Solutions to 116 Homework 2

1. Write $z(t)=x(t)+i y(t)$, and $F(x+i y)=U(x, y)+i V(x, y)$. Since F is holomorphic in $\Omega \ni z(c)$, its component functions U, V are differentiable (in fact analytic) in a neighborhood of $z(c)$. By assumption, z is differentiable at c.

So $F \circ z:[a, b] \rightarrow \mathbb{C}$ is differentiable at c, with derivative given by the chain rule as

$$
(F \circ z)^{\prime}=U_{x} x^{\prime}+U_{y} y^{\prime}+i\left(V_{x} x^{\prime}+V_{y} y^{\prime}\right)
$$

where we write U_{x} for $\frac{\partial U}{\partial x}(z(c))$, etc.
Using the Cauchy-Riemann equations, we can rewrite the above as

$$
\begin{aligned}
(F \circ z)^{\prime}(c) & =U_{x} x^{\prime}-V_{x} y^{\prime}+i\left(V_{x} x^{\prime}+U_{x} y^{\prime}\right) \\
& =F^{\prime}(z(c)) z^{\prime}(c)
\end{aligned}
$$

2. Recall the ratio test: if $f=\sum_{n=0}^{\infty} a_{n} z^{n}$, and the limit

$$
L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|
$$

exists (possibly infinite), then the radius of convergence of f is $1 / L$. Here we define the ratios $1 / \infty=0$ and $1 / 0=\infty$.

In each problem we consider $\left|\frac{a_{n+1}}{a_{n}}\right|$ as n tends to ∞. Write R for the radius of convergence.
(a). Using that \log is bounded near 1 ,

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\left(\frac{\log (n+1)}{\log n}\right)^{2}=\left(1+\frac{\log \frac{n+1}{n}}{\log n}\right)^{2} \longrightarrow 1
$$

So $R=1$.
(b).

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{(n+1)!}{n!}=n \longrightarrow \infty
$$

So $R=0$.
(c).

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{(n+1)^{2}}{3^{n+1}+2(n+1)} \frac{3^{n}+2 n}{n^{2}}=1 / 3 \frac{1+3^{-n} 2 n}{1+3^{-n} 2(n+1)} \frac{(n+1)^{2}}{n^{2}} \longrightarrow 1 / 3
$$

So $R=3$.
(d).

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{(n+1)!}{(3 n+3)!} \frac{(3 n)!}{(n!)^{3}}=\frac{(n+1)^{3}}{(3 n+1)(3 n+2)(3 n+3)} \longrightarrow 1 / 27
$$

So $R=27$.
3. Trivially $f(z)=z^{2}$ is entire. So given any w and any circle C containing w, the Cauchy integral formula says

$$
f(w)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-w} d z
$$

where C is oriented counter-clockwise. In this problem $w=1$ and $C=\{|z|=$ $3\}$. So

$$
\int_{|z|=3} \frac{z^{2}}{z-1} d z=2 \pi i * 1^{2}=2 \pi i
$$

4. Since f is entire, it has a power series expansion $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ that converges on all of \mathbb{C}. And

$$
a_{n}=\frac{f^{(n)}(0)}{n!}
$$

Let C_{R} be the circle of radius. By the Cauchy integral formula,

$$
f^{(n)}(0)=\frac{n!}{2 \pi i} \int_{C_{R}} \frac{f(z)}{z^{n+1}} d z
$$

Let $P(x)=c_{0}+\ldots+c_{d} x^{d}$ be a real polynomial of degree d. Set $M=$ $\left|c_{0}\right|+\ldots+\left|c_{d}\right|$. Then for $R \gg 1$,

$$
\begin{aligned}
\left|a_{n}\right| & \leq \frac{1}{2 \pi} \int_{C_{R}} \frac{|f(z)|}{|z|^{n+1}} d z \\
& \leq \frac{1}{2 \pi R^{n+1}} \int_{C_{R}} P(R) d z \\
& \leq M R^{d-n}
\end{aligned}
$$

So if $n>d$, taking R arbitrarily large shows that $a_{n}=0$. Therefore $f(z)=a_{0}+\ldots+a_{d} z^{d}$ is a polynomial of at most degree d.

