equivalent construction of the spin module is as Cl/A, where A is the left ideal
generated by the ψj , 1 ≤ j ≤ n, if N is even, and is the left ideal generated by the ψj , 1 ≤ j ≤ n,
and eN − ε if N is odd.

We conclude this subsection with a technical lemma that will be used in the proof of Theorem 6.1.
Suppose N is odd, and let

(2.11) ψ0 =
1√
2
eN , ψ−i = ψ†

i , i ∈ [n].

Lemma 2.2. For all permutations ϖ of {−n, 1− n, · · · , n− 1, n}, we have

(2.12) ψϖ(−n)ψϖ(1−n) · · ·ψϖ(n−1)ψϖ(n)xI =

{
ε√
2
sgn(ϖ)xI if I = Iϖ,

0 otherwise,

where Iϖ = {i ∈ [n] : ϖ−1(−i) < ϖ−1(i)}.

Proof. For i = 1, 2, . . . , n, let

Ai =

{
ψ−iψi if i ∈ Iϖ,

ψiψ−i if i /∈ Iϖ.

We compare the products ψϖ(−n)ψϖ(1−n) · · ·ψϖ(n−1)ψϖ(n) and ψ0A1A2 · · ·An. They are both a
product of ψ−n, ψ1−n, . . . , ψn in some order. For each i ∈ [n], the elements ψi and ψ−i appear in the
same order in each of these two products. Therefore, we can pass from one to the other by swapping
adjacent pairs ψi and ψj for i ̸= ±j. In the Clifford algebra, each of these swaps introduces a minus
sign, since ψiψj = −ψjψi for i ̸= ±j. So, in order to compare ψϖ(−n)ψϖ(1−n) · · ·ψϖ(n−1)ψϖ(n) and
ψ0A1A2 · · ·An in Cl, we need to compute the sign of the permutation by which these two orderings
of the indices differ.

The sign of the permutation sending (ϖ(−n), ϖ(1−n), . . . , ϖ(n)) to (−n, 1−n, . . . , n) is sgn(ϖ).
The sign of the permutation sending (−n, 1−n, · · · , n) to (0,−1, 1,−2, 2, . . . ,−n, n) is (−1)n. The
sign of the permutation sending (0,−1, 1,−2, 2, . . . ,−n, n) to the order of the indices in the product
ψ0A1A2 · · ·An is (−1)n−|Iϖ|. Hence we obtain the identity

ψϖ(−n)ψϖ(1−n) · · ·ψϖ(n−1)ψϖ(n) = sgn(ϖ)(−1)|Iϖ|ψ0A1A2 · · ·An.
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From (2.9) and (2.10) we have AixIϖ = xIϖ and ψ0xIϖ = ε(−1)|Iϖ|/
√
2. This completes the

proof of (2.12) when I = Iϖ. On the other hand, when I ̸= Iϖ, we have AixI = 0 for any
i ∈ (I \ Iϖ) ∪ (Iϖ \ I). □

2.3. The pin and spin groups. Recall that Cl is (Z/2Z)-graded. Define

(2.13) GPin(V ) := {g ∈ Cl(V )× : g is homogeneous and gV g−1 = V },

and let

(2.14) ι : Cl(V ) → Cl(V )

be the unique antiautomorphism of Cl(V ) that is the identity on elements of V . Then the spinor
norm on GPin(V ) is the group homomorphism given by

GPin(V ) → C×, g 7→ gι(g).

The pin group associated to the inner product space V is the subgroup of GPin(V ) consisting of
elements of spinor norm one:

(2.15) Pin(V ) := {g ∈ GPin(V ) : gι(g) = 1}.

The corresponding spin group is

(2.16) Spin(V ) := Pin(V ) ∩ Cl0̄,

where Cl0̄ is the even part of Cl.
We will need the following analogue of the Cartan–Dieudonné Theorem for the pin and spin

groups. Note that if v ∈ V satisfies ΦV (v, v) = 1, then v ∈ Pin(V ).

Theorem 2.3. Suppose N ≥ 1. Then

Pin(V ) = {v1v2 · · · vk : k ∈ N, vi ∈ V, ΦV (vi, vi) = 1 ∀ 1 ≤ i ≤ k} ⊆ Cl(V )×,(2.17)
Spin(V ) = {v1v2 · · · vk : k ∈ 2N, vi ∈ V, ΦV (vi, vi) = 1 ∀ 1 ≤ i ≤ k} ⊆ Pin(V ).(2.18)

Proof. We will deduce this from the usual Cartan–Dieudonné Theorem, which states that the or-
thogonal group O(V ) is generated by reflections. First we prove (2.17).

There is a homomorphism p : Pin(V ) → O(V ) given by the following action of Pin(V ) on V :

(2.19) p(g)(v) = (−1)deg ggvg−1

for g ∈ Pin(V ) and v ∈ V . If w ∈ V satisfies ΦV (w,w) = 1, then its image in O(V ) under this
homomorphism is the reflection across the hyperplane orthogonal to w.

Let g ∈ Pin(V ). By the Cartan–Dieudonné Theorem, there exist v1, v2, . . . , vk ∈ V with
ΦV (vi, vi) = 1, such that p(g) = p(v1v2 · · · vk). Therefore g−1v1v2 · · · vk ∈ ker p. If x ∈ ker p then
xvx−1 = (−1)deg xv for all v ∈ V . Since V generates Cl, this implies xyx−1 = (−1)(deg x)(deg y)y
for all homogeneous y ∈ Cl. This is the condition that x lies in the supercentre of Cl (where we
consider Cl as a superalgebra via its (Z/2Z)-grading), which consists only of scalars. The only
scalars lying in Pin(V ) are ±1. Hence, g−1v1v2 · · · vk = ±1. If g−1v1v2 · · · vk = 1, we are done. If
g−1v1v2 · · · vk = −1, then pick w ∈ V with ΦV (w,w) = 1, and write −1 = w(−w). Then we have
g = v1v2 · · · vk+2 with vk+1 = w and vk+2 = −w, and we are done.

Finally, (2.18) follows from (2.17) by noting that each vi lies in Cl1̄. □

Remark 2.4 (Low values of N). It will be important for some of the inductive arguments in the
paper that we allow N ∈ {0, 1, 2}, even though, in some ways, these behave differently than the
cases N ≥ 3. Let C2 denote the cyclic group on 2 elements. Then we have the following:

• When N = 0, Pin(V ) = Spin(V ) = {±1} ∼= C2.
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• When N = 1, Pin(V ) = {±1,±v} ∼= C2 × C2, where v ∈ V satisfies ΦV (v, v) = 1 (so that
v2 = 1), and Spin(V ) = {±1} ∼= C2.

• When N = 2, we have an isomorphism

(2.20) Gm
∼=−→ Spin(V ), t 7→ t+ (t−1 − t)ψ†

1ψ1,

where Gm is the multiplicative group. Next, note that Pin(V ) = Spin(V ) ⊔ Spin(V )e1 and
conjugation by e1 corresponds, under the above isomorphism, to inversion on Gm. Thus,
Pin(V ) ∼= Gm ⋊ C2, where the nontrivial element of C2 acts on Gm by inversion.

Implicit in the proof of Theorem 2.3 is a short exact sequence (for all N ∈ N)

{1} → {±1} → Pin(V ) → O(V ) → {1}.

Restricting to Spin(V ) yields another short exact sequence

{1} → {±1} → Spin(V ) → SO(V ) → {1}.

The group Spin(V ) is connected for N ≥ 2. This explains why the image of the third map above
lies in the connected group SO(V ), and realises Spin(V ) as the universal cover of SO(V ) for N ≥ 3.

Remark 2.5. If N is odd, then the element e1e2 · · · eN ∈ Pin(V ) \ Spin(V ) is central, and Pin(V )
is generated by Spin(V ) and this central element. In this case, the difference between the represen-
tation theory of Pin(V ) and Spin(V ) is not significant. We will focus on Spin(V )-modules when N
is odd; see Remark 4.8.

3. Special orthogonal Lie algebras

In this section we collect some basic facts about the special orthogonal Lie algebra so(V ). Since
so(V ) is the zero Lie algebra when N ≤ 1, we assume throughout this section that N ≥ 2.

The Lie algebra Lie(Cl×) is Cl with the commutator Lie bracket. The inclusion Spin(V ) ↪→ Cl×

induces an inclusion Lie(Spin(V )) ↪→ Cl. The image of this inclusion is

Cl2 := spanC{uv − vu : u, v ∈ V } ⊆ Cl.

The group homomorphism Spin(V ) → SO(V ) induces an isomorphism of Lie algebras. Under the
identification of Lie(Spin(V )) with Cl2 above, this isomorphism is

(3.1) γ : Cl2 → so(V ), γ(uv − vu) = 4Mu,v,

where Mu,v ∈ so(V ) is defined by

(3.2) Mu,vw = ΦV (v, w)u− ΦV (u,w)v.

3.1. Type D (even N). We suppose throughout this subsection that N = 2n is even, and we
continue to assume that N ≥ 2. Note that

• when n = 1, so(V ) is a one-dimensional abelian Lie algebra, and
• when n ≥ 2, so(V ) is the semisimple Lie algebra of type Dn.

For A ∈ Matn(C), let A′ denote the flip of A in the anti-diagonal. More precisely,

(3.3) if A = (aij)
n
i,j=1 then A′ = (an−j+1,n−i+1)

n
i,j=1.

Note that (AB)′ = B′A′ for A,B ∈ Matn(C). In the ordered basis ψ1, . . . , ψn, ψ
†
n, . . . , ψ

†
1 of V , the

matrices of so(V ) are those of the form(
A B
C −A′

)
, A,B,C ∈ Matn(C), B′ = −B, C ′ = −C.
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The Cartan subalgebra h consists of the diagonal matrices. For 1 ≤ i ≤ n, define

ϵi ∈ h∗, ϵi(diag(a1, . . . , an,−an, . . . ,−a1)) = ai.

Let Eij , 1 ≤ i, j ≤ n denote the usual matrix units of Matn(C), and define, for 1 ≤ i, j ≤ n,

(3.4) Aij =

(
Eij 0
0 −E′

ij

)
, Bij =

(
0 Ei,n−j+1 − Ej,n−i+1

0 0

)
, Cij =

(
0 0

En−i+1,j − En−j+1,i 0

)
.

Then the Aij , Bij , and Cij are the root vectors, with corresponding roots ϵi−ϵj , ϵi+ϵj , and −ϵi−ϵj ,
respectively. We choose the positive system of roots given by

ϵi ± ϵj , 1 ≤ i < j ≤ n.

Thus, the positive root spaces of so(V ) are spanned by

Aij , Bij , 1 ≤ i < j ≤ n.

It is straightforward to verify, recalling the definition (3.2) of Mu,v, that

2M
ψi,ψ

†
j
= Aij , 2Mψi,ψj

= Bij , 2M
ψ†
i ,ψ

†
j
= Cij , 1 ≤ i, j ≤ n.

Thus, the positive root vectors are

2M
ψi,ψ

†
j
, 2Mψi,ψj

, 1 ≤ i < j ≤ n.

The images under the isomorphism γ−1, given in (3.1), of these elements are

(3.5) ψiψ
†
j , ψiψj , 1 ≤ i < j ≤ n.

We also have that

(3.6) γ−1(Aii) = γ−1
(
2M

ψi,ψ
†
i

)
= 1

2(ψiψ
†
i − ψ†

iψi)
(2.5)
= ψiψ

†
i −

1
2 , 1 ≤ i ≤ n.

For n ≥ 2, the dominant integral weights are those weights of the form

(3.7)
λ =

n∑
i=1

λiϵi, λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ |λn|,

such that (λi ∈ 1
2 + Z for all 1 ≤ i ≤ n) or (λi ∈ Z for all 1 ≤ i ≤ n).

For n = 1, we adopt the convention that the set of dominant integral weights is 1
2Zϵ1.

Remark 3.1 (N = 2). When N = 2,

so(V ) =

{(
a1 0
0 −a1

)
: a1 ∈ C

}
is a one-dimensional abelian Lie algebra. For z ∈ C, we call the one-dimensional representation
zϵ1 : so(V ) → C ∼= EndC(C) the simple highest-weight so(V )-module with highest weight zϵ1 since
this will often allow us to make uniform statements for N ≥ 2.
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3.2. Type B (odd N). We suppose throughout this subsection that N = 2n + 1 is odd, so that
so(V ) is the simple Lie algebra of type Bn. We continue to assume that N ≥ 2, i.e. n ≥ 1.

In the ordered basis ψ1, . . . , ψn,
1√
2
e2n+1, ψ

†
n, . . . ψ

†
1, the matrices of so(V ) are those of the form A u B

−vt 0 −ut

C v −A′

 , u, v ∈ Cn, A,B,C ∈ Matn(C), B′ = −B, C ′ = −C,

where the notation A′ is defined in (3.3). The Cartan subalgebra h consists of the diagonal matrices.
For 1 ≤ i ≤ n, define

ϵi ∈ h∗, ϵi(diag(a1, . . . , an, 0,−an, . . . ,−a1)) = ai.

Recall that Eij , 1 ≤ i, j ≤ n denote the usual matrix units of Matn(C), and let ui be the element
of Cn with a 1 in the i-th position and 0 in all other positions. Then define, for 1 ≤ i, j ≤ n,

(3.8)

Aij =

Eij 0 0
0 0 0
0 0 −E′

ij

 , Xi =

0 ui 0
0 0 −ut

n−i+1
0 0 0

 , Yi =

 0 0 0
−ut

i 0 0
0 un−i+1 0

 ,

Bij =

0 0 Ei,n−j+1 − Ej,n−i+1

0 0 0
0 0 0

 , Cij =

 0 0 0
0 0 0

En−i+1,j − En−j+1,i 0 0

 .

Then the Aij , Bij , Cij , Xi, and Yi are the root vectors, with corresponding roots ϵi − ϵj , ϵi + ϵj ,
−ϵi − ϵj , ϵi, and −ϵi, respectively. We choose the positive system of roots given by

ϵi ± ϵj , ϵk, 1 ≤ i < j ≤ n, 1 ≤ k ≤ n.

Thus, the positive root spaces of so(V ) are spanned by

Aij , Bij , Xk, 1 ≤ i < j ≤ n, 1 ≤ k ≤ n.

It is straightforward to verify, recalling the definition (3.2) of Mu,v, that we have

2M
ψi,ψ

†
j
= Aij , 2Mψi,ψj

= Bij , 2M
ψ†
i ,ψ

†
j
= Cij ,

√
2Mψi,e2n+1 = Xi,

√
2M

ψ†
i ,e2n+1

= Yi.

Thus, the positive root vectors are

2M
ψi,ψ

†
j
, 2Mψi,ψj

,
√
2Mψk,e2n+1 , 1 ≤ i < j ≤ n, 1 ≤ k ≤ n.

The images under the isomorphism γ−1, given in (3.1), of these elements are

ψiψ
†
j , ψiψj ,

1√
2
ψke2n+1, 1 ≤ i < j ≤ n, 1 ≤ k ≤ n.

We also have that

γ−1(Aii) = γ−1
(
2M

ψi,ψ
†
i

)
= 1

2(ψiψ
†
i − ψ†

iψi)
(2.5)
= ψiψ

†
i −

1
2 , 1 ≤ i ≤ n.

The dominant integral weights are those weights of the form

(3.9)
λ =

n∑
i=1

λiϵi, λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ λn ≥ 0,

such that (λi ∈ 1
2 + Z for all 1 ≤ i ≤ n) or (λi ∈ Z for all 1 ≤ i ≤ n).

4. Representations of pin and spin groups

In this section, we collect some facts about representations of the pin and spin groups that will
be important for us.
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4.1. The spin and vector modules. Recall the Cl-module S introduced in Section 2.2. By
restriction, S is a Pin(V )-module and a Spin(V )-module. Passing to the Lie algebra, we obtain
a so(V )-module structure on S, most conveniently computed via the isomorphism γ obtained in
(3.1). With respect to the Cartan subalgebras introduced in Sections 3.1 and 3.2, the vectors xI for
I ⊆ [n] are all weight vectors.

First suppose that N is even. As so(V )-modules and as Spin(V )-modules, we have a decompo-
sition

(4.1) S = S+ ⊕ S−, S+ = spanC{xI : |I| is even}, S− = spanC{xI : |I| is odd}.
Note that S remains simple as a Pin(V )-module. When N ≥ 2, we also see that S+ is a simple
highest-weight so(V )-module with highest-weight vector x∅ of weight 1

2(ϵ1+· · ·+ϵn) and that S− is a
simple highest-weight so(V )-module with highest-weight vector x{n} of weight 1

2(ϵ1+· · ·+ϵn−1−ϵn).
Now suppose that N is odd. In this case, there are two choices of a Cl-module structure on

S depending on the choice of ε ∈ {±1}, as in (2.10), but they give rise to isomorphic Spin(V )-
modules. In this case, there is a unique highest weight vector x∅, so the spin module S is a simple
so(V )-module of highest weight 1

2(ϵ1 + · · ·+ ϵn).
We view V as a Pin(V )-module with action

(4.2) g · v := gvg−1, g ∈ Pin(V ), v ∈ V.

As a representation of so(V ), V is simple with highest weight ϵ1 if N ≥ 3.

Remark 4.1 (Low values of N). As noted in Remark 2.4, the cases N ≤ 2 behave differently than
the cases N ≥ 3.

• When N = 0, we have V = S− = 0 and S+ is the nontrivial one-dimensional module for
Pin(V ) ∼= C2. Of course, S is the trivial module for the trivial group Spin(V ) and the zero
Lie algebra so(V ).

• When N = 1, we have that V is the trivial Pin(V )-module. We also have that S is the
nontrivial one-dimensional module for Spin(V ) ∼= C2. The Pin(V )-module structure on S
depends on the choice of ε ∈ {±1}, as in (2.10).

• When N = 2, recall the isomorphism Gm
∼= Spin(V ) of (2.20). Let Lr, r ∈ Z, denote the

one-dimensional Gm-module with action t · v = trv, t ∈ Gm, v ∈ Lr. Since(
t+ (t−1 − t)ψ†

1ψ1

)
x∅ = tx∅,

(
t+ (t−1 − t)ψ†

1ψ1

)
x{1} = t−1x{1},

we have S± ∼= L±1. We also have V ∼= L−2 ⊕L2. As so(V )-modules, we have Lr = L
(
r
2ϵ1
)
.

Both V and S are simple as modules for Pin(V ) ∼= Gm ⋊ C2, with the generator of C2

interchanging the summands Lr and L−r.

4.2. Classification of simple modules. When N ≤ 1, the groups Spin(V ) and Pin(V ) are finite
(see Remark 2.4), and their representation theory is straightforward. Therefore, we assume in this
subsection that N ≥ 2.

We have an exact sequence of groups

(4.3) {1} → Spin(V ) → Pin(V )
π−→ {±1} → {1},

where {±1} is the cyclic group of order 2, written multiplicatively, and π(g) = (−1)deg g. The
finite-dimensional representation theory of Pin(V ) can be described in terms of the representation
theory of Spin(V ) using Clifford theory. Since Pin(V ) and Spin(V ) are reductive, their categories
of finite-dimensional representations are both semisimple, and so it suffices to describe their simple
modules. We begin with a discussion of the representation theory of Spin(V ).

The group Spin(V ) is connected and reductive. Let H denote its abstract Cartan. This is
canonically isomorphic to the abelianisation of every Borel subgroup of Spin(V ). Write X∗(H) =
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Hom(H,Gm) for the weight lattice of Spin(V ). Dominance is defined in the usual way from any
choice of Borel subgroup. We write X∗(H)+ for the subset of dominant weights.

The choice of Borel subalgebra of so(V ) spanned by the Aij , Bij , and Xk, for 1 ≤ i < j ≤ n and
1 ≤ k ≤ n (the Xk only appearing in type B) induces an isomorphism X∗(H)⊗Z C ∼= h∗, which we
use to write down elements of X∗(H) as linear combinations of ϵ1, ϵ2, . . . , ϵn.

Write Irr(Spin(V )) for the set of isomorphism classes of finite-dimensional simple Spin(V )-
modules. These are classified by highest weight theory. Explicitly, there is an isomorphism
X∗(H)+ ∼= Irr(Spin(V )), λ 7→ L(λ), characterised by the following fact: For all Borel subgroups B
of Spin(V ), there exists nonzero v ∈ L(λ) such that bv = λ(b)v for all b ∈ B.

The group Pin(V ) acts on Spin(V ) by conjugation. For g ∈ Pin(V ) and W a Spin(V )-module,
we let W g denote the Spin(V )-module that is equal to W as a vector space, but with the twisted
action

(4.4) h · w =
(
ghg−1

)
w, h ∈ Spin(V ), w ∈W g,

where the juxtaposition hw denotes the action of h ∈ Spin(V ) on w ∈W .
The group Pin(V ) also acts by conjugation on H and hence by precomposition on X∗(H)+ ∼=

Irr(Spin(V )). We let gλ denote the result of g ∈ Pin(V ) acting on λ ∈ X∗(H). The subgroup
Spin(V ) acts trivially, so this descends to an action of the quotient π0(Pin(V )) ∼= {±1}. For
λ ∈ X∗(H)+ and g ∈ Pin(V ), we have

L(λ)g ∼= L(gλ).

In particular, up to isomorphism, L(λ)g depends only λ and the class of g in π0(Pin(V )).
To pass between representations of Spin(V ) and Pin(V ) we use the biadjoint pair of restriction

and induction functors

(4.5) Res: Pin(V )-mod → Spin(V )-mod and Ind: Spin(V )-mod → Pin(V )-mod,

where G-mod denotes the category of finite-dimensional modules of an algebraic group G. These
satisfy

(4.6) Res ◦ Ind(W ) ∼=W ⊕WP ,

where P is any element of Pin(V ) \ Spin(V ). In order to make explicit computations, we will fix

(4.7) P =

{
e1e2 · · · eN if N is odd,
e1e2 · · · eN−1 if N is even.

Proposition 4.2. Let W be a simple Pin(V )-module. Then there exists a unique π0(Pin(V ))-orbit
O on X∗(H)+ such that

(4.8) Res(W ) ∼=
⊕
λ∈O

L(λ).

Furthermore, given an orbit O, the number of nonisomorphic simple Pin(V )-modules W satisfying
(4.8) is equal to the size of the stabiliser of π0(Pin(V )) acting on an element of O.

Proof. By Frobenius reciprocity, every simple Pin(V )-module is a simple summand of Ind(M) for
some simple Spin(V )-module M . Thus, it suffices to prove the result for such simple summands.

Suppose M is a simple Spin(V )-module. By Frobenius reciprocity,

dimHomPin(V )(Ind(M), Ind(M)) = dimHomSpin(V )(M,Res ◦ Ind(M))

which, by (4.6), is equal to two if M ∼= MP , and is equal to one otherwise. In the former case,
IndM is of the form W1 ⊕W2 with W1, W2 nonisomorphic simple modules satisfying Res(W1) ∼=
Res(W2) ∼=M . Thus W1 and W2 satisfy (4.8), with the orbit O having one element, namely M . In
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the latter case, W = Ind(M) is simple and also satisfies (4.8) by (4.6). The final statement of the
proposition also follows from this discussion. □

It follows from Proposition 4.2 that the simple Pin(V )-modules are:
• Ind(M) for a simple Spin(V )-module M with MP ̸∼=M ,
• the two simple summands of Ind(M) for a simple Spin(V )-module M with MP ∼=M .

In particular, if O is an orbit of size two, then the unique simple Pin(V )-module W satisfying (4.8)
is Ind(L(λ)) where λ is any element of O.

We let triv0 denote the trivial Pin(V )-module and let triv1 be the one-dimensional module with
action given by gv = (−1)deg gv, v ∈ triv1. If M is a simple Spin(V )-module fixed under the
Pin(V )-action (i.e., Mg ∼=M as Spin(V )-modules for g ∈ Pin(V )), and M ′ and M ′′ are its two lifts
to a Pin(V )-module, then these are related by

(4.9) M ′ ⊗ triv1 ∼=M ′′.

We now study the action of π0(Pin(V )) on Irr(Spin(V )) ∼= X∗(H)+. When N is even, define

(4.10) λ̃ := λ1ϵ1 + · · ·+ λn−1ϵn−1 − λnϵn for λ = λ1ϵ1 + · · ·+ λn−1ϵn−1 + λnϵn.

Theorem 4.3. If N is odd, then π0(Pin(V )) acts trivially on Irr(Spin(V )) ∼= X∗(H)+. If N is
even, the action of the non-trivial element P ∈ π0(Pin(V )) is Pλ = λ̃.

Proof. If N is odd then P is central and so there is nothing to do. From now on, suppose N = 2n
is even. Then

(4.11) PeiP
−1 = (−1)δiN ei, 1 ≤ i ≤ N.

It follows that

(4.12) PψnP
−1 = ψ†

n, Pψ†
nP

−1 = ψn, PψiP
−1 = ψi, Pψ†

iP
−1 = ψ†

i , 1 ≤ i < n.

Hence conjugation by P preserves the set of positive root vectors (3.5) and acts on the elements
(3.6) of the Cartan subalgebra of so(V ) as

P
(
ψiψ

†
i −

1
2

)
P−1 = ψiψ

†
i −

1
2 , 1 ≤ i < n,

P
(
ψnψ

†
n − 1

2

)
P−1 = ψ†

nψn − 1
2

(2.5)
= −

(
ψnψ

†
n − 1

2

)
. □

For the remainder of this subsection, we assume that N is even. It follows from Theorem 4.3
that, for any dominant integral weight λ, we have

(4.13) L(λ)P ∼= L(λ̃) as Spin(V )-modules.

In particular, for N ≥ 2,

(4.14) (S±)P ∼= S∓ as Spin(V )-modules.

For all even N ,

(4.15) SP ∼= S, V P ∼= V as Spin(V )-modules,

since V = L(−ϵ1) ⊕ L(ϵ1) when N = 2 (see Remark 4.1), and V = L(ϵ1) for N ≥ 3. Note that,
when N ≥ 4,

S ∼= Ind
(
L
(
1
2ϵ1 +

1
2ϵ2 + · · ·+ 1

2ϵn−1 ± 1
2ϵn
))
.

Lemma 4.4. Suppose N is even. Let M1 and M2 be two simple Pin(V )-modules whose restrictions
to Spin(V ) are isomorphic. Then, for all r ≥ 1, the multiplicities of M1 and M2 in S⊗r are equal.
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Proof. Since S ∼= Ind(S±) is self-dual, we have, for i ∈ {1, 2},

HomPin(V )(S
⊗r,Mi) ∼= HomPin(V )(S, S

⊗(r−1) ⊗Mi)

∼= HomPin(V )

(
Ind(S+), S⊗(r−1) ⊗Mi

)
∼= HomSpin(V )(S

+, S⊗(r−1) ⊗Mi),

were we used Frobenius reciprocity in the final isomorphism. □

4.3. Invariant bilinear form. For a subset I of [n], we let I∁ = [n] \ I denote its complement.
Define a bilinear form on S by

(4.16) ΦS(xI , xJ) =

{
(−1)(

|I|
2 )+nN |I|+|{(i,j)∈I×I∁:i>j}| if J = I∁,

0 otherwise,

and extending by bilinearity.

Lemma 4.5. We have

(4.17) ΦS(vx, y) = (−1)nNΦS(x, vy), x, y ∈ S, v ∈ V ⊆ Cl.

Proof. Since both sides of (4.17) are linear in v, x and y, it suffices to prove that

(4.18) ΦS(ψ
†
kxI , xJ) = (−1)nNΦS(xI , ψ

†
kxJ) and ΦS(ψkxI , xJ) = (−1)nNΦS(xI , ψkxJ),

for all 1 ≤ k ≤ n and I, J ⊆ [n], and, if N is odd, that

(4.19) ΦS(e2n+1xI , xJ) = (−1)nΦS(xI , e2n+1xJ),

for all I, J ⊆ [n].
For I, J ⊆ [n], define

(4.20) σI,J := (−1)|{(i,j)∈I×J :i>j}|.

Then, for I, J, I1, J1, I2, J2 ⊆ [n], with I ∩ J = I1 ∩ I2 = J1 ∩ J2 = ∅, we have

(4.21) σI,J = (−1)|I||J |σJ,I , σI1⊔I2,J = σI1,JσI2,J , σI,J1⊔J2 = σI,J1σI,J2 .

First note that both sides of the first equation in (4.18) are zero unless I ∩ J = ∅ and I ∪ J =
{1, . . . , k − 1, k + 1, . . . , n}. Thus, we assume that I and J satisfy these two conditions. Then

ΦS(ψ
†
kxI , xJ)

(2.9)
= σ{k},IΦS(xI∪{k}, xJ)

(4.16)
=

(4.21)
(−1)(

|I|+1
2 )+nN(|I|+1)σ{k},IσI,Jσ{k},J

and
ΦS(xI , ψ

†
kxJ)

(2.9)
= σ{k},JΦS(xI , xJ∪{k})

(4.16)
=

(4.21)
(−1)(

|I|
2 )+nN |I|σ{k},JσI,JσI,{k}.

Since

(4.22) σI,{k}σ{k},I = (−1)|I| and
(
|I|
2

)
+ |I| =

(
|I|+ 1

2

)
,

the first equality in (4.18) follows.
Next, note that both sides of the second equality in (4.18) are zero unless I ∩ J = {k} and

I ∪ J = [n]. Thus, we assume that I and J satisfy these two conditions. Then

ΦS(ψkxI , xJ)
(2.9)
= σ{k},IΦS(xI\{k}, xJ)

(4.16)
= (−1)(

|I|−1
2 )+nN(|I|−1)σ{k},IσI\{k},J

(4.21)
= (−1)(

|I|−1
2 )+nN(|I|−1)σ{k},IσI,Jσ{k},J

and

ΦS(xI , ψkxJ)
(2.9)
= σ{k},JΦS(xI , xJ\{k})
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(4.16)
= (−1)(

|I|
2 )+nN |I|σ{k},JσI,J\{k}

(4.21)
= (−1)(

|I|
2 )+nN |I|σ{k},JσI,JσI,{k}.

Using the second equality in (4.22) with |I| replaced by |I| − 1 then implies the second equality in
(4.18).

Now suppose that N is odd. To prove (4.19), we assume that I ∩ J = ∅ and I ∪ J = [n], since
otherwise both sides are zero. Then we have

ΦS(e2n+1xI , xJ)
(2.10)
= ±(−1)|I|ΦS(xI , xJ) = ±(−1)n+|J |ΦS(xI , xJ)

(2.10)
= (−1)nΦS(xI , e2n+1xJ),

as desired. □

As in the introduction, define

(4.23) G(V ) :=

{
Pin(V ) if N is even,
Spin(V ) if N is odd.

Corollary 4.6. We have

ΦS(gx, gy) = ΦS(x, y) for all g ∈ G(V ), x, y ∈ S,(4.24)
ΦS(Xx, y) = −ΦS(x,Xy) for all X ∈ so(V ), x, y ∈ S.(4.25)

Proof. When N < 2, the identity (4.24) is trivial, since G(V ) = {±1}, acting by the scalar {±1}
on S. Now suppose N ≥ 2. Let v1, . . . , vk ∈ V satisfy ΦV (vi, vi) = 1 for all 1 ≤ i ≤ k. Then, for
x, y ∈ S, it follows from (4.17) that

ΦS(v1v2 · · · vkx, v1v2 · · · vky) =

{
ΦS(x, vk · · · v1v1 · · · vky) if N = 2n,

(−1)knΦS(x, vk · · · v1v1 · · · vky) if N = 2n+ 1,

=

{
ΦS(x, y) if N = 2n,

(−1)knΦS(x, y) if N = 2n+ 1.

Thus, (4.24) follows from (2.17) and (2.18). The identity (4.25) follows from (4.24) by differentiating.
□

Proposition 4.7. We have

(4.26) ΦS(x, y) = (−1)(
n
2)+nNΦS(y, x) for all x, y ∈ S.

Proof. Since ΦS(xI , xJ) = 0 = ΦS(xJ , xI) unless I ∪ J = [n] and I ∩ J = ∅, we assume that I and
J satisfy these two conditions. Then, defining σI,J as in (4.20), we have

ΦS(xJ , xI)
(4.16)
= (−1)(

|J|
2 )+nN |J |σJ,I

(4.21)
= (−1)(

|J|
2 )+nN |J |+|I||J |σI,J

(4.16)
= (−1)(

|J|
2 )+(

|I|
2 )+nN(|I|+|J |)+|I||J |ΦS(xI , xJ).

Then the result follows from the fact that nN(|I| + |J |) = n2N ≡ nN modulo 2 and that
(|I|
2

)
+(|J |

2

)
+ |I||J | =

(
n
2

)
. □

Remark 4.8. Since S is a simple, self-dual G(V )-module, it follows from (4.24) that ΦS is the
unique invariant bilinear form on S, up to scalar multiple. On the other hand, if N ≡ 3 (mod 4),
then S is not self-dual as a Pin(V )-module, and so there is no Pin(V )-invariant bilinear form on S.
This is our main motivation for defining G(V ) to be Spin(V ) when N is odd; see also Remark 2.5.
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4.4. Tensor product decompositions. We now recall some tensor product decompositions that
will be important for us. For a weight Spin(V )-module M , we let wt(M) denote its set of weights.
Thus, for example, when N ≥ 2,

wt(S) =
{(

±1
2 , . . . ,±

1
2

)}
.

For the next result, recall, from Section 3.1, that the set of dominant integral weights is 1
2Zϵ1 when

N = 2.

Lemma 4.9. Suppose N ≥ 2, and let λ be a dominant integral weight. Then

S ⊗ L(λ) ∼=
⊕

ϵ∈wt(S)

L(λ+ ϵ) as Spin(V )-modules,

where we define L(λ+ ϵ) to be zero if λ+ ϵ is not dominant.

Proof. For N = 2, this is a straightforward direct computation using the description of S in Re-
mark 4.1. For N ≥ 3, it is a standard application of the Weyl character formula. □

Corollary 4.10. (a) If N = 2, then

(4.27) S ⊗ V ∼= S ⊕ Ind
(
L
(
3
2ϵ1
))

as Pin(V )-modules.

(b) If N = 2n+ 1 ≥ 3 (type Bn), then

(4.28) S ⊗ V ∼= S ⊗ L(ϵ1) ∼= S ⊕ L
(
3
2ϵ1 +

1
2ϵ2 + · · ·+ 1

2ϵn
)

as Spin(V )-modules.

(c) If N = 2n ≥ 4 (type Dn), then

(4.29) S ⊗ V ∼= S ⊗ L(ϵ1) ∼= S ⊕ Ind
(
L
(
3
2ϵ1 +

1
2ϵ2 + · · ·+ 1

2ϵn
))

as Pin(V )-modules.

Proof. Part (a) is a direct computation using Remark 4.1. Parts (b) and (c) follows from Lemma 4.9
and (3.7) and (3.9). □

Proposition 4.11. (a) If N = 2n+ 1 (type Bn), we have

(4.30) Λk(V ) ∼= ΛN−k(V ) as Pin(V )-modules, 0 ≤ k ≤ n,

and Λk(V ) is simple for 0 ≤ k ≤ N . Furthermore, if n ≥ 1, we have

(4.31) Λk(V ) ∼= ΛN−k(V ) ∼= L(ϵ1 + · · ·+ ϵk) as Spin(V )-modules, 0 ≤ k ≤ n.

(b) If N = 2n (type Dn), we have

(4.32) Λk(V ) ̸∼= ΛN−k(V ) as Pin(V )-modules, 0 ≤ k < n,

and Λk(V ) is simple for 0 ≤ k ≤ N . Furthermore, if n ≥ 2, we have

Λk(V ) ∼= ΛN−k(V ) ∼= L(ϵ1 + · · ·+ ϵk), 0 ≤ k ≤ n,(4.33)
Λn(V ) ∼= L(ϵ1 + · · ·+ ϵn−1 + ϵn)⊕ L(ϵ1 + · · ·+ ϵn−1 − ϵn)(4.34)

as Spin(V )-modules.

Proof. For N ≤ 2, the results follow from straightforward computations using the explicit descrip-
tions of V and S given in Remark 4.1.

Now suppose that N ≥ 3. A proof that Λk(V ) ∼= L(ϵ1 + · · ·+ ϵk) as so(V )-modules, and hence
as Spin(V )-modules, for the given ranges on k can be found, for instance, in [Car05, Th. 13.9,
Th. 13.11]. (The ranges on k are slightly more restrictive there, since those results relate exterior
powers to fundamental modules, but the proofs give the isomorphisms for our ranges on k.) To prove
(4.34), one notes that ϵ1+ · · ·+ϵn−1±ϵn are both weights that appear in Λn(V ). Furthermore, they
are highest weights since adding any simple root produces a weight that does not appear in Λn(V ).
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Hence, Λn(V ) contains a submodule isomorphic to the right-hand side of (4.34). A straightforward
application of the Weyl dimension formula then shows that this submodule is all of Λn(V ).

Next, note that we have a pairing of Λk(V ) with ΛN−k(V ) given by the composition

Λk(V )⊗ ΛN−k(V )
∧−→ ΛN (V )

∼=−→ C.

This is a Spin(V )-module homomorphism, and so identifies ΛN−k(V ) with the dual of Λk(V ). Since
Λk(V ) is self-dual, this yields an isomorphism of ΛN−k(V ) with Λk(V ) as Spin(V )-modules.

In type Bn, the element P , defined in (4.7), acts trivially on V , and so the actions of P on Λk(V )
and ΛN−k(V ) are also trivial. This completes the proof of (4.30).

In type Dn, the highest-weight spaces of Λk(V ) and ΛN−k(V ), 1 ≤ k < n, are spanned, respec-
tively, by

vk := ψ1 ∧ ψ2 ∧ · · · ∧ ψk and wk := ψ1 ∧ ψ2 ∧ · · · ∧ ψn ∧ ψ†
n ∧ · · · ∧ ψ†

k+1.

By (4.12), the action of P on these highest-weight vectors is given by

P · vk = vk, P · wk = −wk.

Thus, Λk(V ) ̸∼= ΛN−k(V ) as Pin(V )-modules. □

Corollary 4.12. (a) When N = 2n+ 1 (type Bn), we have

(4.35) S⊗2 ∼=
n⊕
k=0

Λk(V ) as Spin(V )-modules.

(b) When N = 2n (type Dn), we have

(4.36) S⊗2 ∼=
2n⊕
k=0

Λk(V ) as Pin(V )-modules.

Proof. (a) When N = 1, it follows immediately from the descriptions of S and V given in
Remark 4.1 that S⊗2 ∼= triv0 ∼= Λ0(V ). For N ≥ 3, it follows from Lemma 4.9 that

S⊗2 ∼=
n⊕
k=0

L(ϵ1 + · · ·+ ϵk) ∼=
n⊕
k=0

Λk(V ) as Spin(V )-modules.

(b) When N = 0, it follows immediately from the descriptions of S and V given in Remark 4.1
that S⊗2 ∼= triv0 ∼= Λ0(V ). Now suppose N = 2. Then, in the notation of Remark 4.1, we have

S⊗2 ∼= L−2 ⊕ L2 ⊕ L⊕2
0

as modules for Spin(V ) ∼= Gm. As Pin(V )-modules, the summand L−2 ⊕ L2 is isomorphic to
Λ1(V ) ∼= V . It remains to show that the summand L⊕2

0 contains the trivial Pin(V )-module Λ0(V )
and the nontrivial Pin(V )-module Λ2(V ). As modules for the subgroup C2 ⊆ Gm ⋊ C2

∼= Pin(V ),
S decomposes as a sum of the trivial module and the nontrivial C2-module. Hence, S⊗2 contains
two copies of the trivial C2-module and two copies of the nontrivial C2-module. Since the summand
L−2 ⊕ L2 contains one of each, we are done.

For N ≥ 4, it follows from Lemma 4.9 and Proposition 4.11(b) that

S⊗2 ∼= (S+ ⊗ S)⊕ (S− ⊗ S)

∼=

(
n⊕
k=0

L(ϵ1 + · · ·+ ϵk)

)
⊕

(
L(ϵ1 + · · ·+ ϵn−1 − ϵn)⊕

n−1⊕
k=0

L(ϵ1 + · · ·+ ϵk)

)
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∼=
2n⊕
k=0

Λk(V ),

as Spin(V )-modules. The result then follows from Lemma 4.4 and Proposition 4.11(b). □

5. The spin Brauer category

In this section, we introduce our main category of interest. We work over an arbitrary commu-
tative ring k in which 2 is invertible.

Definition 5.1. For d,D ∈ k and κ ∈ {±1}, the spin Brauer category SB(d,D;κ) is the strict k-
linear monoidal category presented as follows. The generating objects are S and V, whose identity
morphisms we depict by a black strand and a dotted blue strand:

:= 1S, := 1V.

The generating morphisms are

: S⊗ S → 1, : 1 → S⊗ S, : V ⊗ V → 1, : 1 → V ⊗ V,

: S⊗ S → S⊗ S, : V ⊗ S → S⊗ V, : S⊗ V → V ⊗ S, : V ⊗ V → V ⊗ V,

: V ⊗ S → S.

To state the defining relations, we will use the convention that a relation involving r ≥ 1 dashed
red strands (as in (5.1)) means we impose the 2r relations obtained from the replacing each such
strand with either a black strand or a dotted blue strand. The defining relations on morphisms are
then as follows:

= , = , = = , = , = ,(5.1)

= , =(5.2)

= ,(5.3)

= κ ,(5.4)

+ = 2 ,(5.5)

= d11, = D11.(5.6)

This concludes the definition of SB(d,D;κ).

The third and fourth relations in (5.1) imply that SB(d,D;κ) is a rigid monoidal category, with
the objects S and V being self-dual. The first, second, and sixth relations in (5.1), together with
(5.2) imply that SB(d,D;κ) is symmetric monoidal, with symmetry given by the crossings. Then
(5.3) implies that SB(d,D;κ) is strict pivotal, with duality given by rotating diagrams through
180◦. This means that diagrams are isotopy invariant, and so rotated versions of all the defining
relations hold. For example, we have

= , = , = = .

Throughout this document, we will refer to a relation by its equation number even when we are, in
fact, using a rotated version of that relation.
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We introduce other trivalent morphisms by successive clockwise rotation:

(5.7) := , := , := , := , := .

Since SB(d,D;κ) is strict pivotal, the trivalent morphisms are also related in the natural way by
counterclockwise rotation:

(5.8) = , = , = , = , = , = .

Lemma 5.2. We have

(5.9) = κ , = κ , = κ .

Proof. The first relation in (5.9) is simply a rewriting of (5.4), using (5.8). Then, composing on the
bottom of the first relation in (5.9) with and using the first relation in (5.1) gives the second
relation in (5.9). For the third relation in (5.9), we compute

(5.2)
=

(5.1)
=

(5.4)
= κ . □

Remark 5.3. The need for the choice of κ ∈ {±1} in the definition of the spin Brauer category
arises from that fact that, under the incarnation functor to be defined in Section 6, the objects S
and V will be sent to the spin and vector representations, respectively, of Pin(N) or Spin(N). For
some values of N , the trivial representation and the vector representation either both live in the
symmetric square or both live in the exterior square of the spin representation. In this case, we can
take κ = 1. However, for other values of N , one of the trivial or spin representations lives in the
symmetric square while the other lives in the exterior square. In this case, we need to take κ = −1.
See (6.1) and Theorem 6.1 for details.

It will also sometimes be convenient to draw horizontal strands. Since SB(d,D;κ) is strict pivotal,
the meaning of diagrams containing such strands in unambiguous. For example,

(5.10) = = = = .

Lemma 5.4. We have

(5.11) = d .

Proof. We compute

2
(5.1)
= +

(5.5)
= 2

(5.6)
= 2d .

Since we have assumed that 2 is invertible in the ground ring k, the result follows. □

We have an isomorphism of monoidal categories

(5.12) SB(d,D;κ) → SB(d,D;κ)op

that is the identity on objects and reflects morphisms in the horizontal axis. Here Cop denotes the
opposite of a category C. We also have an isomorphism of monoidal categories

(5.13) SB(d,D;κ) → SB(d,D;κ)rev

that is the identity on objects and reflects morphisms in the vertical axis. Here Crev denotes the
reverse of a monoidal category C, where we reverse the order of the tensor product.

Lemma 5.5. We have

(5.14) + = 2κ .
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Proof. By (5.5), we have

+ = 2 .

Then (5.14) follows after composing on top with and using (5.1), (5.2) and (5.9). □

It will be convenient to introduce a shorthand for multiple strands:

(5.15) 0 := 11, r := · · ·
r

, r ≥ 1.

The first two relations in (5.1) imply that we can interpret any element of the symmetric group Sr

on r strands as a morphism in EndSB(d,D;κ)(V
⊗r). For a permutation g ∈ Sr, let sgn(g) denote its

sign. Then define the antisymmetrizer

(5.16) r :=
r

r

r :=
∑
g∈Sr

sgn(g)
r

r
g , r ≥ 0,

where we label the strands by r when we wish to emphasize how many there are. Thus, for example,

3 = 3 = − − + + − .

It follows from (5.15) that the antisymmetrizer (5.16) is 11 when r = 0. It also follows directly from
the definition that

(5.17)
r

s r−s−2

r = − r for all 0 ≤ s ≤ r − 2.

Proposition 5.6. Suppose that r is a positive integer such that either
• r is even and invertible, or
• r is odd and r − d is invertible.

Then

(5.18) r = 0.

Proof. We have

d

r

r

r

(5.11)
=

r

r

r

(5.14)
= −

r

r−1

r
+ 2κ

r

r−1

r

(5.14)
=

r

r−2 2

r
− 2κ

r

r−2

r
+ 2κ

r

r−1

r
= · · · = (−1)r

r

r

r
+ 2κ

r−1∑
s=0

(−1)s

r

r−s−1 s

r

(5.17)
=

(5.2)
(−1)r

r

r

r
+ 2κ

r−1∑
s=0 r

r−1

r

(5.11)
=

(5.9)
(2r + (−1)rd)

r

r

r
.

Thus (
2r + ((−1)r − 1)d

)
r

r

r
= 0.
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If r is even, then the coefficient on the left-hand side above is 2r and so (5.18) follows when r
is invertible. If r is odd, then the coefficient is 2(r − d) and (5.18) follows as long as r − d is
invertible. □

Remark 5.7. Note that the case r = d ∈ 2N + 1 is not covered by Proposition 5.6. In fact, the
diagram in (5.18) is not zero in this case; see Remark 7.2.

Definition 5.8. For d ∈ 2N+ 1, let SB(d,D;κ) denote the quotient of SB(d,D;κ) by the relation

(5.19)

d

d

= D2(d!)2 d .

For d /∈ 2N+ 1, let SB(d,D;κ) = SB(d,D;κ).

The next result gives sufficient conditions under which all closed diagrams in SB(d,D;κ) can be
reduced to a multiple of the empty diagram 11.

Proposition 5.9. Suppose that k is a Q-algebra and r − d is invertible for all r ∈ (2N+ 1) \ {d}.
(For instance, this is satisfied when k is a field of characteristic zero.) Then EndSB(d,D;κ)(1) = k11.

Proof. We give an algorithm to simplify any diagram in EndSB(d,D;κ)(1) to a scalar multiple of
the identity. Throughout, we freely use our observations about isotopy invariance of diagrams
in EndSB(d,D;κ)(1), as discussed immediately after the definition of SB(d,D;κ). We proceed by
induction on the number of trivalent vertices in the diagram.

Suppose we have a diagram with at least one trivalent vertex. Consider the black curve that
is part of that trivalent vertex. Since our diagram has no sources or sinks, this curve is part of a
loop. Our first goal is to remove all self-intersections of this loop, and make the interior of this loop
empty. We can separate all other black strands from this loop and remove self-intersections of this
loop using (5.1) and (5.2). We separate all other dotted blue strands that do not have any trivalent
vertices on this loop in the same manner. We can then use the same techniques, in addition to
(5.4), to ensure the interior of this loop is empty. Let r be the number of trivalent vertices on this
loop.

Unless r = d and d an odd number, we have

0
(5.18)
= r

(5.5)
= r! r +A,

where A is a linear combination of diagrams with fewer than r dotted blue strands attached to the
black circle. Since k is a Q-algebra, r! is invertible in k. We can then use this relation to write our
diagram as a linear combination of diagrams with fewer trivalent vertices, as is our inductive goal.

Suppose instead that r = d is an odd positive integer. Since the total number of trivalent vertices
is even, there must be another black loop with a trivalent vertex. We can repeat the process discussed
above with that loop, and can either rewrite in terms of diagrams with fewer trivalent vertices, or
that other loop also has r trivalent vertices, in which case we end up with a subdiagram of the form

r r .

Then we have

D2(r!)2 r

(5.19)
= r r

(5.5)
= (r!)2 r r +A,
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where again A is a linear combination of diagrams with fewer trivalent vertices, and we proceed as
before.

This completes the inductive step and reduces us to considering the case where there are zero
trivalent vertices. In this case, the relations (5.1) (which are the same as in the Brauer category)
suffice to rewrite our diagrams as a disjoint union of circles, which are evaluated as scalars by
(5.6). □

Remark 5.10. (a) Note that Proposition 5.9 does not imply that EndSB(d,D;κ)(1) is a free k-
module of rank one. Rather, it states that it is spanned by 11. A priori, this endomorphism algebra
could be a quotient of k. However, see Corollary 6.2 for conditions that insure it is free of rank one.

(b) When d is an odd positive integer, the authors believe that Proposition 5.9 is false when
SB(d,D;κ) is replaced by SB(d,D;κ), because of the condition on r in Proposition 5.6 (see Re-
mark 5.7). For instance, if d = 3, the authors do not now how to reduce the diagrams

or

to a scalar multiple of the empty diagram 11 without the additional relation (5.19).

Lemma 5.11. We have

(5.20) + 2 + = 4 .

Proof. We have

+ 2 +
(5.14)
= 2κ + 2κ

(5.2)
(5.5)
=

(5.9)
4 . □

Remark 5.12. The image of the relation (5.20) under the incarnation functor to be defined in
Theorem 6.1 corresponds to [Wen20, Lem. 1.3], which plays a key role in the arguments of that
paper. Note that our β, defined in (6.15), is equal to 2C, where C is defined in [Wen20, §1.4].

We conclude this section with two lemmas that will be needed in the sequel.

Lemma 5.13. We have

(5.21) r = d(d− 1) · · · (d− r + 1)11, r ∈ N,

where we interpret the right-hand side as 11 when r = 0.

Proof. We prove the result by induction on r. The base case r = 0 is immediate. (The case r = 1
is the first relation in (5.6).) For the inductive step, note that

(5.22) r+1 =

r∑
i=0

(−1)i
r−i i

r
.

Thus,

r+1
(5.22)
=

(5.1)
r +

r∑
i=1

(−1)i
r

r−i i−1 (5.17)
= (d− r) r = d(d− 1) · · · (d− r)

by the inductive hypothesis. □
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Lemma 5.14. We have

(5.23)
r

= r!Dd(d− 1) · · · (d− r + 1)11, r ∈ N,

where we interpret the right-hand side as D11 when r = 0.

Proof. We prove the result by induction on r. The base case r = 0 is precisely the second relation
in (5.6). Now suppose the result holds for some r ≥ 0. Using (5.22), we have

(5.24)
r+1

=

r∑
i=0

Ai, where Ai = (−1)i r−i i

r

.

Now,

(5.25) Ai
(5.5)
= Ai−1 + 2(−1)i

r−i
i−1

r

(5.17)
= Ai−1 − 2

r
.

From (5.24) and (5.25), we obtain

r+1
= (r + 1)A0 − r(r + 1)

r
.

Since

A0 = r

r

(5.11)
= d

r
,

it follows that

r+1
= (d− r)(r + 1)

r
= (r + 1)!Dd(d− 1) · · · (d− r)11

by the inductive hypothesis. □

6. The incarnation functor

In this section we relate the spin Brauer category to the representation theory of the spin and
pin groups. Throughout this section, we assume k = C.

Fix an inner product space (V,ΦV ) of finite dimension N , and let n =
⌊
N
2

⌋
. Recall the definition

of G(V ) from (4.23), the spin G(V )-module S and the vector G(V )-module V from Section 4.1, and
the bilinear form ΦS on S defined in (4.16). Let

σN := (−1)(
n
2)+nN and κN := (−1)nN ,(6.1)

SB(V ) := SB(N, σN2
n;κN ), SB(V ) = SB(N, σN2

n;κN ).(6.2)

(Recall that σN is the sign appearing in (4.26), describing the symmetry of the form ΦS .)
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Fix a basis BS of S, and let B∨
S = {x∨ : x ∈ BS} denote the left dual basis with respect to ΦS ,

defined by
ΦS(x

∨, y) = δx,y, x, y ∈ BS .

We fix a basis BV of V and define the left dual basis B∨
V = {v∨ : v ∈ V } similarly. Then we have

G(V )-module homomorphisms

Φ∨
S : k → S ⊗ S, λ 7→ λ

∑
x∈BS

x⊗ x∨, λ ∈ k,(6.3)

Φ∨
V : k → V ⊗ V, λ 7→ λ

∑
v∈BV

v ⊗ v∨, λ ∈ k.(6.4)

These are independent of the choices of bases.
It follows from Proposition 4.7 and the fact that the form ΦV is symmetric that the left dual

bases of B∨
V and B∨

S are given by

(6.5) (v∨)∨ = v, v ∈ BV , and (x∨)∨ = σNx, x ∈ BS ,

respectively.
For any k-modules U and W , we define the linear map

(6.6) flip = flipU,W : U ⊗W →W ⊗ U, u⊗ w 7→ w ⊗ u,

extended by linearity. If U andW are G(V )-modules, then flip is a homomorphism of G(V )-modules.
We also let

(6.7) τ : V ⊗ S → S, v ⊗ x 7→ vx,

denote the homomorphism of G(V )-modules induced by multiplication in the Clifford algebra Cl(V );
see Remark 2.1.

Theorem 6.1. There is a unique monoidal functor

F : SB(V ) → G(V )-mod

given on objects by S 7→ S, V 7→ V , and on morphisms by

7→ ΦS , 7→ ΦV , 7→ τ,(6.8)
7→ σN flipS,S , 7→ flipS,V , 7→ flipV,S , 7→ flipV,V .(6.9)

Furthermore, we have

(6.10) 7→ Φ∨
S , 7→ Φ∨

V .

We call F the incarnation functor.

Proof. We first show that (6.8) to (6.10) indeed yield a functor F. We must show that F respects
the relations of Definition 5.1. The fifth relation in (5.1) follows from Proposition 4.7 and the fact
that ΦV is symmetric. The remaining relations in (5.1) are straightforward. Relation (5.2) is also
straightforward.

The image under F of the left-hand side of (5.3) is the map S → S ⊗ V given by

x 7→
∑
v∈BV
y∈BS

x⊗ v ⊗ y ⊗ y∨ ⊗ v∨ 7→
∑
v∈BV
y∈BS

x⊗ vy ⊗ y∨ ⊗ v∨ 7→
∑
v∈BV
y∈BS

ΦS(x, vy)y
∨ ⊗ v∨

(4.17)
= (−1)nN

∑
v∈BV
y∈BS

ΦS(vx, y)y
∨ ⊗ v∨ = (−1)nN

∑
v∈BV

vx⊗ v∨.
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On the other hand, the image under F of the diagram in the right-hand side of (5.3) is the map
given by

x 7→
∑
v∈BV
y∈BS

y ⊗ v ⊗ v∨ ⊗ y∨ ⊗ x 7→
∑
v∈BV
y∈BS

y ⊗ v ⊗ v∨y∨ ⊗ x 7→
∑
v∈BV
y∈BS

ΦS(v
∨y∨, x)y ⊗ v

(4.17)
= (−1)nN

∑
v∈BV
y∈BS

ΦS(y
∨, v∨x)y ⊗ v = (−1)nN

∑
v∈BV

v∨x⊗ v
(6.5)
= (−1)nN

∑
v∈BV

vx⊗ v∨.

Since κN = (−1)nN , F respects relation (5.3).
The image under F of the left-hand side of (5.4) is the map S ⊗ V 7→ S given by

x⊗ v 7→ v ⊗ x 7→ vx.

On the other hand, the image under F of the right-hand side of (5.4) is the map given by

x⊗ v 7→
∑
y∈BS

x⊗ v ⊗ y ⊗ y∨ 7→
∑
y∈BS

x⊗ vy ⊗ y∨ 7→
∑
y∈BS

ΦS(x, vy)y
∨

(4.17)
= (−1)nN

∑
y∈BS

ΦS(vx, y)y
∨ = (−1)nNvx.

Thus, F respects (5.4).
The image under F of the left-hand side of relation (5.5) is the map V ⊗ V ⊗ S → S given by

v ⊗ w ⊗ x 7→ (vw + wv)x
(2.1)
= 2ΦV (v, w)x,

which agrees with the image under F of the right-hand side of (5.5).
For the first relation in (5.6), we use the fact that ΦV is symmetric and that dimk(V ) = N to

compute
F
( )

(1) =
∑
v∈BV

ΦV (v, v
∨) =

∑
v∈BV

ΦV (v
∨, v) = N.

Finally, for the second relation in (5.6), we use Proposition 4.7 and the fact that dimk(S) = 2n to
compute

F
( )

(1) =
∑
x∈BS

ΦS(x, x
∨) =

∑
x∈BS

σNΦS(x
∨, x) = σN2

n.

It remains to prove that, for any functor as in the first sentence of the theorem, we have (6.10).
Suppose that

F( ) : 1 7→
∑

x,y∈BS

axyx⊗ y, axy ∈ k.

Then, for all z ∈ BS , we have

z = F

( )
(z) =

( )
(z) =

∑
x,y∈BS

axyΦS(y, z)x =
∑
x∈BS

axzz.

It follows that axz = δxz for all x, z ∈ BS , and so F( ) = Φ∨
S . The proof that F( ) = Φ∨

V is
analogous. □

Corollary 6.2. Let k0 = Q[d,D][ 1
d−1 ,

1
d−3 ,

1
d−5 , . . .], and suppose that k is a commutative k0-algebra.

(In particular, this holds when k is a field of characteristic zero and d /∈ 2N+ 1.) Then

EndSB(d,D;1)(1) ∼= k.
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Proof. It suffices to prove the result when k = k0, since the general result then follows after extending
scalars from k0 to k. By Proposition 5.9, we have EndSB(d,D,1)(1) ∼= k0/I for some ideal I of k0.
Suppose there exists a nonzero element f(d,D) ∈ I. Then there exists a positive integer n such
that f

(
2n, (−1)(

n
2)22n

)
̸= 0. Viewing C as a k0-module via the map d 7→ 2n, D 7→ (−1)(

n
2)22n, we

can extend scalars in SB(d,D; 1) and we then have an incarnation functor

SB(d,D; 1)⊗k0 C → G(V )-mod.

This functor sends f11 to a nonzero element of EndG(V )(triv
0), which is a contradiction. □

Our next goal is to show that the incarnation functor factors through SB(V ).

Lemma 6.3. When N is an odd positive integer, we have

(6.11) F

 N

 = 2N−1(N !)2.

Proof. Let
Y = {−n, 1− n, . . . , n}.

In what follows, we will use the fact that

(6.12) ΦS(xI , x
∨
I )

(4.26)
= (−1)(

n
2)+n(2n+1)ΦS(x

∨
I , xI) = (−1)(

n+1
2 ) for all I ⊆ [n].

Recall the definition of ψi for i ≤ 0 from (2.11). The dual of the ordered basis {ψ−n, ψ1−n, . . . , ψn}
of V is {2ψn, 2ψn−1, . . . , 2ψ−n}. Therefore, by (5.7) and (6.10)

F
( )

: x 7→ 2

n∑
i=−n

ψ−i ⊗ ψix.

Thus,

F

(
N

)
= F

(
N
)

is the map

1 7→
∑
I⊆[n]

xI ⊗ x∨I

7→ 2N
∑
I⊆[n]

n∑
i−n,i1−n,...,in=−n

ψ−in ⊗ ψ−in−1 ⊗ · · · ⊗ ψ−i−n ⊗ ψi−n · · ·ψin−1ψinxI ⊗ x∨I

7→ 2N
∑
I⊆[n]

n∑
i−n,i1−n,...,in=−n

ΦS(ψi−n · · ·ψin−1ψinxI , x
∨
I )ψ−in ⊗ ψ−in−1 ⊗ · · · ⊗ ψ−i−n .

Applying the antisymmetrizer F
(
N

)
, which annihilates any terms for which the map j 7→ ij is

not some permutation ϖ ∈ SY , we obtain

2N
∑

ϖ,ϖ′∈SY

sgn(ϖ′)
∑
I⊆[n]

ΦS(ψϖ(−n) · · ·ψϖ(n−1)ψϖ(n)xI , x
∨
I )ψ−ϖϖ′(n) ⊗ ψ−ϖϖ′(n−1) ⊗ · · · ⊗ ψ−ϖϖ′(−n)

(2.12)
= 2N−1/2ε

∑
ϖ,ϖ′∈SY

sgn(ϖϖ′)ΦS(xIϖ , x
∨
Iϖ)ψ−ϖϖ′(n) ⊗ ψ−ϖϖ′(n−1) ⊗ · · · ⊗ ψ−ϖϖ′(−n)
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(6.12)
= 2N−1/2ε(−1)(

n+1
2 )

∑
ϖ,ϖ′∈SY

sgn(ϖϖ′)ψ−ϖϖ′(n) ⊗ ψ−ϖϖ′(n−1) ⊗ · · · ⊗ ψ−ϖϖ′(−n)

= 2N−1/2ε(−1)(
n+1
2 )N !

∑
ϖ∈SY

sgn(ϖ)ψϖ(−n) ⊗ ψϖ(1−n) ⊗ · · · ⊗ ψϖ(n),

where, in the last equality, we re-indexed the summation, noting that the sign of the permutation
ϖ(−j) 7→ −ϖϖ′(j) is sgn(ω′).

We now apply

F

(
N

)
= F

(
N

)
to obtain

2N−1/2ε(−1)(
n+1
2 )N !

∑
ϖ∈SY

∑
I⊆[n]

sgn(ϖ)ΦS(ψϖ(−n)ψϖ(1−n)ψϖ(n)xI , x
∨
I )

(2.12)
= 2N−1(−1)(

n+1
2 )N !

∑
ϖ∈SY

ΦS(xIϖ , x
∨
Iϖ)

(6.12)
= 2N−1(N !)2. □

Theorem 6.4. The incarnation functor F of Theorem 6.1 factors through SB(V ).

Proof. If N is even, there is nothing to prove, since SB(V ) = SB(V ) in this case. Therefore, we
suppose that N is odd. The images under F of the two sides of (5.19) are endomorphisms of
EndG(V )(Λ

N (V )), which is one dimensional. Therefore, there exists a scalar a ∈ k such

F


N

N

 = aF

 N

 .

We then have

2N−1(N !)2
(6.11)
= F

 N

 (5.17)
=

1

N !
F


N

N

 =
a

N !
F
(
N

) (5.21)
= a.

It follows that a = 2N−1(N !)2, as desired. □

Lemma 6.5. We have

F
( )

: S ⊗ V → S, x⊗ v 7→ (−1)nNvx,(6.13)

F
( )

: S ⊗ S → S ⊗ S, x⊗ y 7→ (−1)nNβ(x⊗ y),(6.14)

where

(6.15) β :=

N∑
i=1

ei ⊗ ei ∈ Cl⊗2.

Proof. Using (5.9), we see that (6.13) follows from the part of the proof of Theorem 6.1 where we
verified (5.4). Then we have

F
( ) (5.10)

= F
( )

: x⊗ y 7→ (−1)nN
n∑
i=1

eix⊗ eiy = (−1)nNβ(x⊗ y). □



26 PETER J. MCNAMARA AND ALISTAIR SAVAGE

Remark 6.6. There are other possible incarnation functors. In particular, for m, k ∈ N, let
OSp(m|2k) be the corresponding orthosymplectic supergroup, defined to be the supergroup pre-
serving a nondegenerate supersymmetric bilinear form ΦW on a vector superspace W whose even
part has dimension m and odd part has dimension 2k. Then there is a unique monoidal functor

SB(N, σN (m− 2k)2n;κN ) → (G(V )×OSp(m|2k))-mod

given on objects by S 7→ S ⊗W , V 7→ V , and on morphisms by

7→ ΦS ⊗ ΦW , 7→ ΦV , 7→ τ ⊗ idW ,

7→ σN flipS⊗W,S⊗W , 7→ flipS⊗W,V , 7→ flipV,S⊗W , 7→ flipV,V ,

where we now use the super analogue of the map flip of (6.6), given by u⊗w 7→ (−1)ūw̄w⊗u, where
v̄ is the parity of a homogeneous vector v. The proof of the existence and uniqueness of this functor
is similar to that of Theorem 6.1, as is the proof that it factors through SB(N, σN (m− 2k)2n;κN ).

Corollary 6.7. Suppose that k is a Q-algebra and d is an odd positive integer. Then

EndSB(d,D,κd)
(1) ∼= k.

Proof. The proof is analogous to that of Corollary 6.2, using the extra incarnation functors of
Remark 6.6. □

Remark 6.8. When k is a field of characteristic not equal to two, we have an incarnation functor
from SB(V ) to the category of tilting modules for the group Spin(V ), given in an analogous manner
to Theorem 6.1. This functor exists since our constructions can be carried out over Z[12 ], the defining
and spin representations are tilting away from characteristic two, and the category of tilting modules
is closed under tensor products. The restriction on the characteristic is necessary since the module
V is not tilting in characteristic two. We expect that this incarnation functor is full.

7. Essential surjectivity of the incarnation functor

In this section, we prove that, after passing to the additive Karoubi envelope, the incarnation
functor is essentially surjective, i.e., it induces a surjection on isomorphism classes of objects. We
begin by defining idempotents in the spin Brauer category that correspond, under the incarnation
functor, to projections onto the simple summands of the tensor products S⊗2, as in Corollary 4.12,
and onto the summand S in S ⊗ V . We then use these idempotents to prove the desired essential
surjectivity. Throughout this section we assume that k is a field of characteristic zero. When we
make a statement about the incarnation functor, we further assume that k = C.

Recall the definition of the antisymmetrizer (5.16). If D ̸= 0, define

(7.1) πr :=
1

D(r!)2
r ∈ EndSB(d,D;κ)

(
S⊗2

)
, r ∈ N.

Proposition 7.1. (a) If d /∈ 2N+ 1, then πrπs = 0 for all r ̸= s.
(b) If d ∈ 2N+ 1, then πrπs = 0 for all r ̸= s, 0 ≤ r + s < d.
(c) If d /∈ {0, 1, . . . , r − 1}, then π2r = πr.
(d) If d = N , D = σN2

n, and 0 ≤ r ≤ N , then F(πr) is the projection S⊗2 ↠ Λr(V ) with
respect to the decompositions of Corollary 4.12.

Proof. Recall that, for r, s ∈ N, an (r, s)-shuffle is a permutation g of the set {1, . . . , r + s} such
that

g(1) < · · · < g(r) and g(r + 1) < · · · g(r + s).
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The set Sh(r, s) of (r, s)-shuffles is a complete set of representatives of the left cosets of the subgroup
Sr ×Ss of Sr+s. Thus, we have

(7.2) r+s =
∑

g∈Sh(r,s)

sgn(g) g

r s

(5.5)
=

(5.17)

∑
g∈Sh(r,s)

r s +

min(r,s)∑
a=1

ca
a

r s
,

for some ca ∈ k, 1 ≤ a ≤ min(r, s).
We now prove (a) by induction on r+ s. Suppose d /∈ 2N+1 and r ̸= s. It suffices to show that

r s = 0.

For the base case r + s = 1, the result follows immediately from the r = 1 case of (5.18). Now
suppose r + s > 1. Then, for 1 ≤ a ≤ min(r, s), we have

a

r s

(5.17)
= 1

(r−a)!(s−a)! a

r s

r−a s−a
= 0,

where the last equality follows from the inductive hypothesis. Therefore,

(7.3) 0
(5.18)
= r+s

(7.2)
= (r+s)!

r!s! r s +

min(r,s)∑
a=1

ca
a

r s
= (r+s)!

r!s! r s ,

and the result follows. The proof of (b) is identical, except that the first equality in (7.3) uses the
assumption that r + s < d.

Next, we prove (c). We first show, by induction on r, that

(7.4)
r

r

= br r for some br ∈ k.

The base case r = 0 follows immediately from the second relation in (5.6). Now assume r > 1 and
that the result holds for r − 1. Then, for a ≥ 1,

(7.5) a

r r

(5.17)
= 1

((r−a)!)2 a

r r

r−a r−a
= br−a

((r−a)!)2
a

r r

r−a (5.17)
= br−a

(r−a)! r r .

Thus,

0
(5.18)
=

2r

(7.2)
= (2r)!

(r!)2 r r +

r∑
a=1

ca
a

r r

(7.5)
= (2r)!

(r!)2 r r +

r∑
a=1

cabr−a

(r−a)! r r ,

and (7.4) follows.



28 PETER J. MCNAMARA AND ALISTAIR SAVAGE

Now, taking the trace of both sides of (7.4), we see that

br r =

r

r

(5.17)
= r!

r
.

Thus, by (5.21) and (5.23), we have

brd(d− 1) · · · (d− r + 1) = D(r!)2d(d− 1) · · · (d− r + 1),

and so br = D(r!)2.
Finally, to prove (d), note that F (πr) is an idempotent Pin(V )-module homomorphism S⊗2 →

Λr(V ) → S⊗2. Since its trace is nonzero by (5.23), the result follows from Corollary 4.12. □

For N ≥ 1, we have

(7.6) V ⊗2 ∼= S2(V )⊕ Λ2(V ), S2(V ) ∼= triv0 ⊕W, as Pin(V )-modules.

When N = 1, we have W = Λ2(V ) = 0. For N ≥ 2, the Pin(V )-modules W and Λ2(V ) are simple.
We have

(7.7) Λ2(V ) = triv1 and W = Ind(L(2ϵ1)) when N = 2.

Moreover, when N ≥ 3, we have

(7.8) W ∼= L(2ϵ1), Λ2(V ) ∼=

{
L(ϵ1 + ϵ2) if N > 3,

L(ϵ1) if N = 3,
as Spin(V )-modules.

Remark 7.2. Suppose d = N is odd. It follows from Proposition 7.1(d), Proposition 4.11, and
Corollary 4.12 that F(π0) and F(πN ) are both the projection from S⊗2 onto its trivial Pin(V )-
module summand. It follows that F(π0πN ) ̸= 0, and so π0πN ̸= 0. This shows that the equality in
(5.18) fails when r = d is odd.

Proposition 7.3. If d ̸= 0, the morphisms

(7.9)
1

d
,

1

2

(
+

)
− 1

d
,

1

2

(
−

)
∈ EndSB(d,D;κ)(V

⊗2)

are orthogonal idempotents. When d = N ≥ 1 and D = σN2
n, their images under the incarnation

functor F are the projections onto the summands triv0, W , and Λ2(V ), respectively, of V ⊗2.

Proof. The proof that these are orthogonal idempotents is a straightforward diagrammatic compu-
tation, analogous to the corresponding computation in the Brauer category. Since the images under
F of

1

2

(
+

)
and

1

2

(
−

)
are the symmetrizer and antisymmetrizer, respectively, and the first morphism in (7.9) clearly factors
through the trivial module, the final statement in the proposition follows. □

Recall the decomposition of S ⊗ V given in Corollary 4.10.

Lemma 7.4. If d ̸= 0, the morphism

(7.10)
1

d
∈ EndSB(d,D;κ)(S⊗ V)

is an idempotent. When d = N ≥ 1 and D = σN2
n, its image under the incarnation functor F is

the projection onto the summand S of S ⊗ V .
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Proof. We have (
1

d

)◦2
=

1

d2
(5.11)
=

1

d
.

Thus, the morphism (7.10) is an idempotent. When d = N and D = σN2
n, its image under F is a

morphism S ⊗ V → S → S ⊗ V . Thus, it is the projection onto the summand S of S ⊗ V as long
as it is nonzero. Recalling the trace map of (8.9), we have

Tr

(
1

d

)
=

(5.11)
=

(5.6)
dD11 ̸= 0,

and the result follows. □

Let Kar(SB(d,D;κ)) be the additive Karoubi envelope (that is, the idempotent completion of
the additive envelope) of SB(d,D;κ). Since G(V )-mod is additive and idempotent complete, F
induces a monoidal functor

Kar(F) : Kar
(
SB(V )

)
→ G(V )-mod.(7.11)

Theorem 7.5. For all N ∈ N, the functor Kar(F) is essentially surjective.

Proof. For N ≤ 2, we use the explicit descriptions of Remarks 2.4 and 4.1. If N = 0, then S is the
nontrivial one-dimensional module for Pin(V ) ∼= C2 and the result follows. If N = 1, then S is the
nontrivial one-dimensional module for Spin(V ) ∼= C2 and, again, the result follows. When N = 2,
the simple modules for Pin(V ) ∼= Gm⋊C2 are the Gm-modules L−r ⊕Lr, with the generator of C2

interchanging the summands. This module is a summand of S⊗r, and the result follows.
Now suppose N ≥ 3. We first show that Kar(ResGF) is essentially surjective, where

ResG : G(V )-mod → Spin(V )-mod

is the restriction functor. (So, ResG = Res when N is even, and ResG is the identity functor when N
is odd.) Since the category Spin(V )-mod is semisimple, it suffices to show that every simple Spin(V )-
module appears in the image of Kar(F), up to isomorphism. Let ω1, . . . , ωn be the fundamental
weights. Then any dominant integral weight can be written in the form λ =

∑n
k=1 akωk, ak ∈ N,

and L(λ) is the Spin(V )-submodule of

L(ω1)
⊗a1 ⊗ · · · ⊗ L(ωn)

⊗an

generated by the vector of highest weight. Thus, it suffices to show that the fundamental modules
L(ωk), 1 ≤ k ≤ n are in the image of Kar(ResGF).

In type Bn, where N = 2n+ 1, we have

ωk = ϵ1 + · · ·+ ϵk, 1 ≤ k ≤ n− 1, ωn = 1
2(ϵ1 + · · ·+ ϵn),

We have L(ωn) ∼= S and, by Proposition 4.11, L(ωk) ∼= Λk(V ), 1 ≤ k ≤ n − 1. Hence, the result
follows from Proposition 7.1.

In type Dn, where N = 2n, we have

ωk = ϵ1 + · · ·+ ϵk, 1 ≤ k ≤ n− 2, ωn−1 =
1
2(ϵ1 + · · ·+ ϵn), ωn = 1

2(ϵ1 + · · ·+ ϵn−1 − ϵn).

We have L(ωn−1) ∼= S+, L(ωn) ∼= S−, and, by Proposition 4.11, L(ωk) ∼= Λk(V ), 1 ≤ k ≤ n − 2.
Hence the result again follows from Proposition 7.1.

Now we consider the statement of the theorem. In type Bn we are done, since ResG is the identity
functor. Now suppose N is even, so that ResG = Res. Since the trivial Pin(V )-module is isomorphic
to Λ0(V ), it follows from Proposition 4.11 that ΛN (V ) is isomorphic to the Pin(V )-module triv1,
defined in Section 4.2. By Proposition 7.1, ΛN (V ) is in the image of Kar(F). Let M be an simple
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Pin(V )-module. By the discussion in Section 2.3, Res(M) is either a sum of two simple Spin(V )-
modules M1 and M2, or Res(M) remains simple as a Spin(V )-module. In the first case, since both
M1 and M2 lie in the image of Kar(ResF), M must lie in the image of Kar(F). In the second case,
there are precisely two nonisomorphic simple Pin(V )-modules M and M ′ that become isomorphic
upon restriction to Spin(V ). It then follows from (4.9) that both lie in the image of Kar(F). □

Remark 7.6. The Lie algebra of G(V ) is so(V ). Passage to the Lie algebra induces a func-
tor G(V )-mod → so(V )-mod, where so(V )-mod denotes the category of finite-dimensional so(V )-
modules. We can compose the incarnation functor F with this passage to the Lie algebra to yield
a functor F′ : SB(V ) → so(V )-mod. The proof of Theorem 7.5 shows that the functor F′ is also
essentially surjective. However, while we will show in Theorem 8.9 that F is full, the functor F′

is not full when N is even. For example, as so(V )-modules, ΛN (V ) is isomorphic to the trivial
module. But this isomorphism is not contained in the image of Kar(F′) since ΛN (V ) is nontrivial
as a Pin(V )-module when N is even, by (4.33). This is our main motivation for considering the
larger group Pin(V ) when N is even.

8. Fullness of the incarnation functor

In the current section, we prove that the incarnation functor of Theorem 6.1 is full. Until the
statement of Theorem 8.8, we assume that N ≥ 2.

Recall the element β ∈ Cl⊗2 from (6.15). We define a barbell to be any element of the form
1⊗t ⊗ β ⊗ 1r−t−2 ∈ Cl⊗r, 0 ≤ t ≤ r − 2, r ≥ 2. The action of a barbell yields an element of
EndG(V )(S

⊗r).

Lemma 8.1. The action of the barbell β generates EndG(V )(S ⊗ S).

Proof. By Corollary 4.12 and Proposition 4.11, the G(V )-module S ⊗ S is multiplicity free and, by
[Wen20, Lem. 1.2], the action of β has a different eigenvalue on each summand. (There is a typo in
[Wen20, Lem. 1.2(b)]; the index j should run from 0 to k inclusive.) □

Lemma 8.2. For all k ≥ 0, the morphism

F

(
k

k

)
lies in the subalgebra of EndG(V )(S

⊗2k) generated by barbells, where the thick cup and cap labelled
by k denote k nested cups and caps, respectively.

Proof. We have

F

(
k

k

)
= F

 k−1

k−1

 .

By Lemma 8.1, the innermost F( ) can be written as a polynomial in

F
( )

.

Then, using the fact that
k−1

k−1

=
k−1

k−1

,

the lemma follows by induction. □

Lemma 8.3. Let r ∈ N, and let λ = (λ1, λ2, . . . , λn) be a dominant integral weight with λ1 = r
2 .

Then L(λ) is a direct summand of the Spin(V )-module S⊗r.
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Proof. We prove this by induction on r, the base case r = 0 being trivial. Suppose r ≥ 1 and
let λ = (λ1, λ2, . . . , λn) with λ1 = r

2 . Let k be the largest index for which λk > 0. Let ϵ =(
1
2 , . . . ,

1
2 ,−

1
2 , . . . ,−

1
2

)
, where there are k occurrences of 1

2 . Then λ − ϵ is dominant and integral.
By the inductive hypothesis, L(λ− ϵ) is a direct summand of S⊗(r−1). Lemma 4.9 implies that L(λ)
is a summand of S ⊗ L(λ− ϵ), hence is a direct summand of S⊗r, as required. □

Corollary 8.4. Suppose N is even, and let r be a positive integer. Let λ = (λ1, λ2, . . . , λn) be a
dominant integral weight with λ1 = r

2 , and let M be a simple Pin(V )-module whose restriction to
Spin(V ) is isomorphic to L(λ). Then M is a summand of the Pin(V )-module S⊗r.

Proof. This follows from Lemmas 4.4 and 8.3. □

Remark 8.5. Note that the condition r > 0 in Corollary 8.4 is necessary since triv1 is not a
summand of the trivial Pin(V )-module S⊗0. However, when N is even, triv1 is a summand of S⊗r

for r ∈ 2N, by Lemma 4.4.

Let r ∈ N, and let Xr be the Spin(V )-submodule of S⊗r that is the sum of all simple summands
of highest weight λ with λ1 = r

2 . Note that Xr is also G(V )-submodule.
Recall the definition of Aij from (3.4) and (3.8), and let Yr be the r

2 -eigenspace of A11 on Xr

(equivalently, the r
2 -eigenspace of A11 on S⊗r). Recall the definition of the elements xI ∈ S from

(2.7). The space Yr is the span of all xI1 ⊗ xI2 ⊗ · · · ⊗ xIr where 1 ∈ Ii for all i.
Let

W =

spank

{
ψ2, ψ3, . . . , ψn, ψ

†
n, . . . , ψ

†
3, ψ

†
2

}
⊆ V if N ∈ 2N,

spank

{
ψ2, ψ3, . . . , ψn, eN , ψ

†
n, . . . , ψ

†
3, ψ

†
2

}
⊆ V if N ∈ 2N+ 1.

We have a natural inclusion of groups G(W ) ⊆ G(V ). Since the actions of A11 and G(W ) on
V commute, Yr is a G(W )-submodule of V . Let SW be the spin module for G(W ). Then xI ,
I ⊆ {2, 3, . . . , n}, is a basis for SW . It is straightforward to verify that the map

(8.1) Yr → S⊗r
W , xI1 ⊗ · · · ⊗ xIr 7→ xI1\{1} ⊗ · · · ⊗ xIr\{1},

is an isomorphism of G(W )-modules.

Lemma 8.6. For every f ∈ EndG(V )(Xr), we have f(Yr) ⊆ Yr. Furthermore, restriction to Yr
yields an isomorphism of k-modules

(8.2) EndG(V )(Xr)
∼=−→ EndG(W )(Yr).

Proof. The first assertion follows from the fact that any element of f ∈ EndG(V )(Xr) commutes with
the action of A11, hence leaves the eigenspace Yr invariant. Since G(W ) is a subgroup of G(V ), it
follows that the restriction of f lies in EndG(W )(Yr). Thus, we have a homomorphism of k-modules

(8.3) EndG(V )(Xr) → EndG(W )(Yr).

Our goal is to show that this linear map is an isomorphism.
Since G(V )-mod is a semisimple category, any element of EndG(V )(Xr) is determined by its

action on highest-weight vectors. An analogous statement holds for EndG(W )(Yr). Therefore, to see
that (8.3) is injective, it suffices to show that the space of highest-weight vectors of the G(V )-module
Xr is equal to the space of highest-weight vectors of the G(W )-module Yr.

First suppose that v is a highest-weight vector in Xr of weight (λ1, . . . , λn). Then v ∈ Yr, since
λ1 =

r
2 by definition of Xr. Since the inclusion G(W ) ⊆ G(V ) respects upper triangularity, it follows

that v is a highest-weight vector of the G(W )-module Yr. Conversely, suppose v is a highest-weight
vector in the G(W )-module Yr. Then

A11A12v = A12A11v + [A11, A12]v =
(
r
2 + 1

)
A12v.
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Since there are no nonzero w ∈ S⊗r satisfying A11w = ( r2 + 1)w, we have A12(v) = 0. If n and n′

are the subalgebras of strictly upper-triangular matrices in so(V ) and so(W ) respectively, then n
is generated by n′ and A12. Hence n annihilates v, and so v is a highest-weight vector in Xr. This
completes the argument that (8.3) is injective.

To finish the proof of the lemma, it suffices to show that the dimensions of EndG(V )(Xr) and
EndG(W )(Yr) are equal. Since G(V )-mod and G(W )-mod are both semisimple categories, these
endomorphism algebras are isomorphic to products of matrix algebras. To see that their dimensions
are equal, it is enough to show that the identification of highest-weight spaces given above preserves
multiplicities of weights. This, in turn, follows from the fact that two highest-weight vectors in Xr

have equal G(V )-weights if and only if they have equal G(W )-weights, since the highest weights in
Xr are constrained to have λ1 = r

2 . □

Since Xr is a sum of isotypic components of S⊗r, any endomorphism of S⊗r leaves Xr invariant.
Therefore, restriction to Xr yields a natural projection EndG(V )(S

⊗r) ↠ EndG(V )(Xr). We thus
have a surjective composite of k-module homomorphisms

(8.4) Ψr : EndG(V )(S
⊗r) ↠ EndG(V )(Xr)

∼=−−−→
(8.2)

EndG(W )(Yr)
∼=−→ EndG(W )(S

⊗r
W ),

where the final isomorphism is induced by (8.1).

Lemma 8.7. For 0 ≤ t ≤ r − 2, r ≥ 2, we have

Ψr

(
1⊗r ⊗ β ⊗ 1⊗(t−r−2)

)
= 1⊗r ⊗ βW ⊗ 1⊗(t−r−2),

where βW =
∑N

i=3 ei ⊗ ei is the barbell for W .

Proof. Using (2.4), we compute that

(8.5) e1 ⊗ e1 + e2 ⊗ e2 = 2(ψ1 ⊗ ψ†
1 + ψ†

1 ⊗ ψ1).

Now suppose that I1, I2, . . . , Ir ⊆ [n] satisfy 1 ∈ Ik for all 1 ≤ k ≤ r. Then(
1⊗t ⊗ ψ1 ⊗ ψ†

1 ⊗ 1⊗(r−t−2)
)
(xI1 ⊗ xI2 ⊗ · · · ⊗ xIr) = 0

=
(
1⊗t ⊗ ψ†

1 ⊗ ψ1 ⊗ 1⊗(r−t−2)
)
(xI1 ⊗ xI2 ⊗ · · · ⊗ xIr).

Thus, the result follows from (8.5). □

For the remainder of this section, we drop the assumption that N ≥ 2.

Theorem 8.8. Suppose r, r1, r2 ∈ N.
(a) The incarnation functor F induces a surjection

HomSB(V )(S
⊗r1 , S⊗r2) ↠ HomG(V )(S

⊗r1 , S⊗r2).

(b) The algebra EndG(V )(S
⊗r) is generated by barbells.

Proof. Since the components of the weights of S⊗r lie in r
2 + Z, we have HomG(V )(S

⊗r1 , S⊗r2) = 0
when r1 + r2 /∈ 2Z. Thus, for statement (a), we will assume for the remainder of this proof that
r1 + r2 ∈ 2Z.

We have a commutative diagram

(8.6)

HomSB(V )(S
⊗r1 , S⊗r2) HomSB(V )(S

⊗(r1+r2),1)

HomG(V )

(
S⊗r1 , S⊗r2

)
HomG(V )

(
S⊗(r1+r2), triv0

)F

∼=

F

∼=
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where the horizontal maps are the usual isomorphisms that hold in any rigid monoidal category. In
particular, the top horizontal map is the k-linear isomorphism given on diagrams by

· · ·

· · ·
7→

...

· · ·· · ·
with inverse

· · · · · ·
7→

· · ·

...
· · ·

,

where the rectangles denote some diagram. Therefore, part (a) holds for r1, r2 ∈ N if and only if it
holds for all other r′1, r′2 ∈ N satisfying r1 + r2 = r′1 + r′2. It also follows that, for 0 ≤ k ≤ r

2 ,

HomG(V )(S
⊗(r−2k), S⊗r) =

(
1⊗k ⊗ EndG(V )(S

⊗(r−k))
)
◦ F

(
k ⊗ 1⊗(r−2k)

)
,(8.7)

HomG(V )(S
⊗r, S⊗(r−2k)) = F

(
k ⊗ 1⊗(r−2k)

)
◦
(
1⊗k ⊗ EndG(V )(S

⊗(r−k))
)
,(8.8)

where, as in Lemma 8.2, the thick cup and cap labelled by k denote k nested cups and caps,
respectively.

We now prove the theorem by induction on N = dimV . The base cases are N = 0 and N = 1.
In these cases, S is one-dimensional, and so EndG(V )(S

⊗r) only consists of scalars, which makes the
theorem trivial in these cases.

Now suppose that N ≥ 2 and that the result holds for 0 ≤ dimV < N . For r ∈ N, let F (r) be
the statement that (a) holds for all r1 + r2 = 2r and that (b) holds. By the argument given above,
F (r) is equivalent to the statement that (a) holds for some r1, r2 ∈ N satisfying r1 + r2 = 2r and
that (b) holds. We will prove that F (r) holds for all r ∈ N by induction on r. The base of the
induction consists of the cases r ≤ 2. The cases r ≤ 1 are trivial as S is a simple G(V )-module,
and so HomG(V )(S

⊗r) consists of scalar multiples of the identity. The case r = 2 follows from
Lemma 8.1.

Now suppose that r ≥ 3, and that F (k) holds for all k < r. Recall the surjective k-linear map

Ψr : EndG(V )(S
⊗r) ↠ EndG(W )(S

⊗r
W )

defined in (8.4). The kernel of Ψr consists of all elements of EndG(V )(S
⊗r) that factor through

simple modules with highest weights λ with λ1 < r/2. By Corollary 8.4 and Remark 8.5, these
simple modules are precisely the simple modules that occur as summands in S⊗(r−2k) for 0 < k ≤ r

2 .
Therefore, kerΨr is the sum of all images of all compositions

HomG(V )(S
⊗r, S⊗(r−2k))×HomG(V )(S

⊗(r−2k), S⊗r) → EndG(V )(S
⊗r), 0 < k ≤ r

2
.

It follows from (8.7), (8.8), Lemma 8.2, and the inductive hypothesis that kerΨr is generated by
barbells and hence is in the image of F.

By the inductive hypothesis for our induction on N , barbells generate EndG(W )(S
⊗r
W ). By

Lemma 8.7, every barbell in EndG(W )(S
⊗r
W ) is in the image of Ψr. Thus, if U denotes the sub-

algebra of EndG(V )(S
⊗r) generated by barbells, we have Ψr(U) = EndG(W )(S

⊗r
W ). Since Ψr is

surjective, this implies that
U + kerΨr = EndG(V )(S

⊗r).

The subspace U lies in the image of F since all barbells do. This completes the proof of the statement
F (r). □

Theorem 8.9. The incarnation functor F is full.

Proof. We must show that

F : HomSB(V )(X,Y) → HomG(V )(F(X),F(Y))
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is surjective for all objects X and Y in SB(V ). By the first relation in (5.1), we have mutually inverse
isomorphisms

: S⊗ V
∼=−→ V ⊗ S and : V ⊗ S

∼=−→ S⊗ V.

Therefore, it suffices to consider the case where X = S⊗k1 ⊗ V⊗l1 and Y = S⊗k2 ⊗ V⊗l2 for some
k1, l1, k2, l2 ∈ N. Consider an arbitrary morphism

f ∈ HomG(V )

(
S⊗k1 ⊗ V ⊗l1 , S⊗k2 ⊗ V ⊗l2

)
.

Define

f ′ =

(
1⊗k2S ⊗ F

( )⊗l2)
◦ f ◦

(
1⊗k1S ⊗ F

( )⊗l1)
∈ HomG(V )

(
S⊗(k1+2l1), S⊗(k2+2l2)

)
.

By Theorem 8.8(a), there exists a g′ ∈ HomSB(V )(S
⊗(k1+2l1),S⊗(k2+2l2)) such that F(g′) = f ′. Let

g =

(
1⊗k2S ⊗

( )⊗l2)
◦ g′ ◦

(
1⊗k1S ⊗

( )⊗l1)
.

It was shown in the proof of Proposition 7.1(c) that

= D .

It follows that
F(g) = Dl1+l2f,

completing the proof. □

It is straightforward to verify that SB(d,D;κ) is a spherical pivotal category, hence so is its
idempotent completion Kar(SB(d,D;κ)). (We refer the reader to [Sel11, §4.4.3] for the defini-
tion of a spherical pivotal category.) In any spherical pivotal category C, we have a trace map
Tr:

⊕
X∈C EndC(X) → EndC(1). In terms of string diagrams, this corresponds to closing a dia-

gram off to the right or left:

(8.9) Tr

(
f

)
= f = f ,

where the second equality follows from the axioms of a spherical category. We say that a morphism
f ∈ HomC(X,Y ) is negligible if Tr(f ◦ g) = 0 for all g ∈ HomC(Y,X). The negligible morphisms
form a two-sided tensor ideal N of C, and the quotient C/N is called the semisimplification of C.

Theorem 8.10. For all N ∈ N, the kernel of the functor Kar(F) of (7.11) is equal to the tensor ideal
of negligible morphisms of Kar(SB(V )). The functor Kar(F) induces an equivalence of categories
from the semisimplification of Kar(SB(V )) to G(V )-mod.

Proof. By Theorems 7.5 and 8.9 the functor Kar(F) is full and essentially surjective. It follows from
Proposition 5.9 and [SW22, Prop. 6.9] that its kernel is the tensor ideal of negligible morphisms. □

9. The affine spin Brauer category

In this section we define an affine version of the spin Brauer category, together with an affine
incarnation functor. This can be thought of as a spin version of the affine Brauer category introduced
in [RS19].
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Definition 9.1. For d,D ∈ k and κ ∈ {±1}, the affine spin Brauer category is the strict k-linear
monoidal category ASB(d,D;κ) obtained from SB(d,D;κ) by adjoining two additional generating
morphisms

: S → S, : V → V,

which we call dots, subject to the relations

− = 2
(

−
)
, − =

1

8

(
−

)
,(9.1)

− = − κ , − = − κ ,(9.2)

= − , = − ,(9.3)

= + .(9.4)

Let ASB(d,D;κ) denote the quotient of ASB(d,D;κ) by (5.19).

Proposition 9.2. The following relations hold in ASB(d,D;κ):

− = 2
(

−
)
, − =

1

8

(
−

)
,(9.5)

− = − κ , − = − κ ,(9.6)

= − , = − ,(9.7)

= + .(9.8)

Proof. Relations (9.5) and (9.7) follow from rotating (9.1) and (9.3) using cups and caps. The first
relation in (9.6) follows from the first relation in (9.2) after composing on the top and bottom with

. The second relation in (9.6) follows similarly from the second relation in (9.2).
To prove (9.8), we compute

κ
(5.9)
=

(9.4)
= +

(9.2)
=

(9.6)
+

(5.9)
= κ

(
+

)
. □

The symmetries (5.12) and (5.13) can be extended to ASB(d,D;κ). Precisely, we have an iso-
morphism of monoidal categories

(9.9) ASB(d,D;κ) → ASB(d,D;κ)op

that is the identity on objects and reflects morphisms in the horizontal axis. We also have an
isomorphism of monoidal categories

(9.10) ASB(d,D;κ) → ASB(d,D;κ)rev

that is the identity on objects and, on morphisms, reflects diagrams in the vertical axis and multiplies
dots by −1.

Our goal in the remainder of this section is to define an affine version of the incarnation functor
of Section 6. Since our construction will be based on the Lie algebra so(V ), we assume throughout
that N ≥ 2 and we work over the ground field k = C. However, see Remark 9.9 for the cases N = 0
and N = 1.

Let Bso(V ) be a basis of so(V ) and let {X∨ : X ∈ Bso(V )} denote the dual basis with respect to
the symmetric bilinear form

⟨X,Y ⟩ = 1
2 tr(XY ), X, Y ∈ so(V ),
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where tr denotes the usual trace on the space of linear operators on V . We have

⟨Mei,ej ,Mek,el⟩ =
1

2

N∑
m=1

⟨Mei,ejMek,elem, em⟩

(3.2)
=

1

2

N∑
m=1

⟨Mei,ej (δlmek − δkmel), em⟩

(3.2)
=

1

2

N∑
m=1

⟨δjkδlmei − δikδlmej − δjlδkmei + δilδkmej , em⟩

= δjkδil − δikδjl.

Thus, if we take the basis
Bso(V ) = {Mei,ej : 1 ≤ i < j ≤ N},

then
M∨
ei,ej =Mej ,ei = −Mei,ej , 1 ≤ i < j ≤ N.

Define

Ω =
∑

X∈Bso(V )

X ⊗X∨ =
∑

1≤i<j≤N
Mei,ej ⊗Mej ,ei ∈ so(V )⊗ so(V ),(9.11)

C =
∑

X∈Bso(V )

XX∨ =
∑

1≤i<j≤N
Mei,ejMej ,ei ∈ U(so(V )).(9.12)

The elements Ω and C are both independent of the chosen basis Bso(V ). Note that C is the Casimir
element and we have

(9.13) Ω = 1
2(∆(C)− C ⊗ 1− 1⊗ C),

where ∆ is the standard coproduct on so(V ). Define

(9.14) Ω̃ := 2Ω + C ⊗ 1 = ∆(C)− 1⊗ C.

The nondegenerate form ⟨·, ·⟩ remains nondegenerate when restricted to h, hence induces a pairing
⟨·, ·⟩ : h∗ × h∗ → C, which we denote by the same symbol.

Lemma 9.3. The element C acts on the simple Spin(V )-module L(λ) of highest weight λ as ⟨λ, λ+
2ρ⟩, where

(9.15) ρ =
1

2

n∑
i=1

(N − 2i) ϵi.

Proof. This is well-known. See, for example, [Car05, Prop. 11.36]. □

Corollary 9.4. The action of C commutes with the action of Pin(V ).

Proof. Note that, if N = 2n, and λ̃ is defined as in (4.10), then ⟨λ, λ + 2ρ⟩ = ⟨λ̃, λ̃ + 2ρ⟩. Thus,
C acts on the simple Pin(V )-module Ind(L(λ)) as ⟨λ, λ+ 2ρ⟩. Then the corollary follows from the
fact that Pin(V )-mod is a semisimple category. □

Lemma 9.5. We have

(9.16) β2(x⊗ y) = (N − 8Ω) (x⊗ y) for all x, y ∈ S.
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Proof. Throughout this proof, we view all elements of so(V )⊗ so(V ) as operators on S ⊗ S. Then
we have, via (3.1), Mei,ej =

1
2eiej for i ̸= j. Thus,

Ω =
1

4

∑
1≤i<j≤N

eiej ⊗ ejei.

On the other hand,

β2 =

N∑
i,j=1

eiej ⊗ eiej
(2.2)
= N − 2

∑
1≤i<j≤N

eiej ⊗ ejei = N − 8Ω. □

Lemma 9.6. The element C acts as
(a) k(N − k) on L(ϵ1 + · · ·+ ϵk), 0 ≤ k ≤ n;
(b) N(N−1)

8 on the spin representation S;
(c) 2N on L(2ϵ1);
(d) N2

4 on L(ϵ1 + · · ·+ ϵn−1 − ϵn) when N = 2n ≥ 4 (i.e. type Dn).
(e) N(N+7)

8 on L
(
3
2ϵ1 +

1
2ϵ2 + · · ·+ 1

2ϵn
)
, n ≥ 2.

(f) N(N+7)
8 on L

(
3
2ϵ1 +

1
2ϵ2 + · · ·+ 1

2ϵn−1 − 1
2ϵn
)

when N = 2n ≥ 4 (i.e. type Dn).

Proof. These are all direct computations using Lemma 9.3. First note that ϵ1, . . . , ϵn is an orthonor-
mal basis of h∗. (It is dual to the orthonormal basis A11, . . . , Ann of h.)

(a) We have〈
k∑
i=1

ϵi,

k∑
i=1

ϵi + 2ρ

〉
= k +

k∑
i=1

(N − 2i) = k + kN − k(k + 1) = k(N − k).

(b) In type Dn, so that N = 2n, we have S± = L
(
1
2(ϵ1 + · · ·+ ϵn−1 ± ϵn)

)
. Then we compute〈

1

2

n−1∑
i=1

ϵi ±
1

2
ϵn,

1

2

n−1∑
i=1

ϵi ±
1

2
ϵn + 2ρ

〉
=
n

4
+

1

2

n−1∑
i=1

(N − 2i)

=
n

4
+

(n− 1)N − (n− 1)n

2
=
N(N − 1)

8
.

In type Bn, so that N = 2n+ 1, we have S = L
(
1
2(ϵ1 + · · ·+ ϵn)

)
, and we compute〈

1

2

n∑
i=1

ϵi,
1

2

n∑
i=1

ϵi + 2ρ

〉
=
n

4
+

1

2

n∑
i=1

(N − 2i) =
n

4
+
nN − n(n+ 1)

2
=
N(N − 1)

8
.

(c) We compute
⟨2ϵ1, 2ϵ1 + 2ρ⟩ = 4 + 2(N − 2) = 2N.

(d) We compute〈
n−1∑
i=1

ϵi − ϵn,
n−1∑
i=1

ϵi − ϵn + 2ρ

〉
= n+

n−1∑
i=1

(N − 2i) = n+ (n− 1)N − n(n− 1) =
N2

4
.

(e) We compute〈
3

2
ϵ1 +

1

2

n∑
i=2

ϵi,
3

2
+

1

2

n∑
i=2

ϵi + 2ρ

〉
=
n+ 8

4
+

3

2
(N − 2) +

1

2

n∑
i=2

(N − 2i)

=
2Nn− 2n2 + 4N − n

4
.
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When, N = 2n+ 1, we have

2Nn− 2n2 + 4N − n = (2n+ 1)(n+ 4) =
N(N + 7)

2
.

On the other hand, when N = 2n, we have

2Nn− 2n2 + 4N − n = n(2n+ 7) =
N(N + 7)

2
.

(f) This computation is almost identical to the previous one, using the fact that the ϵn component
of ρ is zero when N = 2n. □

The following lemma will play a key role in our proof that the affine incarnation functor satisfies
the dot-crossing relations (9.1) and (9.2). It will describe the image of

−

under our affine incarnation functor.

Lemma 9.7. For any M1,M2,M3 ∈ so(V )-mod, we have

(9.17) (1⊗∆)(Ω̃)− (flip⊗1) ◦ (1⊗ Ω̃) ◦ (flip⊗1) = 2Ω⊗ 1 as operators on M1 ⊗M2 ⊗M3,

where ∆ is the usual coproduct of so(V ) given by ∆(X) = X ⊗ 1 + 1⊗X.

Proof. For m1 ∈M1, m2 ∈M2, m3 ∈M3, we have(
(1⊗∆)(Ω̃)

)
(m1 ⊗m2 ⊗m3)

=
∑

X∈Bso(V )

(2Xm1 ⊗X∨m2 ⊗m3 + 2Xm1 ⊗m2 ⊗X∨m3 +XX∨m1 ⊗m2 ⊗m3)

and

(flip⊗1) ◦ (1⊗ Ω̃) ◦ (flip⊗1)(m1 ⊗m2 ⊗m3)

=
∑

X∈Bso(V )

(2Xm1 ⊗m2 ⊗X∨m3 +XX∨m1 ⊗m2 ⊗m3).

Subtracting these two sums proves the lemma. □

For a k-linear category C, let End k(C) denote the strict monoidal category of k-linear endofunctors
and natural transformations. An action of a monoidal category D on a category C is a monoidal
functor D → End k(C). It follows immediately from Theorem 6.1 that SB(V ) acts on G(V )-mod via

X 7→ F(X)⊗−, f 7→ F(f)⊗−
for objects X and morphisms f in SB(V ). The following result extends this action to

(9.18) ASB(V ) := ASB(N, σN2
n;κN ).

Theorem 9.8. There is a unique monoidal functor F̂ : ASB(V ) → End C(G(V )-mod) given on
objects by S 7→ S ⊗−, V 7→ V ⊗−, and on morphisms by

f 7→ F(f)⊗−, f ∈
{

, , ,
}
,(9.19)

and F̂
( )

: S ⊗− → S ⊗−, F̂
( )

V ⊗− → V ⊗− are the natural transformations with components

F̂
( )

M
: S ⊗M → S ⊗M, x⊗m 7→ Ω̃(x⊗m),

F̂
( )

M
: V ⊗M → V ⊗M, v ⊗m 7→ Ω̃(v ⊗m),
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for M ∈ so(V )-mod, where Ω̃ is the element defined in (9.14). The functor F̂ factors through
ASB(V ).

Proof. When N is odd, the functor F̂ factors respects the relation (5.19) since F does. It follows
from Corollary 9.4 that F̂

( )
is a natural transformation of the functor S ⊗− and that F̂

( )
is a

natural transformation of the functor V ⊗−. Thus, it remains to verify that F̂ respects the relations
(9.1) to (9.4). Throughout, M will denote an arbitrary object in G(V )-mod.

First relation in (9.1). Composing on the top of the first relation in (9.1) with the invertible
morphism , then using the fifth relation in (5.1), we see that the first relation in (9.1) is equivalent
to

(9.20) − = 2
(

−
)
.

By Lemma 9.7, the image under F̂ of the left-hand side of (9.20) is the natural endomorphism of the
functor V ⊗V ⊗− given by 2Ω⊗−. Recall the decompositions (7.6) and (7.8). Let 1λ : V ⊗2 → V ⊗2

denote the projection onto the summand isomorphic to L(λ) as a Spin(V )-module. Recall also that
V = L(ϵ1). When N > 3, it follows from (9.13) and Lemma 9.6 that 2Ω acts on V ⊗2 as

2Ω(u⊗ v) = C(u⊗ v)− Cu⊗ v − u⊗ Cv

= (2N12ϵ1 + 2(N − 2)1ϵ1+ϵ2)(u⊗ v)− (N − 1)(u⊗ v)− (N − 1)(u⊗ v)

=
(
2(1−N)10 + 2(12ϵ1 − 1ϵ1+ϵ2)

)
(u⊗ v).

On the other hand, by Proposition 7.3,

F̂
(

−
)
= flip−N10 = (1−N)10 + 12ϵ1 − 1ϵ1+ϵ2 .

The cases N = 2 and N = 3 are analogous. Thus, F̂ respects the first relation in (9.1).

Second relation in (9.1). Composing on the top of the second relation in (9.1) with the invertible
morphism , then using (5.3) and the first relation in (5.1), we see that the second relation in (9.1)
is equivalent to

− =
1

8

(
−

)
(5.5)
=

(5.11)

1

4

(
N −

)
.

Thus, the fact that F̂ respects the second relation in (9.1) follows from Lemma 9.7 and (6.14)
and (9.16).

Relations (9.2). Composing on the top of the first relation in (9.2) with the invertible morphism
, then using (5.9) and the first relation in (5.1), we see that the first relation in (9.2) is equivalent

to

(9.21) − = − .

By Lemma 9.7, the image under F̂ of the left-hand side of (9.21) is the natural endomorphism of
the functor S ⊗ V ⊗− given by 2Ω⊗−. When N ≥ 3, we have, from Corollary 4.10,

S ⊗ V ∼= S ⊗ L(ϵ1) ∼= S ⊕W,

where

W =

{
L
(
3
2ϵ1 +

1
2ϵ2 + · · ·+ 1

2ϵn
)

if N = 2n+ 1,

Ind
(
L
(
3
2ϵ1 +

1
2ϵ2 + · · ·+ 1

2ϵn
))

if N = 2n.
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Then, as in our verification of the first relation in (9.1), we use (9.13) and Lemma 9.6 to compute
that 2Ω acts on S ⊗ V as

N(N−1)
8 1S + N(N+7)

8 1W − N(N−1)
8 − (N − 1) = 1−N1S .

By Lemma 7.4, this is the also the action on S ⊗ V of the image under F of the left-hand side of
(9.21). The case N = 2 is similar. Thus, F̂ respects the first relation in (9.2). The proof that F̂
respects the second relation in (9.2) is almost identical.

Relations (9.3). Let U denote either V or S. The image under F̂ of the left-hand side of relations
(9.3) is the natural transformation with components U ⊗ U ⊗M → U ⊗ U ⊗M given by

u⊗ v ⊗m 7→
∑

X∈Bso(V )

(
2ΦU (Xu⊗X∨v)m+ 2ΦU (Xu⊗ v)X∨m+ΦU (XX

∨u, v)m
)

= −
∑

X∈Bso(V )

(
2ΦU (u⊗Xv)X∨m+ΦU (u,XX

∨v)m
)
,

where the equality follows from (4.25) in the case U = S and from the definition of so(V ) in the
case U = V . Since the last sum above is precisely the image under F̂ of the right-hand side of
relations (9.3), we see that F̂ preserves these relations.

Relation (9.4). We will show that, for any homomorphism f : U1 ⊗ U2 → W of G(V )-modules,
we have

(9.22) Ω̃ ◦ (f ⊗ 1) = (f ⊗ 1) ◦
(
(1⊗∆)(Ω̃) + (1⊗ Ω̃)

)
: U1 ⊗ U2 ⊗M →W ⊗M,

for any M ∈ G(V )-mod. Then the fact that F̂ respects (9.4) follows from taking f = τ , given by
(6.7). To prove (9.22), we compute

Ω̃◦(f ⊗ 1)(u1 ⊗ u2 ⊗m) =
∑

X∈Bso(V )

(
2Xf(u1 ⊗ u2)⊗X∨m+XX∨f(u1 ⊗ u2)⊗m

)
= (f ⊗ 1)

∑
X∈Bso(V )

(
2Xu1 ⊗ u2 ⊗X∨m+ 2u1 ⊗Xu2 ⊗X∨m+XX∨u1 ⊗ u2 ⊗m

+2Xu1 ⊗X∨u2 ⊗m+ u1 ⊗XX∨u2 ⊗m
)

= (f ⊗ 1) ◦
(
(1⊗∆)(Ω̃) + (1⊗ Ω̃)

)
(u1 ⊗ u2 ⊗m),

proving (9.22). □

Remark 9.9. Although we assumed above that N ≥ 2, one can define the affine incarnation functor
for N = 0 and N = 1. In these cases, the functor is defined as in Theorem 9.8, except that both
dots are sent to the zero natural transformation.

Remark 9.10. Replacing F by the functor F′ : SB(V ) → so(V )-mod of Remark 7.6, we can define
an affine version F̂′ : ASB(V ) → End k(so(V )-Mod) of that functor, defined in the same way as F̂.
Here we choose to work with the category so(V )-Mod of all so(V )-modules (as opposed to just
finite-dimensional ones) for reasons that will be become apparent in Section 10.

10. Central elements

We assume throughout this section that k = C. Let g = so(V ) and let Z(g) be the centre of its
universal enveloping algebra U(g). This centre is identified with the endomorphism algebra of the
identity functor Idg-Mod. Precisely, evaluation on the identity element of the regular representation
of U(g) defines a canonical algebra isomorphism End(Idg-Mod)

∼=−→ Z(g). (It is here that we need to
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consider all so(V )-modules, not just finite-dimensional ones; see Remark 9.10.) It follows that the
affine incarnation functor

F̂′ : ASB(V ) → End C(g-Mod)
of Remark 9.10 induces a homomorphism

χ : EndASB(V )(1) → Z(g).

The goal of this section is to describe the image of χ. We will prove the following result.

Theorem 10.1. The image of χ is equal to Z(g)G(V ).

We first entertain a discussion of the structure of Z(g), which is given by the Harish-Chandra
isomorphism. Recall that, for λ ∈ X∗(H)+, L(λ) is the simple highest-weight g-module with
highest weight λ. By Schur’s Lemma, any z ∈ Z(g) acts on L(λ) by a scalar. The Harish-Chandra
isomorphism is an isomorphism of algebras

Γ: Z(g) → C[h∗]W , z 7→ (fz : h
∗ → C),

where W is the Weyl group, uniquely characterised by the identity

zv = fz(λ+ ρ)v

for all z ∈ Z(g) and v ∈ L(λ). The Harish-Chandra isomorphism Γ is equivariant with respect to
the natural actions of G(V ) on both sides by conjugation. Since Spin(V ) acts trivially on Z(g), we
have, by Theorem 4.3,

(10.1) Z(g)G(V ) =

{
Z(g) if N ∈ 2N+ 1,

Z(g)P if N ∈ 2N,

where P is as in (4.7).
To simplify notation, we define xi = Aii for 1 ≤ i ≤ n, where Aii is defined as in (3.4) and (3.8).

If N is odd, then W = Cn2 ⋊Sn and

Z(g)G(V ) (10.1)
= Z(g) ∼= C[h∗]W ∼= C[x1, x2, . . . , xn]C

n
2 ⋊Sn = C[x21, x22, . . . , x2n]Sn ,

the ring of symmetric polynomials in x21, x22, . . . , x2n. (Here C2 is the cyclic group on two elements.)
If N is even, then the action of G(V ) on Z(g) is no longer trivial; see (4.13). Here the action

of the component group of G(V ) precisely compensates for the difference between the type B and
type D Weyl groups. More precisely, we have

Z(g)G(V ) ∼= (C[h∗]W )P ∼= C[x1, x2, . . . , xn]C
n
2 ⋊Sn = C[x21, x22, . . . , x2n]Sn ,

where the first isomorphism arises from (10.1) and the Harish-Chandra isomorphism, while the
second isomorphism follows from the fact that W and π0(G(V )) generate the action of Cn2 ⋊ Sn,
using (4.13). So, in either case, we have the isomorphism

(10.2) Z(g)G(V ) ∼= C[x21, x22, . . . , x2n]Sn .

Define

(10.3) zr := χ
(

r
)
, r ∈ N.

Proposition 10.2. For each r ∈ N,

fzr ∈ (−1)(
n
2)+nN

∑
ς1,...,ςn∈{±1}

(
n∑
i=1

ςixi

)r
+ C[h∗]<r,

where C[h∗]<r denotes the space of polynomial functions on h∗ of degree strictly less than r.
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Proof. Let v be a highest-weight vector of L(λ− ρ), and let ∨xI , I ⊆ [n], be the right dual basis to
xI , I ⊆ [n], defined by ΦS(xI ,

∨xJ) = δIJ . Note that

(10.4) ΦS(
∨xI , xJ)

(4.26)
= (−1)(

n
2)+nNΦS(xJ ,

∨xI) = δIJ(−1)(
n
2)+nN .

Unravelling the definition of F̂′ ( r
)
, we get

(10.5) fzr(λ)v = zrv = (ΦS ⊗ id)(1⊗ Ω̃)r
∑
I⊆[n]

∨xI ⊗ xI ⊗ v.

Note that

Ω̃ = 2

n∑
i=1

Aii ⊗Aii +
∑
α∈Φ

Xα ⊗ Yα + C ⊗ 1,

for some Xα ∈ gα, Yα ∈ g−α, where Φ is the set of roots of g
Write Ω̃r in the form Ω̃r =

∑
j Aj ⊗ Bj , where each term Bj is a monomial in a PBW basis of

U(g) ∼= U(n−)⊗U(h)⊗U(n+). The terms with degree equal to r that give a nonzero contribution to
(10.5) are exactly the monomials involving only elements of h, and for these monomials, we compute

(ΦS ⊗ id)

(
2

n∑
i=1

1⊗Aii ⊗Aii

)r ∑
I⊆[n]

∨xI ⊗ xI ⊗ v

(10.4)
= (−1)(

n
2)+nN

∑
ς1,...,ςn∈{± 1

2
}

(
2

n∑
i=1

ςi(λi − ρi)

)r
v,

which is equal to (−1)(
n
2)+nN

∑
ς1,...,ςn∈{±1} (

∑n
i=1 ςiλi)

r modulo terms of degree strictly less than r
in the λi. The remaining terms that give a nonzero contribution all have degree less than r, and so
lie in C[h∗]<r. □

We pause to introduce some symmetric functions notation. Let Λ denote the ring of symmetric
functions with coefficients in Q. We use pr and hr to denote the power sum and complete symmetric
functions respectively, and ⟨·, ·⟩ to denote the Hall inner product. Let mπ denote the monomial
symmetric function associated to a partition π. Given a partition π = 1m12m2 · · · , we define
δ(π) = (m1,m2, . . . ). This is a composition of the length, ℓ(π), of π.

For r ∈ N, define the symmetric polynomial

(10.6) Wr(x1, x2, . . . , xn) =
1

2n

∑
ς1,...,ςn∈{±1}

(
n∑
i=1

ςi
√
xi

)2r

.

Taking the inverse limit over n, these define a symmetric function Wr ∈ Λ. In terms of the monomial
symmetric functions, we have the expansion

(10.7) Wr =
∑
π⊢r

(
2r

2π

)
mπ,

where
(
2r
2π

)
is a multinomial coefficient and 2π denotes the partition obtained from π by multiplying

all parts by 2.

Proposition 10.3. Let B2r denote the (2r)-th Bernoulli number. Then

⟨Wr, pr⟩ = −22r−1(22r − 1)B2r for all r ∈ N.
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Proof. Begin with the generating function identity

∞∑
k=1

pk
k
tk = log

 ∞∑
j=0

hjt
j

 =

∞∑
m=0

(−1)m

m

 ∞∑
j=1

hjt
j

m

and expand it to obtain
−pr
r

=
∑
π⊢r

(
ℓ(π)

δ(π)

)
(−1)ℓ(π)

ℓ(π)
hπ,

where, again,
(ℓ(π)
δ(π)

)
is a multinomial coefficient. Since the complete symmetric functions are dual

to the monomial symmetric functions, this implies that

−1

r
⟨pr,mπ⟩ =

(
ℓ(π)

δ(π)

)
(−1)ℓ(π)

ℓ(π)
.

The above equation, together with (10.7), implies that

(10.8)
−1

r
⟨Wr, pr⟩ =

∑
π⊢r

(
2r

2π

)(
ℓ(π)

δ(π)

)
(−1)ℓ(π)

ℓ(π)
.

We now compute

log(cosh(x)) = log

(
1 +

∞∑
n=1

x2n

(2n)!

)
=

∞∑
m=1

(−1)m

m

( ∞∑
n=1

x2n

(2n)!

)m

=
∞∑
m=1

(−1)m

m

∞∑
n1,...,nm=1

x2(n1+···+nm)

(2n1)!(2n2)! · · · (2nm)!
.

Collect all terms with the same multiset {n1, n2, . . . , nm} to make the inner sum into a sum over
all partitions of length m and we get

log(cosh(x)) =

∞∑
m=1

(−1)m

m

∑
ℓ(π)=m

(
m

δ(π)

)
x2|π|

(2π1)! · · · (2πm)!
=

∞∑
r=1

∑
π⊢r

(
2r

2π

)(
ℓ(π)

δ(π)

)
(−1)ℓ(π)

ℓ(π)

x2r

(2r)!
.

Comparing this with (10.8), we obtain
∞∑
r=1

−1

r
⟨Wr, pr⟩

x2r

(2r)!
= log(cosh(x)).

Differentiating with respect to x gives
∞∑
r=1

−2

(2r)!
⟨Wr, pr⟩x2r−1 = tanh(x) =

∞∑
r=1

22r(22r − 1)B2r

(2r)!
x2r−1.

Comparing the coefficients of x2r−1 gives the desired result. □

We use the following criterion for determining generators for Λ.

Proposition 10.4. Let q1, q2, . . . be elements of Λ with qi of degree i, and such that ⟨qi, pi⟩ ≠ 0 for
all i. Then the qi are algebraically independent and generate Λ.

Proof. Let Λ′ = Q[q′1, q
′
2, . . . ] be the polynomial algebra on indeterminates q′1, q′2, . . . and consider

the algebra homomorphism
α : Λ′ → Λ, q′i 7→ qi, i ≥ 1.
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Write Λr for the r-th graded piece of Λ and let Xr be the subspace of Λr spanned by all products
of terms of lower degrees. Define Λ′

r and X ′
r similarly. It suffices to show that the induced map

αr : Λ
′
r → Λr is an isomorphism for all r ∈ N. We prove this by induction. The base case r = 0 is

trivial.
Now suppose r ≥ 1. Since Λ ∼= Q[h1, h2, . . . ], we know that Xr is of codimension 1 in Λr. If

a, b ∈ Λ are of positive degree, then ⟨ab, pr⟩ = ⟨a⊗ b, pr ⊗ 1 + 1⊗ pr⟩ = 0. Therefore ⟨Xr, pr⟩ = 0.
In particular qr /∈ Xr and, since Xr is of codimension 1 in Λr, this implies that Λr is spanned by
Xr and qr. Thus, αr is surjective. Since Xr and X ′

r have the same dimension, it follows that αr is
an isomorphism, as desired. □

Corollary 10.5. The symmetric functions Wr, r ≥ 1, are algebraically independent and generate
Λ.

Proof. This follows from Propositions 10.3 and 10.4 and the fact that the even Bernoulli numbers
are nonzero. □

We can now prove Theorem 10.1.

Proof of Theorem 10.1. We first show that the image of χ lies in Z(g)G(V ). By (10.1), it suffices
to consider the case where N is even. Let a ∈ EndASB(V )(1). We must show that (Γ ◦ χ)(a) ∈
(C[h∗]W )P . By Theorem 4.3, it suffices to show that

(10.9) (Γ ◦ χ)(a)(λ) = (Γ ◦ χ)(a)(λ̃)
for all λ ∈ h∗, where λ̃ is defined as in (4.10). In fact, since the set of dominant integral λ for which
λ̃ ̸= λ is Zariski dense in h*, it suffices to prove that (10.9) holds for all such λ.

Suppose that λ is a dominant integral weight satisfying λ̃ ̸= λ. Then Ind(L(λ)) is a simple
Pin(V )-module by Proposition 4.2, and so F̂(a) acts on it by a scalar. The action of F̂(a) on
Ind(L(λ)) is the same as the action of F̂′(a) on Res ◦ Ind(L(λ)) ∼= L(λ) ⊕ L(λ̃). Therefore, (10.9)
holds, as desired.

It remains to prove that χ surjects onto Z(g)G(V ). But this follows from Proposition 10.2,
Corollary 10.5, and the isomorphism (10.2). □

Corollary 10.6. The elements
r ∈ EndASB(V )(1), r ≥ 1,

are algebraically independent.

Proof. This follows immediately from the fact that their images under χ are algebraically indepen-
dent, by Proposition 10.2 and Corollary 10.5. □

Given their role above, it would be interesting to further study the symmetric functions Wr.
Recall that a symmetric function is Schur-positive if, when written as a linear combination of Schur
functions, all coefficients are nonnegative. Computer computations suggest the following conjecture.

Conjecture 10.7. The symmetric functions Wr are Schur-positive.
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