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In this talk, we will go through the definition and structure of Uq(g) and its modules. The

gist of the results is that the structure theory of Uq(g) follows the familiar story from finite-

dimensional semisimple and Kac-Moody Lie algebras, and the representation theory also follows

the same lines via weights and integrability. The A1-form and classical limit of Uq(g) will allow

us to transfer results between the classical and the quantum. And finally, we will be able to

prove semisimplicity of a certain category of representations using the results from this chapter.

1 Structure of Uq(g)

First, we define Uq(g) by generators and relations from a Cartan matrix, and we discuss its

structure as an algebra and as a Hopf algebra.

The q-notation used here is the same as in the first talk.

To begin the definition of Uq(g), we first need to recall the theory of Cartan matrices and

some spaces associated with them.

Definition 1.1. A matrix A = (aij)
n
i,j=1 is called a symmetrisable generalised Cartan matrix if

1. There exists some diagonal matrix D = diag(si, i = 1, . . . , n) with si ∈ Z>0 such that DA

is symmetric.

2. aii = 2 for all i = 1, . . . , n.

3. aij ∈ Z≤0 if i 6= j.

4. aij = 0 if and only if aji = 0.

To the matrix A we now associate some spaces.

• Let h = span{hi, ds | i = 1, . . . , n, s = 1, . . . , n − rankA} so that h is (2n − rankA)-

dimensional. Let P∨ = spanZ{hi, ds}, called the Dual Weight Lattice.

• Let P = {λ ∈ h∗ | λ(P∨) ⊂ Z}, this is called the Weight Lattice.

• Set Π∨ = {hi, i = 1, . . . , n}, these are called the simple coroots.
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• let Π = {αi | i = 1, . . . , n} be a linearly independent subset of h∗ such that

αj(hi) = aij , αj(ds) ∈ {0, 1}.

Elements of Π are called the simple roots.

The collection (A,Π,Π∨, P, P∨) is called the Cartan datum associated to A.

We may now define the quantum group Uq(g) associated with a Cartan datum (A,Π,Π∨, P, P∨):

Definition 1.2. Uq(g) is the associative algebra over F(q), with 1, generated by ei, fi, and qh,

for i = 1, . . . , n and h ∈ P∨ with the following relations:

1. q0 = 1, qhqh
′

= qh+h′

2. qheiq
−h = qαi(h)ei for h ∈ P∨ (note this power of q is then taken from the Cartan matrix)

3. qhfiq
−h = q−αi(h)fi for h ∈ P∨

4. eifj − fjei = δij
Ki−K−1

i

qi−q−1
i

for i, j = 1, . . . , n

5.
∑1−aij

k=0 (−1)k
[1−aij

k

]
qi
e

1−aij−k
i eje

k
i = 0 for i 6= j

6.
∑1−aij

k=0 (−1)k
[1−aij

k

]
qi
f

1−aij−k
i fjf

k
i = 0 for i 6= j

where qi = qsi and Ki = qsihi.

We now note that all relations of Uq(g) are homogenous with respect to the grading defined

by deg fi = −αi, deg qh = 0, and deg ei = αi. So Uq(g) has a root space decomposition:

Uq(g) =
⊕
α∈Q

(Uq)α.

where Q is the root lattice spanZ{αi} and

(Uq)α) = {u ∈ Uq(g) | qhuq−h = qα(h)u ∀h ∈ P∨}.

The reason for this definition of root space is because qhuq−h measures the degree of u in

the power of q resulting. We can see this by taking products of the relations (2) and (3).

Homogeneity of relations ensures that no elements in distinct root spaces are identified by the

relations.

The other decomposition that we will note is the traignular decomposition. If U+
q (resp.

U−q ) is the subalgebra generated by ei (resp. fi), and U0
q is that generated by qh for h ∈ P∨,

then we have the decomposition as vector spaces

Uq(g) ∼= U−q ⊗ U0
q ⊗ U+

q .

Now we recall the definition of a Hopf algebra, the Hopf algebra structure of Uq(g), and

note its use.
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Definition 1.3. A Hopf algebra H over a field F is a vector space over F together with six maps:

the multiplication µ : H ⊗H → H, the comultiplication ∆ : H → H ⊗H, the unit ι : F → H,

the counit ε : H → F, and the antipode S : H → H satisfying the following conditions

1. H with µ and ι forms an associative algebra with identity 1 = ι(1).

2. The following diagrams commute (these make H a coassociative coalgebra):

H H ⊗ F (r. F⊗H)

H ⊗H

∆

∼=

id⊗ε (r. ε⊗id)

H ⊗H ⊗H H ⊗H

H ⊗H H

∆⊗id

id⊗∆

∆

∆

3. The algebra multiplication and unit are coalgebra homomorphisms, that is

H ⊗H H

(H ⊗H)⊗ (H ⊗H) H ⊗H

∆

µ⊗µ µ

(id⊗σ⊗id)◦(∆⊗∆)

H ⊗H H

F⊗ F F

∆

ι⊗ι

1⊗1←1

ι

and εH ◦ µ(x⊗ y) = εH(x)εH(y), and εH ◦ ι = idF.

4. The comultiplication and the counit are algebra homomorphisms H → H ⊗H and H → F
respectively. That is (for the comultiplication) we have ∆ ◦ ι = ι⊗ ι and

H ⊗H H

H ⊗H ⊗H ⊗H H ⊗H

∆⊗∆

µ

∆

(µ⊗µ)◦(id⊗σ⊗id)

5. The antipode S satisfies the following commutative diagram

H ⊗H H ⊗H

H H

S⊗id (id⊗S)

µ∆

ι◦ε

It turns out that the antipode is an antihomomorphism of the algebra H, ie. S(xy) =

S(y)S(x). We now give the Hopf algebra structure on Uq(g):

Proposition 1.1. Uq(g) has a Hopf algebra structure defined by

1. ∆(qh) = qh ⊗ qh

2. ∆(ei) = ei ⊗K−1
i + 1⊗ ei, ∆(fi) = fi ⊗ 1 +K ⊗ fi

3. ε(qh) = 1, ε(ei) = ε(fi) = 0

4. S(qh) = q−h, S(ei) = −eiKi, S(fi) = −K−1
i fi.
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for h ∈ P∨ and i = 1, . . . , n.

The reason for mentioning the Hopf algebra structure is to note that it allows us to define

tensor products and duals of representations. In general, if H is a Hopf algebra and V is a

representation thereof, then V ⊗ V is a representation of H under x(v ⊗ w) = ∆(x)(v ⊗ w)

acting component-wise, and a dual representation may be defined on the vector space V ∗ by

(xf)(v) = f(S(x)v).

2 Rep. Theory of Uq(g)

The purpose of this section is to recall the definitions in the representation theory of quantum

groups, as well as to note the similarities to the theory of finite-dimensional semisimple, or Kac-

Moody, Lie algebras. In later sections we will focus on the connection between the representation

theory of Uq(g) and that of U(g).

Definition 2.1. A Uq(g)-module V q is called a weight module if it admits a weight space de-

composition:

V q =
⊕
µ∈P

V q
µ , V q

µ = {v ∈ V q | qhv = qµ(h)v ∀h ∈ p∨}.

Nonzero elements of V q
µ are called weight vectors of weight µ. If eiv = 0 for all i = 1, . . . , n then

v is called a maximal vector. If V q
µ 6= 0, then µ is called a weight of V q and V q

µ is the weight

space of weight µ. The dimension of a weight space is called the multiplicity of µ in V q.

A weight module V q is called a highest weight module with highest weight λ if it is generated

by a nonzero vector vλ ∈ V q
λ for which eivλ = 0 for all i = 1, . . . , n.

Denote by wt(V q) the set of weights of V q, and if dimV q
µ <∞ for all weights µ then define

the character of V q by

chV q =
∑
µ

dimV q
µ e

µ.

where eµ are formal symbols which we might later multiply in the natural way.

We now consider the Verma modules of Uq(g) and note that they play the same role here as

in the familiar cases.

Fix a weight λ ∈ P and let Jq(λ) denote the left ideal of Uq(g) (as an algebra) generated

by the ei and qh − qλ(h)1 for all h ∈ P∨. Then we may define the Verma module M q(λ) =

Uq(g)/Jq(λ), with the action given by left multiplication. Then M q(λ) is a highest weight

module with highest weight λ and hw vector vλ = 1 + Jq(λ).

Proposition 2.1. 1. As a U−q -module, M q(λ) is freely generated by vλ.

2. Every highest weight Uq(g)-module with highest weight λ is the image a module homomor-

phism from M q(λ) to that module.

3. The module M q(λ) has a unique maximal submodule, and hence yields a unique irreducible

highest weight module with highest weight λ, called V q(λ).
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Definition 2.2. The category Oqint consists of weight modules V q with finite-dimensional weight

spaces for which

1. V q has a weight space decomposition with finite-dimensional weight spaces.

2. There exist finitely many weights λ1, . . . , λs ∈ P such that

wt(V q) ⊂ D(λ1) ∪ · · · ∪D(λs), D(λ) = {µ ∈ P | µ ≤ λ}.

with the standard partial order on weights: µ ≤ λ if and only if λ − µ is a nonnegative

integer combination of simple roots.

3. All ei and fi are locally nilpotent on V q.

Note that these are sometimes called “Type 1” weight modules because the eigenvalues in

the weight spaces are all of the form +qλ(h) rather than −qλ(h). On the other hand, in the first

talk we saw that the eigenvalues of the highest weight vector of a finite-dimensional Uq(sl2)-

module were of the form ±qn. So considering only Type 1 weight modules makes the results of

that theorem unique.

We note that we have again a classification of irreducible highest-weight modules:

Proposition 2.2. Let V q(λ) be the irreducible highest weight Uq(g)-module with hw λ ∈ P .

Then V q(λ) ∈ Oqint if and only if λ ∈ P+ (that is, λ is dominant integral in the usual sense).

3 A1 forms of Uq(g) and its modules

Now we turn to the theory which will allow us to draw the link to U(g). We will be able to use

this, and the next section, to transfer some results from the U(g) to Uq(g). Since this is not

actually our main concern, we will skip much of the detail but mention the utility.

First define the ring

A1 = {g/h | g, h ∈ F[q], h(1) 6= 0}.

Definition 3.1. The A1-form of Uq(g) is denoted by UA1 and is the A1-subalgebra of Uq(g)

generated by ei, fi, q
h, and qh−1

q−1 , for i = 1, . . . , n and h ∈ P∨.

Definition 3.2. The A1-form of the highest weight module V q with highest weight λ ∈ P and

highest weight vector vλ is defined to be the UA1-module VA1 = UA1vλ, with the action as it was

in V q.

4 The classical limit

We modify the A1-forms of our algebra and modules in a unique way to yield the classical

objects.

The ring A1 has a unique maximal ideal J1, generated by (q−1), so A1/J1 is a field. In fact

it is isomorphic to F by the map f(q) + J1 7→ f(1).
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We define two vector spaces over F:

U1 = (A1/J1)⊗A1 UA1 ,

V 1 = (A1/J1)⊗A1 VA1 .

We also have the following isomorphisms and natural maps

UA1 → UA1/J1UA1
∼= U1.

VA1 → VA1/J1VA1
∼= V 1.

To see the isomorphism, consider the map VA1 → V 1 given by VA1 7→ 1 ⊗A1 VA1 ⊂ V 1. The

kernel is exactly J1V1. Furthermore, V 1 is a U1-module.

We use bar notation for the image of these maps, and refer to taking this quotient as taking

the classical limit. We also write h̄ for the classical limit of the element qh−1
q−1 .

The following theorem illustrates the use of the classical limit:

Theorem 4.1. 1. The elements ēi, f̄i, and h̄, i = 1, . . . , n and h ∈ P∨ satisfy the defining

relations of U(g), the UAE of the Kac-Moody Lie algebra g associated to A. Hence there

is a surjective F-algebra hom. ψ : U(g)→ U1 (because these elements generate Uq(g), and

the U1-module V 1 becomes a U(g)-module.

2. For each weight µ ∈ P , h ∈ P∨, the element h̄ acts on V 1
µ by scalar multiplication by

µ(h). The space V 1
µ is defined as

V 1
µ = (A1/J1)⊗A1 (VA1 ∩ V q

µ ).

It is essentially the image of our original quantum weight space under first taking the

A1-form and then the classical limit, and this part of the theorem says that it ends up a

true weight space.

3. As a U(g)-module, V 1 is a hw module with hw λ and hw vector v̄λ.

4. For each weight µ ∈ P , dimF V
1
µ = dimF(q) V

q
µ . That is, the dimension of weight spaces

are preserved.

5. We have chV 1 = chV q

Now we can transfer just enough results to build a concrete connection between the repre-

sentation theories of Uq(g) and U(g).

Theorem 4.2. If λ ∈ P+ and V q is the canonical hw module V q(λ), then V 1 is isomorphic to

the irrep V (λ) of U(g).

Proof. Let vλ be the highest weight vector of V q. By the previous theorems, V 1 is a highest

weight U(g)-module with hw λ, hwv v̄λ, satisfying

f
λ(hi)+1
i v̄λ = f̄

λ(hi)+1
i v̄λ = 0.

6



The first expression is the action of U(g) on V 1. This is defined in terms of U1(g) acting on V 1,

which in turn is defined by the action of the quantum group on V q. It is the case that in the

standard irrep, f
λ(hi)+1
i vλ = 0. Hence this expression is zero.

Furthermore, in the classical case, having this identity on a highest weight module is enough

to show that it is precisely V (λ). So the classical limit of V q(λ) is exactly V (λ).

Corollary 4.1. Let λ ∈ P+ and V q be a hw module with hwv vλ, hw λ. If f
λ(hi)+1
i vλ = 0, then

V q ∼= V q(λ).

This is analogous to a theorem in the classical case, and while the other direction can be

shown directly for quantum groups, our new machinery allows us to quickly prove this direction.

Proof. By the previous theorems V 1 is a hw module with hwv vλ,weight λ. And indeed

f
λ(hi)+1
i v̄λ = f̄

λ(hi)+1
i v̄λ = 0.

Note that this is a relation in the U(g)-module V 1. As previously noted, this relation implies

that V 1 ∼= V (λ), the canonical irrep.. To transfer this back to a statement about quantum-group

reps we use the theorem on characters:

chV q = chV 1 = chV (λ) = chV q(λ)

where the final equality is by the previous theorem.

By the fact that V q and V q(λ) are both quotients of the Verma module M q(λ), but that

V q(λ) is the quotient by a maximal ideal, there exists a surjective weight-preserving hom.

V q → V q(λ). Since the characters agree, this is an isomorphism.

Similarly we could prove:

Corollary 4.2. 1. If V q is a hw Uq(g)-module in the category Oqint with hw λ ∈ P , then

λ ∈ P+ and V q ∼= V q(λ).

2. Every irreducible Uq(g)-module in the category Oqint is isomorphic to V q(λ) for some λ ∈
P+.

I’ll just note now two important theorems which we might have expected, and then we will

move on to semisimplicity of Oqint

Theorem 4.3. 1. The classical limit U1 of Uq(g) has a Hopf algebra structure making it

isomorphic to U(g)

2. The classical limit of the quantum group Verma module M q(λ) is isomorphic to M(λ),

the U(g)-module.
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5 Semisimplicity of Oq
int

We show two important properties of Oqint — that it is closed under taking tensor products,

and that it is semisimple.

Proposition 5.1. Let V q,W q ∈ Oqint. Then V q ⊗W q ∈ Oqint.

Note that the weight space decomposition is

V q ⊗W q =
∑
λ, µ

V q
λ ⊗W

q
µ =

∑
λ+µ

(V q ⊗W q)λ+µ,

where λ are weights of V q and µ are weights of W q, and we have V q
λ ⊗W

q
µ = (V q ⊗W q)λ+µ.

We now can prove the semisimplicity of Oqint. First we must define some dual modules:

Definition 5.1. Suppose V ∈ Oqint such that V =
⊕

µ Vµ. Define two dual modules, with

actions, by

V ∗ =
⊕
µ

V ∗µ ; (xφ)(v) = φ(S(x)v)

V ′ =
⊕
µ

V ∗µ ; (xφ)(v) = φ(S−1(x)v).

It turns out that

Lemma 5.1. 1. There are isomorphisms (V ∗)′ ∼= V ∼= (V ′)∗.

2. V ∗µ is a weight space of V ∗ with weight −µ

3. V ∗ is integrable and wt(V ∗) ⊂ ∪(−λj + Q+) where wt(V ) ⊂ ∪(λj − Q+) (both finite

unions)

Suppose that V ∈ Oqint. Then we may choose a maximal weight λ and nonzero vλ ∈ Vλ, and

set L = Uq(g)vλ. Then L ∼= V q(λ) (by virtue of being a highest weight module with highest

weight λ ∈ P ).

Let v∗λ ∈ V ∗λ be defined by v∗λ(vλ) = 1 and v∗λ(Vµ) = 0 for µ 6= λ.

Let L̄ be the module generated by v∗λ. Then it turns out that L̄ ∼= (V q(λ))∗, the irred.

lowest weight module with lowest weight −λ, lowest weight vector v∗λ.

We now identify an irreducible component of V .

Lemma 5.2. Let V ∈ Oqint and let L be the submodule of V generated by vλ of a maximal

weight. Then as a direct sum of modules,

V ∼= L⊕ V/L.

Proof. We show that in the ses

0→ L→ V → V/L→ 0.
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there is an left inverse to the injection L → V (ie ψ st ψ ◦ ι = idL). Now since there is an

injection L̄→ V ∗, taking the “dash” dual gives a map (V ∗)′ → (L̄)′. But there is a map L→ V ,

and (V ∗)′ ∼= V , so

L V (L̄)′ι ϕ
.

Since vλ is not zeroed by the maps, their composition is an isomorphism (by Schurs lemma,

it’s either 0 or an isomorphism, but it’s not zero). Composing the inverse of the isomorphism

with ϕ we get a left inverse of ι. Hence the sequence splits (this is a theorem of short exact

sequences) so

V ∼= L⊕ V/L.

Now we can prove the theorem of semisimplicity

Theorem 5.1. Every V ∈ Oqint is a direct sum of V q(λ), λ ∈ P+.

Proof. Let

F =
⊕

λ dom.int.

Vλ.

Then F is a finite-dimensional U≥0
q -module, due to the boundedness from above of the weights

of V . Let VF = Uq(g)F .

We can choose a maximal weight vector of F and apply the lemma to get

VF = L⊕ L1,

with L an irreducible highest weight module with dominant integral highest weight. And

L1 = VF /L, which is generated by F/(F∩L), which has lower dimension than F . Choosing again

a maximal weight vector from F/(F ∩ L), we repeat the process to decompose VF as a direct

sum of irreducibles. This process terminates because the generating sets are finite-dimensional

and of smaller dimension each time. So VF is a finite direct sum of irreducibles.

Now we show VF = V . Consider V/VF ∈ Oqint. If this is nonzero, it has a maximal weight

vector vλ , and hence the irrep V q(λ) appears:

V q(λ)→ V/VF

but V q(λ), being irreducible, has λ dominant integral, so vλ ∈ VF and so indeed vλ = 0 in V/VF

(by definition of VF ). Hence V = VF .
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