Homework 3

Due: Thursday April 25, 2013

1. Find all zeros and poles of the function

$$
\cot (z)=i \frac{e^{i z}+e^{-i z}}{e^{i z}-e^{-i z}}
$$

in the complex plane and determine their order.
2. Let f be a meromorphic function with at most a simple pole at $z_{0} \in \mathbb{C}$. Fix $0 \leq \theta \leq 2 \pi$. Let C_{ϵ} be an arc of a circle of radius ϵ, centred at z_{0}, of angular width θ. Prove that

$$
\lim _{\epsilon \rightarrow 0} \int_{C_{\epsilon}} f(z) d z=i \theta \operatorname{Res}_{z_{0}} f
$$

3. Evaluate the integral

$$
\int_{0}^{\infty} \frac{1}{1+x^{4}} d x
$$

4. Evaluate the integral

$$
\int_{0}^{\infty} \frac{\sin (x)}{x} d x
$$

This integral is not absolutely convergent, but we can interpret it as the limit as R tends to infinity of the integral over the segment $[0, R]$.
For a hint, consider a rectangular contour with one side along the x -axis and a small semicircle cut out at the origin. The function $e^{i z} / z$ has the integrand as its imaginary part when z is real.

