Inequalities (19 May 2018) Peter McNamara

Some Theory

This is not an exhaustive list by any stretch of the imagination.
The most basic inequality is

$$
x^{2} \geqslant 0
$$

Always keep in mind what you know and what you have to prove. It is very frustrating to spend lots of time proving $a \geqslant c$ and $b \geqslant c$ when the question wants you to prove $a \geqslant b$, since you have made zero progress.

The first non-trivial inequality usually encountered is the AM-GM inequality:

$$
\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \geqslant \sqrt[n]{x_{1} x_{2} \cdots x_{n}}
$$

for all non-negative reals $x_{1}, x_{2}, \ldots, x_{n}$, with equality if and only if $x_{1}=$ $x_{2}=\cdots=x_{n}$.

Various generalisations to look up: Quadratic mean \geqslant Arithmetic mean \geqslant Geometric mean \geqslant Harmonic mean. This sequence of inequalities generalises to the Power mean inequality. Muirhead's inequality is also a generalisation, though is often simply provable by repeated applications of AM-GM.

Jensen's Inequality:
If f is a convex function on an interval I, then

$$
f\left(\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}\right) \leqslant \frac{f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)}{n}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in I$. To apply this, you need to know what a convex function is. The following are equivalent (for reasonable functions)

- $f(x)$ is convex
- $f\left(\frac{x+y}{2}\right) \leqslant \frac{f(x)+f(y)}{2}$ for all $x, y \in I$.
- $f^{\prime \prime}(x) \geqslant 0$ for all $x \in I$.

There is a corresponding version for concave functions with all the inequality signs reversed.

Geometric Inequalities:
If a, b and c are the sides of a triangle, always make the substitution $a=y+z, b=z+x, c=x+y$. Then by the triangle inequality, x, y, and z are all positve real numbers.

Problems

(1) If $x+y=1$ and $x>0, y>0$, prove that

$$
\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right) \geqslant 9 .
$$

(2) Prove the following inequality for all positive real numbers a, b and c:

$$
\left(a+\frac{1}{b}\right)\left(b+\frac{1}{c}\right)\left(c+\frac{1}{a}\right) \geqslant 8
$$

(3) If a, b and c are all positive reals, prove that

$$
a^{7}+b^{7}+c^{7} \geqslant a^{4} b^{3}+b^{4} c^{3}+c^{4} a^{3} .
$$

(4) Find all real solutions to the following system of equations

$$
\begin{array}{r}
x+y=2 \\
x y-z^{2}=1 .
\end{array}
$$

(5) Use Jensen's inequality for $f(x)=\log (x)$ to prove the AM-GM inequality.
(6) If a, b and c are the lengths of the sides of a scalene triangle, prove that

$$
\frac{1}{b+c-a}+\frac{1}{c+a-b}+\frac{1}{a+b-c}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c} .
$$

(7) (Nesbitt) Let a, b and c be positive real numbers. Prove that

$$
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geqslant \frac{3}{2}
$$

(8) Prove that $n!\geqslant n^{n / 2}$.
(9) Prove that $1 \cdot 3 \cdot 5 \cdots(2 n-1) \leqslant n^{n}$.
(10) Amongst all triangles with the same perimeter, show that the equilateral triangle is the one with the greatest area.
(11) Find the least value of $3 x+4 y$, if x and y are positive numbers satisfying $x^{2} y^{3}=6$.
(12) (2000 AMO Q3) Let $x_{1}, x_{2}, \ldots x_{n}$ and $y_{1}, y_{2} \ldots, y_{n}$ be real numbers such that
(a) $0<x_{1} y_{1}<x_{2} y_{2}<\cdots<x_{n} y_{n}$ and
(b) $x_{1}+x_{2}+\cdots+x_{i} \geqslant y_{1}+y_{2}+\cdots y_{i}$ for $1 \leqslant i \leqslant n$.

Prove that

$$
\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}} \leqslant \frac{1}{y_{1}}+\frac{1}{y_{2}}+\cdots+\frac{1}{y_{n}}
$$

When does equality occur?
(13) (2001 IMO Q2) Prove that for all positive real numbers a, b and c :

$$
\frac{a}{\sqrt{a^{2}+8 b c}}+\frac{b}{\sqrt{b^{2}+8 c a}}+\frac{c}{\sqrt{c^{2}+8 a b}} \geqslant 1 .
$$

