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1. Introduction

The major goal of this course is a first introduction to commutative algebra. Topics include
rings, polynomials, factorisation, ideals, modules and Galois theory.

2. Rings

Definition 2.1. A ring is a triple (R,+, ·) where R is a set and + and · are two binary
operations R × R → R (written r, s 7→ r + s and (r, s) 7→ rs respectively) satisfying the
following axioms :

(1) (a+ b) + c = a+ (b+ c) for all a, b, c ∈ R
(2) a+ b = b+ a for all a, b ∈ R
(3) there exists 0 ∈ R such that a+ 0 = a for all a ∈ R
(4) for all a ∈ R, there exists −a ∈ R such that a+ (−a) = 0
(5) a(bc) = (ab)c for all a, b, c ∈ R
(6) ab = ba for all a, b ∈ R
(7) there exists 1 ∈ R such that 1a = a for all a ∈ R.
(8) a(b+ c) = ab+ ac for all a, b, c ∈ R

Remark 2.2. When the binary operations + and · are clear from the context, we omit them
and just write R.

Remark 2.3. The definition as we give is not the only definition of a ring that appears in the
literature. What we have defined is also known as a commutative ring with 1. Elsewhere in
the literature you may see a definition of ring where (6) and (7) are removed, and the axiom
(a+ b)c = ac+ bc is added.

Remark 2.4. The first four axioms are equivalent to saying that (R,+) is an abelian group.

Remark 2.5. These axioms have names. They are, in order: addition is associative, addition
is commutative, existence of additive identity, existence of additive inverses, multiplication
is associative, multiplication is commutative, existence of multiplicative identity, distributive
law.

Example 2.6. The axioms for a ring are a subset of the axioms of a field. Therefore every
field is an example of a ring.

The extra axioms in the definition of a field are

(1) 1 6= 0
(2) For all x 6= 0, there exists x−1 with xx−1 = 1.

Everybody agrees on what the definition of a field is.

Example 2.7. The integers form a ring.

Example 2.8. The set Z[
√
−5] = {a+ b

√
−5 | a, b ∈ Z} is a ring.

Example 2.9. The set {a + b 3
√

2 | a, b ∈ Z} is not a ring, but the set {a + b 3
√

2 + c 3
√

4 |
a, b, c ∈ Z} is a ring.
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Example 2.10. Let S be a non-zero ring, let X be a set with at least two elements. Let R
be the set of functions from X to S. If we define addition and multiplication on R pointwise,
then R is a ring which has two non-zero elements a and b with ab = 0.

Proposition 2.11. The elements 0 and 1 in a ring are unique.

Proof. Suppose 1 and 1’ are two multiplicative units. Then 1′ = 1 · 1′ = 1′ · 1 = 1, using the
unit axiom, the commutativity of multiplication and then the unit axiom again. The proof
for 0 is the same. �

Proposition 2.12. For all a ∈ R, a · 0 = 0 · a = 0.

Proof. We compute a · 0 = a · (0 + 0) = a · 0 + a · 0. Cancelling (which requires the fourth
axiom to justify) implies that a · 0 = 0. �

Example 2.13. Let R be a ring. The ring R[x] is the one-variable polynomial ring with
coefficients in R. Its elements are polynomials a0 + a1x+ · · ·+ anx

n with a0, . . . , an ∈ R.

Warning: Every f ∈ R[x] determines a function from R to R, which by abuse of notation
is also called f . It is possible for two distinct polynomials in R[x] to determine the same
function. e.g. If R = Fp 1 , then xp and x determine the same function, yet they are
considered distinct in Fp[x].

Definition 2.14. A subring of a ring R is a subset S such that

(1) if a, b ∈ S then a− b ∈ S
(2) 1 ∈ S
(3) if a, b ∈ S then ab ∈ S.

Any subring of a ring is itself a ring.

3. Homomorphisms and Ideals

Definition 3.1. Let R and S be two rings A (ring) homomorphism from R to S is a function
ϕ : R→ S which satisfies

(1) ϕ(r + s) = ϕ(r) + ϕ(s) for all r, s ∈ R,
(2) ϕ(1) = 1,
(3) ϕ(rs) = ϕ(r)ϕ(s) for all r, s ∈ R.

Definition 3.2. Let R be a ring. An ideal of R is a non-empty subset I ⊂ R such that

(1) If a, b ∈ I then a+ b ∈ I,
(2) If a ∈ I and r ∈ R then ra ∈ I.

Exercise 3.3. If {Ij}j∈J is a family of ideals then their intersection ∩j∈JIj is an ideal.

The below exercise also works for infinite sums, but for simplicity we state the case of two
ideals.

Exercise 3.4. If I and J are ideals, then their sum I+J := {i+ j | i ∈ I, j ∈ J} is an ideal.

1We use Fp to denote the finite field of integers modulo p where p is a prime. Later (when we have developed
enough theory), we will use Fq for the (unique) finite field with q elements, when q is a power of a prime.
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Definition 3.5. The kernel of a homomorphism ϕ : R→ S is

ker(ϕ) := {r ∈ R | ϕ(r) = 0}.
The image of ϕ is

im(ϕ) := {ϕ(r) | r ∈ R}.

Proposition 3.6. The kernel of a homomorphism is an ideal and the image is a subring.

Example 3.7. Let a ∈ R. Then aR := {ar | r ∈ R} is an ideal of R. It is sometimes
denoted (a). Such ideals are called principal.

Example 3.8. Let a be an element of a ring R. Then the evaluation map eva : R[x] → R
defined by

eva

(
n∑
i=0

rix
i

)
=

n∑
i=0

ria
i

is a ring homomorphism.

Proposition 3.9. The kernel of eva is the principal ideal (x− a)R[x].

Proof. We prove by induction on n = deg g that if g(x) ∈ ker eva then g(x) ∈ (x − a)R[x].
The n ≤ 0 case is trivial so suppose that n ≥ 1.

Let rn be the leading coefficient of g(x). Let h(x) = g(x)− rn(x−a)n. Then deg h < deg g
and we can easily check that eva(h(x)) = 0. So by induction we may assume that h(x) ∈ (x−
a)R[x] so h(x) = (x−a)q(x). But then g(x) = h(x)+rn(x−a)n = (x−a)(q(x)+rn(x−a)n1)
so also lies in (x− a)R[x]. This completes the proof of the inclusion ker(eva) ⊂ (x− a)R[x]
and the other inclusion is trivial. �

Remark 3.10. The above result is sometimes known as the factor theorem: A polynomial
p(x) ∈ R(x) satisfies p(a) = 0 if and only if x− a divides p(x).

Example 3.11. The function ϕ : Z[
√
−5]→ F2 given by ϕ(a+ b

√
−5) = a+ b (mod 2) is a

ring homomorphism whose kernel is a non-principal ideal.

To check that this ideal is non-principal, note that it contains 1 +
√
−5 and 2 and these

elements have no common divisor apart from ±1 in Z[
√
−5].

4. Quotient Rings

Given a ring R and an ideal I, we can define the quotient ring R/I:
The simplest way to define R/I as a set is to say that it is the quotient group of (R,+) by

the subgroup (I,+), an approach that also tells us how to do addition in the quotient ring.
Explicating this, we define an equivalence relation ∼ on R by a ∼ b if a− b ∈ I.

The underlying set of the quotient ring R/I is then defined to be the set of equivalence
classes of ∼. We denote the equivalence class of a ∈ R by a+ I, or maybe ā or maybe just a
depending on our mood. So a+ I = b+ I by definition if a− b ∈ I.

Addition and multiplication are defined by (a+I)+(b+I) = (a+b)+I and (a+I)(b+I) =
ab+ I. That these are well-defined follows from:

Lemma 4.1. If a ∼ c and b ∼ d then a+ b ∼ c+ d and ab ∼ cd.
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Proof. Write x = a− c and y = b− d. Then x, y ∈ I by definition of ∼.

ab− cd = (c+ x)(d+ y)− cd = cy + xd+ xy

As I is an ideal, cy + xd + xy ∈ I, completing the proof for the product, with the addition
case being easier and omitted. �

It is not hard to check that R/I is a ring.

Example 4.2. If R = Z and I = nZ, then R/I = Z/nZ is the integers modulo n.

Example 4.3. Let F be a field. The quotient ring F [x]/(x2) is a two-dimensional vector
space over F . The element x is nonzero and satsifies x2 = 0.

Proposition 4.4. Let f : R→ S be a ring homomorphism and I an ideal of R with R ⊂ ker f .
Then the function f : R/I → S defined by f(r + I) = f(r) is a ring homomorphism.

Proof. No surprises. �

Just like for groups, and vector spaces (and ...), there is a first isomorphism theorem for
rings.

Definition 4.5. A ring homomorphism is said to be an isomorphism if it is a bijection.

If R and S are two rings for which there exists an isomorphism ϕ : R→ S, we say that R
and S are isomorphic and write R ∼= S.

There is a thought that a “better” way to define isomorphism is to say that ϕ : R→ S is an
isomorphism if is is a bijection and both ϕ and ϕ−1 are homomorphisms. This is not needed
by the following proposition (the content of which is that the inverse function is automatically
a homomorphism):

Proposition 4.6. Let ϕ : R → S be an isomorphism of rings. Then ϕ−1 : S → R is also a
ring isomorphism.

Theorem 4.7 (First Isomorphism Theorem). Let ϕ : R→ S be a ring homomorphism. Then
ϕ induces an isomorphism

R/ kerϕ ∼= imϕ.

Proof. From the previous proposition ϕ induces a ring homomorphism ϕ̄ : R/ kerϕ → imϕ.
It is surjective by construction and injective as if x+ kerϕ ∈ ker ϕ̄ then ϕ(x) = ϕ̄(x+ I) = 0
so x ∈ kerϕ and hence x+ kerϕ = 0. �

Example 4.8.

R[x]/(x2 + 1) ∼= C.

We end with a useful criterion on when a quotient ring is a field.

Definition 4.9. An ideal I of a ring R is maximal if I 6= R and for any ideal J with
I ⊂ J ⊂ R, either J = I or J = R.

Theorem 4.10. Let I be an ideal of a ring R. Then R/I is a field if and only if I is a
maximal ideal.
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5. Division

Given an integer n and a non-zero integer d, we can divide n by d to produce a quotient q
and a remainder r. More precisely, we have n = qd+ r, where r ∈ {0, 1, 2, . . . , |d| − 1}. What
will be important is that r is smaller than d in a precise sense.

The same also works for polynomials. We mostly use the following result when R is a field
but state it in full generatlity:

Theorem 5.1. Let R be a ring. Let f, d ∈ R[x] be polynomials and assume d has a unit as
its leading coefficient (in particular d 6= 0). Then there exist q, r ∈ R[x] with f = qd+ r and
deg r < deg d.

In fact the q and r guaranteed to exist by this theorem are unique.

Proof. Let X = {f − qd | q ∈ R[x]}. Choose r ∈ X of minimal degree. Suppose that
deg r ≥ deg d. Write r = rnx

n + · · ·+ r0 and d = dmx
m + · · ·+ d0. Let s = r− rnd−1m xn−md.

Then s ∈ X and deg s < deg r, a contradiction. �

Remark 5.2. This is not the “standard” proof. The more common approach is to use poly-
nomial long division, which also gives an algorithm to compute q and r.

6. Domains

Definition 6.1. A ring is an integral domain if it is not the zero ring and whenever ab = 0,
either a = 0 or b = 0.

Definition 6.2. A Euclidean domain is an integral domain R with a function f : R\{0} → N
such that for all n, d ∈ R with d 6= 0, we can write n = qd+ r with f(r) < f(d) or r = 0.

Definition 6.3. A principal ideal domain is an integral domain where every ideal is principal.

Definition 6.4. A non-zero non-unit element r in an integral domain is irreducible if when-
ever r = ab, either a is a unit or b is a unit.

Definition 6.5. An element p in an integral domain is prime if p is not zero or a unit and
whenever p divides ab, either p divides a or p divides b.

Definition 6.6. Two elements a and b are associates if there is a unit u such that a = bu.

Being associates is an equivalence relation.

Definition 6.7. A unique factorisation domain is an integral domain where every nonzero
element has a factorisation into irreducibles which is unique up to associates.

More precisely, this means that if x is a nonzero element in a unique factorisation domain
R, then we can write

x = up1p2 · · · pn
with u a unit, n ∈ N and each pi irreducible. Furthermore if we also have

x = vq1q2 · · · qr
with v a unit, r ∈ N and each qi irreducible, then r = n and there exists a permutation σ
such that pi and qσ(i) are associates for all i.
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Theorem 6.8. A Euclidean domain is a principal ideal domain.

Proof. Let I be an ideal in a Euclidean domain R. Let d be a nonzero element of I with f(d)
minimal. Let n ∈ I. Then n = qd + r with either r = 0 or f(r) < f(d). Since r ∈ I, the
second condition contradicts the minimality of f(d), and therefore r = 0. Therefore n ∈ dR
so I = dR. �

We now define the greatest common divisor of two elements.

Definition 6.9. Let a and b be elements of an integral domain R. A greatest common divisor
d of a and b is an element of R such that

(1) d | a and d | b.
(2) If e | a and e | b then e | d.

Remark 6.10. A greatest common divisor may not exist. It always exists when R is a unique
factorisation domain. When it does exist, it is unique up to associates.

Proposition 6.11. If R is a principal ideal domain, then greatest common divisors always
exist.

Proof. The sum aR+ bR is an ideal (Exercise 3.4), hence is principal as R is a principal ideal
domain. Let d ∈ R be such that aR + bR = dR. Then d is a greatest common divisor of a
and b. �

Corollary 6.12. (Bezout’s Lemma) Let R be a principal ideal domain, a, b ∈ R and d a
greatest common divisor of a and b. Then there exists x, y ∈ R with d = ax+ by.

Remark 6.13. The extended Euclidean algorithm gives and algorithm to construct x and y
when R is a Euclidean domain.

Proposition 6.14. In a principal ideal domain, every irreducible element is prime.

Proof. Let p be an irreducible element and let a and b be elements with p | ab. Assume p
doesn’t divide a. Then as p is irreducible, 1 is a gcd of p and a. Therefore we can write
1 = px+ ay for some x, y ∈ R. Therefore b = pxb+ aby and hence p | b. �

Theorem 6.15. Let R be a principal ideal domain and let p be irreducible. Then R/(p) is a
field.

Proof. Let a ∈ R/(p), a 6= 0. Lift a to an element a ∈ R. Then as p is irreducible and a is
not divisible by p, the greatest common divisor of p and a is 1. Therefore by Corollary 6.12,
there exists x, y ∈ R with 1 = ax+ bp. Then x is a multiplicative inverse of a in R/(p), which
is enough to conclude R/(p) is a field. �

Theorem 6.16. A principal ideal domain is Noetherian.

Proof. Let I1 ⊂ I2 ⊂ · · · be a chain of ideals. Let I = ∪∞i=1Ii. Then I is an ideal. As we
are in a principal ideal domain I = (x) for some x. But x ∈ In for some n and therefore
I = In. �

Proposition 6.17. In a Noetherian ring, every element can be factored into irreducibles.
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Proof. Proceed greedily. i.e. Factor r = a1a2. Then factor a1 = b1b2 and a2 = b3b4 et
cetera (unless a1 or a2 are irreducible in which case we stop) until we have writen r as a
product of irreducibles. This process terminates unless there is an infinite chain x1, x2, . . .
for which xi+1 | xi for all i. Now consider the corresponding infinite chain of principal ideals
x1R ( x2R ( · · · . The existence of this infinite chain is impossible by the Noetherian
property of R. �

Theorem 6.18. A principal ideal domain is a unique factorisation domain.

Proof. By Theorem 6.16, a principal ideal domain is Noetherian. Hence every element can
be factored into irreducibles by Proposition 6.17.

Now suppose that p1 . . . pm = q1 . . . qn are two factorisations of the same element into
irreducibles. By Proposition 6.14, p1 is prime. Therefore p1 divides qi for some i. As qi is
irreducible, p1 and qi are associates. Now we can divide by p1 and proceed by induction. �

Example 6.19. Let F be a field. Then the ring F [x1, x2, . . .] of polynomials in infinitely many
variables is a unique factorisation domain (by Theorem 7.5 below) that is not Noetherian.

7. Fraction Fields

In this section we give a useful construction, the field of fractions or fraction field, which
generalises the construction of Q from Z. This construction will be further generalised when
you learn more commutative algebra/algebraic geometry (e.g. Stacks Project Tag 00CM).

Let R be an integral domain (an assumption in place throughout the whole section, unless
otherwise stated). We will construct a field Frac(R), called the field of fractions of R, in
which R embeds.

Elements of R will be fractions a
b where a ∈ R and b ∈ R \ {0}. We will want to say that

a
b = c

d whenever ad− bc = 0.

Proposition 7.1. The relation ∼ on R×R given by (a, b) ∼ (c, d) if ad = bc is an equivalence
relation.

Proof. The most interesting part is the transitivity. Suppose (a, b) ∼ (c, d) and (c, d) ∼ (e, f).
Then adf = bcf = bde so cancelling gives af = be as required. (note the use of the fact we’re
in an integral domain). �

Definition 7.2. The field of fractions of R is the set Frac(R) of equivalence classes of ∼ on
R×R. Addition and multiplication are defined by

(a, b) + (c, d) = (ad+ bc, bd) and (a, b) · (c, d) = (ac, bd).

It remains to check that this is well-defined and defines the structure of a field on Frac(R).
We will usually use the notation a

b instead of (a, b) to denote an element of the fraction
field.

Theorem 7.3. Let R be an integral domain. Then

(1) Frac(R) is a field.
(2) ϕ : R→ Frac(R) defined by ϕ(r) = r

1 is an injective ring homomorphism.

https://stacks.math.columbia.edu/tag/00CM
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(3) If F is a field and f : R → F is a ring homomorphism, then there exists a unique
homomorphism ι : Frac(R)→ F such that f = ι ◦ ϕ.

Theorem 7.4 (Gauss’ Lemma). Let p be a prime element in a ring R. Suppose f, g ∈ R[x]
are such that p | fg. Then p | f or p | g.

Proof. Suppose not. Let fi be the smallest degree coefficient of f not divisible by p and gj
be the smallest degree coefficient of g not divisible by p. Then p | figj which implies p | fi or
p | gj as p is prime, a contradiction. �

Theorem 7.5. Let R be a unique factorisation domain. Then R[x] is a unique factorisation
domain.

Proof. Let F = Frac(R). Then F is a field so F [x] is a unique factorisation domain. Let
f ∈ R[x] Then we can factor f = g1 . . . gn into irreducibles in F [x]. Clearing denominators
we have rf = h1h2 . . . hn in R[x]. Let p be prime dividing r. By Gauss’ Lemma, p | hi for
some i. So we can divide by p to get a smaller factorisation in R[x]. Repeating this argument
to eliminate r (note that irreducibles are prime in a UFD), we get a factorisation of f in R[x]
which agrees with the factorisation in F [x]. Since the factorisation in F [x] is unique, so is
the one in R[x]. �

8. modules

Modules can be thought of as the things rings naturally act on (in the way that groups
act on sets), or as a generalisation of linear algebra where the coefficients are taken to lie in
a ring, as opposed to lying in a field.

Definition 8.1. Let R be a ring. An R-module (M,+, ·) is a set M , a binary operation
+ : M ×M →M (written (m,n) 7→ m+n)) and a binary operation · : R×M →M (written
(r,m) 7→ r ·m or (r,m) 7→ rm such that

(1) (M,+) is an abelian group
(2) 1m = m for all m ∈M
(3) (rs)m = r(sm) for all r, s ∈ R and m ∈M
(4) (r + s)m = rm+ sm for all r, s ∈ R and m ∈M
(5) r(m+ n) = rm+ rn for all r ∈ R and m,n ∈ N .

Because of the third condition, we may unambiguously write things like rsm.

Example 8.2. An ideal I of R is an R-module. (In fact, ideals are precisely the submodules
of the R-module R).

Example 8.3. If F is a field, then a F -module is the same thing as a vector space.

Example 8.4. A Z-module is the same thing as an abelian group.

Example 8.5. Let F be a field. A F [x]-module is the same thing as a F -vector space V ,
together with a linear transformation T : V → V .

Example 8.6. Let F be a field. A F [x, y]-module is not the same thing as a F -vector space
V , together with two linear transformations S, T : V → V , because linear transformations do
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not commute. It is the same thing as a F -vector space V together with two commuting linear
transformations S, T : V → V .

Definition 8.7. Let A and B be two R-modules. Their direct sum is

A⊕B = {(a, b) | a ∈ A, b ∈ B}
where (a1, b1) + (a2, b2) = (a1 + a2, b1 + b2) and r(a, b) = (ra, rb).

Definition 8.8. Let M and N be two R-modules. A homomorphism from M to N is a
function ϕ : M → N which satisfies

(1) ϕ(m+ n) = ϕ(m) + ϕ(n) for all m,n ∈M .
(2) ϕ(rm) = rϕ(m) for all r ∈ R and m ∈M .

Definition 8.9. A submodule of an R-module M is a subset N ⊂M such that

(1) 0 ∈ N ,
(2) If n1, n2 ∈ N then n1 + n2 ∈ N ,
(3) If n ∈ N and r ∈ R then rn ∈ N .

A submodule of an R-module is an R-module in its own right.

Example 8.10. Let R be an interal domain and let M be an R-module. Then

Mtors = {m ∈M | there exists r ∈ R \ {0} such that rm = 0}
is a submodule of M . It is called the torsion submodule of M and elements inside it are called
torsion elements.

Proposition 8.11. Let M be a R-module. Suppose that A and B are two submodules such
that A ∩B = {0} and A+B = M . Then M ∼= A⊕B.

Proof. Define a homomorphism ϕ : A ⊕ B → M by ϕ(a, b) = a + b. It is surjective since
A+B = M and it is injective since A ∩B = {0}. �

Proposition 8.12. Let π : M → F be a surjective homomorphism with F free. Then there
exists s : F →M with π ◦ s = idF .

Remark 8.13. This is sometimes referred to as “free modules are projective”, since this prop-
erty being ascertained about F is one definition of being a projective module. We won’t have
any further reasons to talk about projective modules in this course, but they play a pivotal
role in homological algebra later on.

Proof. Let B be a basis of F . For each b ∈ B, choose s(b) ∈ f−1(b). This extends uniquely
to a desired homomorphism s : F →M . �

9. Noetherian Modules

This is a technical section on finiteness properties for modules needed in order to prove
Theorem 11.3. It can be skipped until needed. It contains a proof of the fact that a subgroup
of a finitely generated abelian group is finitely generated. (the corresponding statement with
the word abelian removed is false).
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Definition 9.1. Let M be an R-module. Then M is Noetherian if every ascending chain of
ideals stabilises.

Theorem 9.2. Let R be a Noetherian ring. Then any finitely generated R-module is Noe-
therian.

Corollary 9.3. Let R be a Noetherian ring. Then any submodule of a finitely generated
R-module is finitely generated.

10. Presentation Matrices

Let M be a R-module. Let {mi}i∈I be a generating set for M . Define ψ : RI → M by
ψ((ri)) =

∑
i rimi. Then ψ is surjective.

We now perform the same construction to kerψ, to obtain a surjective homomorphism
ϕ : RJ → kerψ. Consider the composition, which by abuse of notation we’ll also call ϕ:

ϕ : RJ � kerψ ↪→ RI .

The homomorphism ϕ : RJ → RI can be expressed by a matrix Φ with entries in R (just
like in traditional linear algebra). Such a matrix is called a presentation matrix for M . Note,
this matrix is very far from being unique.

The module M can be reconstructed from a presentation matrix ϕ as M ∼= cokerϕ. (the
cokernel of f : M → N is defined to be coker f = N/ im f).

10.1. Generators and Relations. There is another way to think about presentation ma-
trices in terms of generators and relations.

Theorem 10.1. Let Φ be a presentation matrix for a module M as constructed above. Then
M is generated by elements {mi}i∈I subject to one relation from each column of Φ, namely∑

i Φijmi = 0.

To say that a module M is given by generators {mi} subject to some relations means that
the elements {mi} generate M and that every identity that holds in M can be decuded from
the given set of relations.

Lemma 10.2. Let π : A → B and ϕ : C → D be two R-module homomorphisms. Suppose
that there exist isomorphisms f : A → C and g : B → D such that ϕ ◦ f = g ◦ π. Then
cokerπ ∼= cokerϕ.

11. Smith Normal Form

Theorem 11.1 (Smith Normal Form). Let R be a principal ideal domain. Let X ∈Matm×n(R).
Then there exists A ∈ GLm(R) and B ∈ GLn(R) such that the only nonzero elements of AXB
are on the main diagonal, and if d1, d2, . . . , dmin(m,n) denote these elements, then di | di+1 for
all i.

Proof. We will say that X ∼ X ′ if there exists A ∈ GLm(R) and B ∈ GLn(R) with X ′ =
AXB. Let xij denote the entry of X in the (i, j)-th position.

Suppose that x11 - x1j for some j > 1. Let e = gcd(x11, x1j). Then e 6= 0 (if e = 0 then
x11 = x1j = 0 which contradicts our assumption).
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Then as R is a PID, there exists a, b ∈ R with e = ax11 + bx1j Let B = (bkl) be the n× n
matrix with b11 = a, bj1 = b, b1j = −x1j/e, bjj = −x11/e, bkk = 1 if k 6= 1, j and all other
entries are zero. Then det(B) = 1 so B ∈ GLn(R). Let X ′ = XB. Then x′11 = e is a proper
divisor of x11 and x′11 | x′1j .

There is a similar construction we can do if x11 does not divide an entry in the same
column. �

If R is a Euclidean domain, there is a stronger version of Smith Normal Form:

Theorem 11.2. (SNF for a Euclidean domain) Let R be a Euclidean domain. Let X be a
matrix with entries in R. Then after applying row and column operations, it is possible to
turn X into a matrix whose only nonzero entries are along the diagonal, d1, d2, . . . and satisfy
d1 | d2 | · · ·

Theorem 11.3. Let R be a principal ideal domain. Let M be an R-module and let A be a
presentation matrix of M . Then

M ∼= R/(d1)⊕R/(d2)⊕ · · · ⊕R/(dm)

where the Smith Normal form of A has diagonal entries d1, . . . , dmin(m,n) and di = 0 if
i > min(m,n).

Proof. The major part of the proof is Theorem 11.1. We also need Lemma 10.2, Theorem
6.16 and §9 to finish. �

When R = Z, we obtain the classification of abelian groups.

Theorem 11.4. Let F be a field and C be a finite subgroup of F×. Then C is cyclic.

Proof. By the classification theorem for abelian groups, either C is cyclic or there exists
n < |C| with xn = 1 for all x ∈ C. The latter cannot occur since a polynomial over a field
cannot have more roots than its degree. �

Remark 11.5. This theorem subsumes the classical result in number theory that a primitive
root exists modulo every prime.

When R = k[x] when k is an algebraically closed field, we obtain Jordan normal form.
When R = k[x] where k is a field, we obtain the rational canonical form.

12. Irreducibility of Polynomials

One frequently wants to know when single variable polynomials over a field are irreducible
(c.f. the following sections where they are used to construct field extensions). Here we present
a couple of techniques.

Theorem 12.1. Let R be a unique factorisation domain and let F = Frac(R). If f(x) ∈ R[x]
is irreducible, then f(x) is irreducible in F [x]

Proof. This follows from Gauss’ Lemma (Theorem 7.4). �
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It is common to use this result to turn questions about irreducibility in F [x] into questions
about irreducibility in R[x], where we have more techniques at our disposal, in particular
reducing modulo an ideal. Sometimes the techniques of proof in the below are more important
and more applicable than the statements.

Theorem 12.2. Let R be a ring and I an ideal of R. Let f(x) ∈ R[x] be monic. If f(x) is
irreducible in (R/I)[x], then f(x) is irreducible in R[x].

Theorem 12.3. (Eisenstein’s criterion) Let R be an integral domain. Let f(x) =
∑n

i=0 anx
n ∈

R[x] be a polynomial such that there exists a prime p ∈ R with p - an, p | ai for all i < n and
p2 - a0. If f(x) = g(x)h(x) for g(x), h(x) ∈ R[x], then either g(x) or h(x) is constant.

Proof. Look at the lowest degree coefficients of g(x) and h(x) which are not divisible by p.
They multiply to give the lowest degree coefficient of f(x) which is not divisible by p (since p
is prime). Since the only coefficient of f(x) which is not divisible by p is the leading one, each
of g(x) and h(x) can only have their leading coefficient not divisible by p. So if g(x) and h(x)
are both of positive degree, their constant terms are both divisible by p, which contradicts
p2 - a0. �

Remark 12.4. There is a version where primes are replaced by prime ideals. We shan’t need
that version in this course.

Remark 12.5. Eisenstein’s criterion is generalised using Newton polygons (one keyword: p-
adic numbers), which is really all about keeping track of what powers of p appear everywhere.

Example 12.6. Let p be a prime. Then the polynomial

xp − 1

x− 1

is irreducible over Q.

Proof. Make the substitution x = y + 1 and apply Eisenstein’s criterion. �

Remark 12.7. This example is generalised in §21.

13. Field Extensions

If F is a subfield of a field K, then we say that K is a field extension of F . Sometimes we
write K/F to talk about a field extensions, this is just a piece of notation which means“over
F”, and does not indicate a quotient.

Definition 13.1. If K/F is a field extension and α ∈ K, then we say α is algebraic over
F if α is the root of a nonzero polynomial with coefficients in F . Otherwise we say α is
trancendental.

For example 2πi is algebraic over R and trancendental over Q. The former is because 2πi
is a root of the polynomial x2 + 4π while the latter fact is a famous theorem.

With notation as above, we let F [α] be the smallest subring of K containing F and α, and
let F (α) be the smallest subfield of K containing F and α.

There is always a unique homomorphism F [x]→ K sending x to α. Its image is F [α]. Its
kernel is trivial if α is trancendental, otherwise it is a principal ideal generated by a monic
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polynomial m(x). This is the smallest degree monic polynomial which has α as a root and is
called the minimal polynomial of α (over F ). The degree of α is defined to be the degree of
this polynomial.

The following is immediate and rather useful:

Proposition 13.2. Let K/F be a field extension and let α ∈ K. Let m(x) be the minimal
polynomial of α. Then for f ∈ F [x], f(α) = 0 if and only if m(x) | f(x).

The following is very useful.

Theorem 13.3. Let F be a field and p(x) ∈ F [x] be a polynomial of degree d ≥ 0. Then

dimF (F [x]/(p(x))) = d.

Proof. We prove this by showing that 1, x, x2, . . . , xd−1 form a basis.
To show they span, let f ∈ F [x]. Then by the division algorithm, we can write f = pq+ r

with deg(r) < d. Therefore f = r in F [x]/(p(x). Since deg(r) < d, the element r is in the
span of 1, x, x2, . . . , xd−1 and therefore f is as well.

Now to show they are linearly independent, suppose a0 + a1x+ · · ·+ an−1x
d−1 = 0. Write

a(x) for this polynomial. Then p(x) | a(x). Since deg(a) < deg(p), the only way this is
possible is if a(x) = 0, implying ai = 0 for all i as required. �

Theorem 13.4. Let K/F be a field extension and α ∈ K. Then α is algebraic over F if and
only if F [α] is a field.

Proof. Suppose α is algebraic over F (the other direction is straightforward). Consider the
canonical homomorphism ϕ : F [x]→ K defined by ϕ(x) = α. Consider the ideal kerϕ. It is
a principal ideal since F [x] is a principal ideal domain. Let d(x) be a generator of this ideal.
Since α is assumed to be algebraic, d(x) 6= 0. The first isomorphism theorem shows that
F [x]/(d(x)) ∼= F [α]. Since F [α] is a subring of a field, it is an integral domain. Therefore
d(x) is irreducible. By Theorem 6.15, F [x]/(d(x)) is a field. �

Definition 13.5. The degree of a field extension K/F , denoted [K : F ] is defined to be the
dimension of K as a F -vector space.

For example, the degree of α is equal to [F [α] : F ].
If the degree is finite, we say that K/F is a finite extension.

Proposition 13.6. If K/F is a finite field extension, then every element of K is algebraic
over F .

Proof. Let d = [K : F ]. Then for all α ∈ K, the set {1, α, α2, . . . , αd} has d+ 1 elements thus
is linearly dependent over F . �

Proposition 13.7. Let K be a field extension of F and L be a field extension of K. Then
[L : F ] = [L : K][K : F ].

Proof. Let ai be a basis of L over K. Let bj be a basis of K over F . Consider the set of
products {aibj}. We will show this set is a basis of L over F .

Let x ∈ L. Then there exists ki ∈ K with x =
∑

i kiai. For each i there exists cij ∈ F
with ki =

∑
j cijbj . Then x =

∑
i,j cijaibj so this is a spanning set.
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Suppose cij ∈ F are such that
∑

ij cijaibj = 0. Write this as
∑

i(
∑

j cijbj)ai = 0. As

the ai are linearly independent over K, we get
∑

j cijbj = 0 for all j. As the bj are linearly
independent over F , we get cij = 0 for all i, j, as required. �

Remark 13.8. The above result and proof work whether or not the extensions involved are
finite.

Let K be a field extension of F . Define Kalg to be the subset of all algebraic elements of
K.

Definition 13.9. A field is algebraically closed if every nonconstant polynomial has a root.

Example 13.10. The field of complex numbers is algebraically closed. A proof is given in
Section 18.

Theorem 13.11. Let K be a field extension of F . Then Kalg is a field. If K is algebraically
closed, then Kalg is algebraically closed.

Proof. Let α and β be in Kalg. From Theorem 13.4, it suffices to show that α+β and αβ are
in Kalg. As β is algebraic over F , it is algebraic over F [α]. Therefore F [α, β] is finite over F .
As α + β and αβ are in F [α, β] which is a finite extension of F , they are algebraic over F ,
which finishes the proof that Kalg is a field.

Now assume K is algebraically closed. Suppose that f(x) =
∑

ai
xi ∈ Kalg[x] and z ∈ K

is such that f(z) = 0. Then z is algebraic over F [α0, . . . , an] which is finite over F , therefore
z lives in a finite extension of F , therefore z ∈ Kalg which prove that Kalg is algebraically
closed. �

Definition 13.12. Let R be a ring and f(x) =
∑n

i=0 aix
i ∈ R[x]. Its derivative is defined to

be

f ′(x) =
n∑
i=1

iaix
i−1.

Theorem 13.13. The derivative satisfies the usual product and sum rules from calculus:

(f + g)′ = f ′ + g′ (fg)′ = f(g′) + (f ′)g.

Proof. We show one way to deduce this theorem from the usual sum and product rules
from calculus (A more boring proof exists, where you just expand everything out using the
definitions, but lets pretend we don’t see that and continue). Let f(x) =

∑n
i=0 aix

i and

g(x) =
∑m

j=0 bjx
j . Expanding out (fg)′ from the definition, the coefficient of xk is some

polynomial F (a0, . . . , an, b0, . . . , bm). Expanding out f(g′)+(f ′)g, the coefficient of xk is some
polynomial G(a0, . . . , an, b0, . . . , bm). The polynomials F and G have integer coefficients and
do not depend on the ring R, which can now be safely forgotten about.

We rely on the following standard fact (which you should be able to prove): If two polyno-
mials with integer coefficients F (x1, . . . , xn) and G(x1, . . . , xn) are the same when evaluated
at all points of Rn, then they are identical polynomials. (Bonus useless paranthetical fact:
there exists a single point in Rn at which equality of the evaluations implies equality of the
polynomials!).
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Once we have this fact, we may say without loss of generality that R = R in which case
the desired equality follows from the fact that we have defined the derivative to agree with
that from calculus when R = R, together with the product rule in calclulus. �

Definition 13.14. If K is a field and f ∈ K[x], we say that α ∈ K is a double root of f if
(x− α)2 | f .

Theorem 13.15. Let F be a field and f ∈ F [x]. Then there exists a field extension K/F in
which F has a double root if and only if gcd(f, f ′) 6= 1.

Proof. If F has a double root α in K, then f = (x − α)2g for some g ∈ K[x]. Then
f ′ = (x − α)2g′ + 2(x − α)g, so x − α is a common factor of f and f ′, implying their gcd is
not 1.

Conversely, suppose gcd(f, f ′) 6= 1. Let d be a nontrivial common divisor of f and f ′. Let
K be a field extension in which d has a root α. Then x−α divides d, hence divides f and f ′

in K[x]. Write f = (x− α)g. Then f ′ = g + (x− α)g′, so as x− α divides f ′, it must divide
g. Therefore (x− α)2 divides f as required. �

Proposition 13.16. If F is a field of characteristic zero and f ∈ F [x] is irreducible, then
gcd(f, f ′) = 1.

Proof. Since F has characteristic zero, f ′ 6= 0. Since deg(f ′) < deg(f), gcd(f, f ′) is a proper
divisor of f , hence is constant as f is irrecucible. �

Corollary 13.17. If F is a field of characteristic zero and f ∈ F [x] is irreducible, then f
has no double roots in any field extension of F .

Example 13.18. If F is of characteristic p > 0, it is possible for an irreducible polynomial
to have vanishing derivative. For example if F = Fp(t) and f(x) = xp − t. This polynomial

has a root of multiplicity p in the extension F (t1/p) as over this field, f(x) = (x− t1/p)p.

14. Galois Groups

Definition 14.1. Let K/F be a field extension. A F -automorphism of K is an isomorphism
σ : K → K which is the identity when restricted to F .

Example 14.2. Complex conjugation is a R-automorphism of C. Complex conjugation is
not a Q[i]-automorphism of C.

Example 14.3. The field extension Q[ 3
√

2]/Q has no automorphisms apart from the identity.

To prove this, suppose σ : Q[ 3
√

2] → Q[ 3
√

2] is an automorphism. Then (σ( 3
√

2))3 − 2 = 0.
If σ( 3

√
2) = 3

√
2, then σ is the identity, as 3

√
2 generates the field extension. So it must be that

σ( 3
√

2) = ζ 3
√

2 for some nontrivial third root of unity ζ (we do this computation in C). For σ
to be an automorphism requires ζ ∈ Q[ 3

√
2]. But ζ 6∈ R and Q[ 3

√
2] ⊂ R, a contradiciton.

This example shows a general philosophy that we can constrain field automorphisms by
looking at how they behave on generators. What is so far missing is how to construct field
automorphisms. One method is by the following theorem:

Theorem 14.4. Let F be a field, f ∈ F [x] be irreducible and K = F [x]/(f). If α and β are
two roots of f in K, then there is a unique F -automorphism of K sending α to β.
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Proof. Construct isomorphisms from F [x]/(f) to K sending x to α and β respctively. �

Example 14.5. If p is prime and ζ = e2πi/p, then for every integer d not divisible by p, there
is an automorphism σ of Q[ζ] with σ(ζ) = ζd.

Remark 14.6. This produces p−1 automorphisms of Q[ζ] (which is all of them - to prove there
are no more, note that if σ is an automorphism, it is completely determined by where it sends
ζ. Existence is discussed below) Under composition they form a group which is isomorphic
to (Z/pZ)× (which is non-canonically cyclic of order p− 1). This example generalises to the
extension field of Q generated by any root of unity. (The statement is that if ζ is a primitive
n-th root of 1, then Q[ζ] is Galois over Q with Galois group (Z/nZ)×).)

The existence of these automorphisms follows from Theorem 14.4 applied to f(x) = xp−1
x−1 ,

noting that ζ and ζd are both roots of f . Note the irreducibility of f(x) was discussed in
Example 12.6.

Theorem 14.7. Let K be a field and G a finite group of automorphisms of K. Then [K :
KG] = |G|.

Proof. Let n = |G|. Let a0, a1, . . . , an ∈ K be n + 1 elements of K. Consider the system of
n equations,

n∑
i=0

xiσ(ai) = 0,

one equation for each σ ∈ G. Let V be the set of tuples (x0, . . . , xn) satisfying these equations.
Since there are more variables than equations, there exists a nonzero element of V . Let

(x0, . . . , xn) be a nonzero element of V with a minimal number of nonzero entries. As V is a
K-vector space, without loss of generality x0 = 1. For any g ∈ G, he element

(0, x1 − g(x1), x2 − g(x2), . . . , xn − g(xn))

also lies in V . By our minimality assumption it must be zero. Therefore g(xi) = xi for all
i and all g ∈ G. Therefore each xi is in KG. Taking σ to be the identity shows that the
elements ai are linearly dependent over KG. Since we’ve shown every set of n + 1 elements
is linearly dependent, [K : KG] ≤ n.

Now let G = {σ1, . . . , σn} and let us consider the system of equations

n∑
i=1

yiσi(x) = 0 for all x ∈ K. (14.1)

Note that if we let x run over a KG-basis of K, then we get a linear system, the solution
of which implies we get a solution to (14.1). So if [K : KG] < n, then there is always a
nontrivial solution.

Now suppose that we have a non-trivial solution (y1, . . . , yn) to (14.1) and choose that
solution to have as few nonzero terms as possible.

If the solution has one nonzero term, then it reduces to yiσi(x) = 0 with yi 6= 0, which
forces x = 0 which is absurd so cannot happen. So suppose that without loss of generality
y1 and y2 are nonzero. Let z ∈ K be an element with σ1(z) 6= σ2(z)
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The element

σ1(z)(y1, . . . , yn)− (σ1(z)y1, σ2(z)y2, . . . , σn(z)yn)

is also a solution to (14.1). Since (σ1(z) − σ2(z))y2 6= 0, this contradicts our minimality
assumption. Therefore no nontrivial solution to (14.1) can exist and hence [K : KG] ≥ n.

The two inequalities we have proved together provide a proof of this theorem. �

15. Separability

Definition 15.1. A field extension K/F is separable if for all α ∈ K algebraic over F with
minimial polynomial f(x), we have f ′(x) 6= 0.

The condition f ′(x) 6= 0 is equivalent to f not having a multiple root in any field extension,
and is always true when F has characteristic zero.

The standard example of an inseparable field extension is K = F [x]/(xp − t) where t ∈ F
is an element with no p-th root in F and F is a field of characteristic p.

Theorem 15.2. (Primitive Element Theorem) Let K/F be a finite separable extension. Then
there exists α ∈ F with K = F [α].

Proof. If F is finite, then we can take α to be a generator of the cyclic group K× (see Theorem
11.4 for the proof that K× is cyclic). For the rest of the proof, suppose that K is infinite.

First suppose that K = F [α, β]. Let f(x) and g(x) be the minimal polynomials of α and
β respectively in F [x]. Let L be an extension field in which f and g split into linear factors.
In L[x], suppose

f(x) =
n∏
i=1

(x− αi) and g(x) =
m∏
j=1

(x− βj).

Choose t ∈ F such that the mn numbers αi + tβj are all distinct. This is possible since F is
infinite and K/F is separable, which implies that α1, . . . , αn are distinct, and that β1, . . . , βm
are distinct. Let γ = α+ tβ. We will show that K = F [γ].

Consider the polynomial h(x) = f(γ − tx). Then h(β) = 0 so h and g have a common
factor. Suppose h(βj) = 0. Then f(γ − tβj) = 0 and hence γ − tβj = αi for some i. Since
the numbers αi + tβj are all distinct, the only solution is αi = α and βi = β.

Therefore β is the only common root of g and h in L and hence gcd(h, g) = x− β. Both h
and g are in F [γ][x]. Since the gcd is the same whether or not the computation is performed
in L[x] or F [γ][x], we deduce that β ∈ F [γ]. Since α = γ − tβ, we also get α ∈ F [γ].

Therefore K = F [α, β] ⊂ F [γ] ⊂ K. Hence all inclusions are equalities and we’ve shown
K = F [γ] as required.

This concludes the argument when K is genereated by two elements and F is infinite. An
induction on the number of generators then proves the general case when F is infinte. �

16. Normal and Galois Extensions

From hereon out, we will occasionally only prove results in characteristic zero. We will
endeavour to ensure that the statements made are true without this restriction, we make this
assumption at times in order to avoid technical discussions on separability that otherwise will
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appear within proofs. I believe the Stacks Project is a reliable source that covers all the
details with no restrictions on the characteristic.

Definition 16.1. A finite field extension K/F is normal if every irreducible polynomial in
F [x] which has a root in K splits in K.

Lemma 16.2. Let K/E/F be a tower of finite field extensions. If K/F is normal then K/E
is normal.

Proof. Let f(x) ∈ E[x] be an irreducible polynomial with a root α ∈ K. Let g(x) ∈ F [x]
be the minimal polynomial of α over F . Then f(x) | g(x). Since K/F is normal, g splits
into linear factors in K[x], and hence so does f , as it is a divisor of g. Therefore K/E is
normal. �

Proposition 16.3. Let K/F be a splitting field of a polynomial f(x) ∈ F [x]. Then K is a
normal extension of F .

Proof. Let g(x) ∈ F [x] be irreducible and suppose β ∈ K is a root of g. We have to show
that g splits into linear factors in K[x].

Let α1, . . . , αn be the roots (with multiplicity) of f(x). As K is a splitting field for f ,
K = F [α1, . . . , αn]. Therefore there exists a polynomial h such that β = h(α1, . . . , αn).
Define the polynomial

p(x) =
∏
σ∈Sn

(
x− h(aσ(1), aσ(2), . . . , aσ(n)

)
The coefficients of p are symmetric polynomials in α1, . . . , αn, hence are polynomials in

the elementary symmetric functions of α1, . . . , αn, hence are polynomials in the coefficients
of f(x). As f(x) ∈ F [x], this implies p(x) ∈ F [x].

As p(β) = 0 and g is the minimal polynomial of β, g | p. As p splits over K, this implies
g splits over K, as required. �

Theorem 16.4. Let K/F be a finite field extension. The following are equivalent

(1) |AutF (K)| = [K : F ],

(2) F = KAutF (K),
(3) K/F is normal and separable,
(4) K/F is the splitting field of a separable polynomial over F .

Definition 16.5. If a finite field extension K/F satisfies the conditions of the above theorem,
we say it is Galois. The Galois group of K/F is then defined to be GalF (K) = AutF (K).

We will only give a complete proof when the fields involved are of characteristic zero, which
means we can ignore all of the separability hypotheses.

Proof. The equivalence of (1) and (2) is by Theorem 14.7. The implication (4) implies (3) is
Proposition 16.3. We next show that (3) implies (1).

Let K/F be a normal separable extension. By the primitive element theorem, there exists
α ∈ K with K = F [α]. Let f be the minimal polynomial of α over F . Since K is normal, F
splits over K.

https://stacks.math.columbia.edu/
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Let n = [K : F ]. Then n = deg(f) and f has n roots in K. By Theorem 14.4, for each
root α′ of f , there exists an automorphism of K sending α to α′.

Therefore |Aut(K/F )| ≥ n. The other inequality is straightforward as every automorphism
is completely determined by its value on α, and must send α to another root of f . This
completes the proof that (3) implies (1).

We now show that (1) implies (4). By the primitive element theorem, there exists α ∈ K
with K = F [α]. Let f be the minimal polynomial of α over F . Let n = [K : F ]. Then
n = deg(f) and |Aut(K/F )| = n by assumption.

For each σ ∈ Aut(K/F ), σ(α) is a root of f . The elements σ(α) are all distinct as α
generates K. Therefore we have shown that f has n roots in K. As n = deg(f), this implies
that K is a splitting field for f , completing the proof. �

The following is the main theorem of Galois Theory. Let K/F be a Galois field extension
with G = Gal(K/F ). To a subgroup H of G, we can associate an intermediate field E = KH .
To an intermediate field E, we can associate a subgoup AutE(K) of G. The main theorem
of Galois theory says that these two operations are inverse to each other.

Theorem 16.6. (Main Theorem of Galois Theory) Let K/F be a Galois extension with
Galois group G. Then there is an inclusion-reversing bijection between intermediate fields E
and subgroups of H. This bijection sends an intermediate field E to the subgroup Aut(K/E)
and a subgroup H to the fixed field KH .

Proof. Let H be a subgroup of G. The corresponding intermediate field is E = KH . We
have to show that AutE(K) = H. Note that there is a canonical inclusion H ⊂ AutE(K).
Note that K/E satisfies condition (2) of Theorem 16.4, hence satisfies condition (1), i.e.
|AutE(K)| = [K : E], which is known to equal |H| by Theorem 14.7. Hence the inclusion
H ⊂ AutE(K) must be an equality.

Now, let E be an intermediate field. We have to show that KAutE(K) = E. Since K is a
Galois extension of F , the field K is normal and separable over F , hence by Lemma 16.2, K
is normal and separable over E. The implication (3) implies (2) of Theorem 16.4 provides
the desired conclusion.

These paragraphs show that the two functions from intermediate fields to subgroups and
vice versa are inverses. �

Lemma 16.7. Let E be a finite field extension of F and K a field extension of F . Then
there are at most [E : F ] distinct injections of fields E ↪→ K that fix F .

Remark 16.8. Equality is satisfied when K is sufficiently large over F , in particular when K
contains a subfield K ′ which is Galois over F and K ′ contains a subfield isomorphic to E.
Given E/F , a necessary and sufficient condition for such a field K to exist is that E/F is
separable.

For simplicity, we only prove this under the additional assumption when E/F is separable.

Proof. By the primitive element theorem, write E = F [γ]. Let f(x) ∈ F [x] be the minimal
polynomial of γ. Let n = [E : F ] be its degree. If σ : E → K is a field homomorphism fixing
F then σ is completely determined by σ(γ). As σ(γ) is a root of f(x) which has degree n,
there are at most n choices. �
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Theorem 16.9. Let K/F be a finite Galois field extension with G = Gal(K/F ). Let E be an
intermediate field and H = Gal(K/E) its corresponding subgroup of G. Then E/F is Galois
if and only if H is normal. Furthermore if this is the case, then Gal(E/F ) = G/H.

Proof. First suppose E/F is Galois. Each of the [E : F ] elements of GalF (E) gives a different
embedding of E into E (and hence into K). So by Lemma 16.7, there are no more field
embeddings of E into K. Now let σ ∈ GalF (K). Then e 7→ σ(e) is a field embedding of
E into K. Therefore it must be one of the ones already found, so the image of σ is E.
Restricting to σ therefore defines for us a group homomorphism ϕ : GalF (K) → GalF (E).
Its kernel is AutE(K) = GalE(K) which is therefore a normal subgroup of GalF (K).

Conversely suppose that H is a normal subgroup of G. Let σ ∈ G and e ∈ E. Let h ∈ H.
Then

h(σ(e)) = σ(σ−1hσ)(e) = σ(e),

the last equality being because H is normal, so σ−1hσ ∈ H, which fixes E. Since E is
the fixed field of H, this implies that σ(e) ∈ E. Therefore restriction to H defines a group
homomorphism ϕ : GalF (K) → AutF (E). The kernel again is H, so we have an injection
G/H ↪→ AutF (E). Therefore |AutF (E)| ≥ |G/H| = [E : F ], so E/F is Galois.

In the course of the proof, we also saw that GalF (E) ∼= G/H.
�

17. Examples

Lemma 17.1. Let p be a prime. Let G be a transitive subgroup of Sp that contains a
transposition. Then G = Sp.

Proof. Construct a graph on {1, 2, . . . , p} where vertices i and j are joined by an edge if
(ij) ∈ G. Since (ij)(jk)(ij) = (ik) and G is a subgroup, the graph is a disjoint union of
complete graphs. Since G is transtive, every vertex has the same degree. Therefore the
graph is a disjoint union of complete graphs of the same size. Since p is prime, this size
is either 1 or p. It cannot be 1 as G contains a transposition. Therefore our graph is the
complete graph on p vertices, which implies G = Sp. �

Example 17.2. The Galois group of f(x) = x5 − 6x+ 3 over Q is S5.

Proof. f is irreducible by Eisenstein’s criterion at the prime 3. f has three real roots so
complex conjugation gives the existence of a transposition in the Galois group. By Lemma
17.1, the Galois group is S5. �

Example 17.3. Let p be a prime and n an integer which is not a p-th power. The Galois
group of f(x) = xp − n over Q is the group of matrices of the form ( a b0 1 ) where a, b ∈ Fp.

Proof. Let ζ = e2πi/p. The assumption that n is not a p-th power implies that xp − n is
irreducible (e.g. because no proper subset of the roots of xp − n multiply to an integer, as

can be seen simply by considering their absolute value). The splitting field contains Q[n1/p]
which is of degree p and Q[ζ], which is of degree p− 1. Hence p(p− 1) divides the degree of

the splitting field. Since the splitting field is contained in Q[n1/p, ζ], it is equal to this and of
degree p(p− 1).
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For every α ∈ F×p and b ∈ Fp, there is a corresponding isomorphism σa,b of Q[n1/p, ζ] where

σa,b(n
1/p) = ζbn1/p, σa,b(ζ) = ζa.

This is because every automorphism of Q[n1/p, ζ] must be of this form, and there are p(p −
1) automorphisms of Q[n1/p, ζ], hence each of these candidate automorphisms are actually
automorphisms. We leave it as an exercise to check the isomorphism with the group claimed
in the statement.

�

18. The complex numbers are algebraically closed

There are many proofs that C is algebraically closed. We give one closest in spirit to the
techniques developed in this course.

Theorem 18.1. The complex numbers are an algebraically closed field.

Proof. Let K be a finite extension of R. It suffices to show that K = C or K = R.
Without loss of generality, assume K is Galois over R. Let G = Gal(K/R). Let P be

a Sylow-2-subgroup of G. Let E = KP . Then [E : R] is odd. By the intermediate value
theorem, every odd degree polynomial with coefficients in R has a real root, hence cannot be
irreducible. Therefore E = R and G is a 2-group.

If G = {1} then K = R. Suppose G 6= 1. Then as it is a 2-group, it has an index two
subgroup H. Let E = KH . Then [E : R] = 2. Since every quadratic polynomial with
coefficients in R has roots in C by the quadratic formula, it must be that E = C. Now if
H = {1} then K = C and we’re done. If H 6= 1, it has an index two subgroup Q. Let
E = KQ. Then [E : C] = 2. But by the quadratic formula, since every complex number has
a square root in C, every quadratic polynomial with coefficients in C has a root in C. Thus
there are no quadratic extensions of C, a contradiction. �

19. Solvable Numbers

This section discusses which numbers have expressions involving surds. First a proposition.

Proposition 19.1. Let E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En be a tower of fields, with each Ei/Ei−1
Galois with abelian Galois group. Let K/E0 be a Galois extension with K ⊂ En. Then
Gal(K/E0) is a solvable group.

Proof. We induct on n, the base case n = 0 being trivial. Let L be the smallest subfield of
En containing K and L (L is the compositium of E1 and K (inside En)). If f ∈ E0[x] is a
polynomial such that E1 is the splitting field of f and g ∈ E0[x] is a polynomial such that K
is the splitting field of g, then L is the splitting field of fg. Then L is a Galois extension of
E0 as it is a splitting field.

By induction, Gal(L/E1) is solvable. Since Gal(L/E0)/Gal(L/E1) ∼= Gal(E1/E0) which is
abelian, this implies that Gal(L/E0) is solvable. Since Gal(K/E0) is a quotient of Gal(L/E0),
we conclude that Gal(K/E0) is solvable. �
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Definition 19.2. Let α ∈ C. We say α is solvable if it can be obtained from Q using a finite
number of operations from addition, subtraction, multiplication, division and extracting n-th
roots.

It is clear that every solvable number is algebraic.

Theorem 19.3. Let α ∈ Q. Let K be the Galois closure of Q[α]. Then α is solvable if and
only if Gal(K/Q) is a solvable group.

We will only discuss the direction where if α is solvable then Gal(K/Q) is a solvable group.
The other direction requires Kummer theory.

Proof. (Sketch): Inductively construct a tower of fields Q = E0 ⊂ E1 ⊂ E2 ⊂ · · · . First take

E1 = Q[e2πi/n] for some n. Then for k ≥ 1, make each Ek+1/Ek to be adjoining a d-th root
of some element in Ek, for some d | n. If α is solvable, every Galois conjugate of α is also
solvable, then the tower can be extended so that every Galois conjugate of α lies in EN for
some N . Then K is a subfield of EN .

Show that each extension Ek+1/Ek is Galois with abelian Galois group.
The situation is now as follows: We have K/E0 Galois with Galois group G. We have a

tower of field extensions E0 ⊂ E1 ⊂ · · · ⊂ EN with each Ek+1/Ek Galois with abelian Galois
group. The solvability of Gal(K/Q) follows from Proposition 19.1. �

20. Finite fields

Theorem 20.1. Let q be a power of a prime p. Then there exists a unique field with q
elements.

Proof. First we show existence. Let F be the splitting field of f(x) = xq − x over Fp. Note
that as f ′(x) = −1, f(x) has no multiple roots in F , hence has exactly q roots in F . Let

F ′ = {y ∈ F | yq = y}.

Then |F ′| = q and by Freshman’s Dream2, F ′ is a subfield of F . This concludes existence.
Now let K be a field of order q. Since q is a power of p, K is a finite extension of Fp. By

the primitive element theorem we can find g(x) ∈ Fp[x] such that K ∼= F [x]/(g(x)). Since
g(x) divides xq − x, g(x) has a root in F ′. Let α be this root. Then x 7→ α defines an
injection of fields from K to F ′. Since they have the same cardinality, they are the same,
proving uniqueness. �

Remark 20.2. In the above proof, the field F ′ is actually equal to F .

The unique field of order q is often denoted Fq.

2Freshman’s Dream is the identity (x + y)q = xq + yq
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21. Cyclotomic Polynomials

(This section is unlikely to be explicitly covered in the course). Let n be a positive integer.
The n-th cyclotomic polynomial Φn(x) ∈ Z[x] is defined to be

Φn(x) =
∏

1≤k≤n
gcd(k,n)=1

(x− e
2πik
n ).

An alternative description is ∏
d|n

Φd(x) = xn − 1,

which makes it clear that Φn(x) ∈ Z[x] by induction on n.

Theorem 21.1. For all integers n, the polynomial Φn(x) is irreducible.

Remark 21.2. When n is a power of a prime, we can prove this using Eisenstein’s criterion.
The prove we give here does not specialise to that proof.

Proof. Suppose Φn(x) = g(x)h(x) for some g(x), h(x) ∈ Z[x]. Let p be a prime that does not
divide n. Let ζ be a root of g(x). We will show that ζp is a root of g(x).

Suppose not, then ζp is a root of h(x), so ζ is a root of h(xp). Therefore h(xp) and g(x)
have a common factor. Reducing modulo p, we see that h(xp) = h(x)p and g(x) have a
common factor modulo p, i.e. h(x) and g(x) have a common factor modulo p. But then
xn − 1 has a double root modulo p, which is not true as its derivative is nxn−1, which only
has the root zero, as p - n.

We have shown that if ζ is a root of g(x), then ζp is also a root of g(x). Since this is true
for all primes p coprime to n, either g(x) is constant or all primitive n-th roots of 1 must be
roots of g(x), which means h(x) is constant. Therefore Φn(x) is irreducible. �

We can now prove the following generalisation of Example 14.5:

Theorem 21.3. The field Q[e
2πi
n ] is a Galois extension of Q with Galois group (Z/nZ)×

22. Trancendental Numbers

This is an optional extra. The set of polynomials with coefficients in Q is countable,
hence the set of complex numbers algebraic over Q is countable. So, in one very precise
measure-theoretic sense, almost all complex numbers are trancendental.

The simplest way to write down a trancendental number is to take a limit of a sequence
that converges too fast. For example

∞∑
n=1

1

2f(n)

works as long as f : N → N grows fast enough. It is not hard to show that if α is algebraic
and irrational, then there exists d and C such that∣∣∣∣α− p

q

∣∣∣∣ > Cq−d
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for all integers p, q with q 6= 0. With this criteria, we can easily create trancendental numbers
of the type mentioned above.

To actually prove that certain numbers we care about are trancendental is another story.

Theorem 22.1. e is trancendental.

Proof. First the rabbit. The introduction of this function is the part of this proof I don’t
know how to motivate. Let f be a polynomial and define

I(z, f) =

ˆ z

0
ez−tf(t) dt.

Integrating by parts gives the recursion

I(z, f) = ezf(0)− f(z) + I(z, f ′)

from which we get the formula

I(z, f) = ez
∑
j≥0

f (j)(0)−
∑
j≥0

f (j)(z).

Now suppose that there exist integers a0, a1, . . . , ad, not all zero, such that
∑d

n=1 ane
n = 0.

Without loss of generality suppose that a0 6= 0. Then

d∑
n=0

anI(n, f) =
d∑

n=0

an
∑
j≥0

f (j)(n).

Let f(x) = xp−1
∏d
n=1(x− i)p where p is a prime to be determined later. From the standard

bound on an integral being at most the length of the interval times the maximum absolute
value of the integrand, we obtain a bound of the form∣∣∣∣∣

d∑
n=0

anI(n, f)

∣∣∣∣∣ ≤ ABp

for some real numbers A and B.
Since f has integer coefficients, f (j)(n) is divisible by j! for all j and all integer n. Also

f (j)(n) = 0 if n ∈ {0, 1, 2, . . . , d} and j < p, except for n = 0 and j = p−1, since in each case
f has a zero of multiplicity at least j + 1. Therefore

d∑
n=0

an
∑
j≥0

f (j)(n) ≡ a0f (p−1)(0) (mod p!).

If p > d and p - a0, then a0f
(p−1)(0) is not divisible by p, so in particular is nonzero. The

number is divisible by (p− 1)!, which implies∣∣∣∣∣∣
d∑

n=0

an
∑
j≥0

f (j)(n)

∣∣∣∣∣∣ ≥ (p− 1)!.

Since there are infinitely many primes, we may choose a prime p such that ABp < (p − 1)!
to get a contradiction. �
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Remark 22.2. It is possible to use the same rabbit to give a proof that π is trancendental. A
writeup is at http://www.petermc.net/blog/2017/02/04/pi-is-trancendental/

Email address: maths@petermc.net

http://www.petermc.net/blog/2017/02/04/pi-is-trancendental/
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