Homework 6

Due: Thursday May 23, 2013

1. Define the function

$$
\theta(x)=\sum_{p \leq x} \log p
$$

where the sum is over prime numbers p. Prove the identity

$$
\pi(x)=\frac{\theta(x)}{\log x}+\int_{2}^{x} \frac{\theta(t)}{t(\log t)^{2}} d t
$$

2. Let $\mathfrak{h}=\{z \in \mathbb{C} \mid \Im(z)>0\}$ and let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be a real matrix with $\operatorname{det} A>0$. Prove that the function

$$
\rho_{A}(z)=\frac{a z+b}{c z+d}
$$

is a bijection from \mathfrak{h} to \mathfrak{h}.
3. Let D be a disc with boundary C and Ω an open set containing D. Let f_{n} be a sequence of holomorphic functions converging uniformly on compact sets to a function f. Suppose that f has no zeros on C. Prove that there is an integer N such that for $n>N, f$ and f_{n} have the same number of zeros in the disc D, counted according to multiplicity.
4. Prove the identity

$$
\zeta(s)=1+\frac{1}{s-1}-s \int_{1}^{\infty} \frac{x-\lfloor x\rfloor}{x^{s+1}} d x
$$

For which values of s is the right hand side of this equation absolutely convergent?

